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ABSTRACT
The olfactory system enables humans and many animals to
recognize and categorize different odors and can determine
many behavioral and social reactions. For human beings,
odor stimuli are highly associated with many processes such
as emotions, attraction, mood, etc. One approach to under-
standing the olfaction is to monitor and analyze human brain
activity during perception of odors. In this paper, we analyze
the electroencephalogram (EEG) of five subjects during per-
ception of unpleasant and pleasant odor stimuli. We identify
the regions of the brain that are active during discrimination
of unpleasant and pleasant odor stimuli. We also show that
classification of EEG signals during perception of odors can
reveal the pleasantness of the odor with relatively high accu-
racy.

Index Terms— Olfaction, Odor, EEG, Brain, Signal Pro-
cessing

1. INTRODUCTION

For many animals the olfactory sense is the most important
and thus the most evolved sense. It allows them to inter-
act better with their environment by helping them take right
decisions for survival such as to identify food, mates, prays
and also escape from their predators. Although human be-
ings appear less driven by olfaction than many other animals,
human olfaction has a particular importance and can deter-
mine many behavioral and social reactions. Odor stimuli are
highly associated with attraction, mood, detection of danger
and they have the power to evoke distant memories and boost
self-confidence.

Odor stimuli are created by volatilized chemical com-
pounds and are directly perceived by the human olfactory
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bulb through the olfactory epithelium. In general, odors can
be measured from two different aspects, namely odor inten-
sity and odor pleasantness. Odor intensity is perceived as the
strength of an odor, and can range from no odor to intoler-
able. Furthermore, hedonic assessment of odors can scale
from extremely unpleasant up to extremely pleasant.

While smelling an odor, olfactory neurons located inside
the nasal cavity fire and send special electrical impulses to
olfactory bulb. The information then flows from the olfactory
bulb to higher cortical areas, such as the piriform cortex [1].
This cortical region has a unique architecture and a unique
contribution to odor encoding and perception, so it has been
extensively studied [2, 3, 4].

One approach to understanding olfaction and odor per-
ception is to study the changes in the brain electrical activity
after smelling an odor. Several studies have tried to capture
the oscillatory nature of the olfactory perception by means of
EEG signal processing. However, there exists a great deal of
variability in terms of the reported findings. For instance, dif-
ferences in the amount of alpha activity and an increase of
theta activity were observed when subjects were exposed to
fragrances and the EEG was recorded from 4 electrodes [5].
However, other authors suggested that there are no changes in
alpha activity but there are increases in theta activity [5, 6].
Moreover, in a more recent study [7] a decrease in the spec-
tral power of theta and alpha bands was found while smelling
essential oils. In the same study, an increase in the high fre-
quency EEG components (11-25 Hz) was reported.

One possible reason for the variability among EEG stud-
ies and olfactory psychophysiology is that in addition to the
direct activation of the olfactory bulb and the piriform cortex,
the human olfactory path is interconnected with other corti-
cal and limbic structures, such as the amygdala [1]. The role
of the amygdala in emotion, memory, and autonomic control
directly associates olfaction to these processes and adds com-
plexity to the odor perceptual experience. Therefore it is of
great importance to investigate the affective dimension of ol-
factory perception.

In affect recognition research, several different audio/visual



stimuli are presented to subjects while their brain activity is
being recorded. The subjects are asked to provide their self-
assessed induced emotions (in terms of pleasantness and
excitation), and these data are used to determine the changes
in the brain activity during perception of different emotions
[8]. The same approach can be used to understand the affec-
tive dimension of olfaction. More specifically, similarly to
audio/visual stimuli, odors can be classified in terms of their
pleasantness. Thus, subjects can be asked to smell differ-
ent odors and provide their self-assessed perception in terms
of pleasantness. These self assessments can be used in or-
der to investigate how odor perception affect brain electrical
activity.

Furthermore, most of the previous work in this area, stud-
ied the changes in the brain activity after smelling either a
pleasant or an unpleasant odor. In other words, EEG changes
were studied compared to normal baseline EEG. However, the
normal baseline EEG can be modulated by many factors, such
as mood, time of the day, tiredness, and many more. There-
fore, it is necessary to design an experiment, where all these
factors are controlled.

In this work, we propose to study the changes in the brain
activity during perception of unpleasant and pleasant odors,
in order to deal with the baseline variability problem. More
precisely, the EEG changes during stimulation with pleasant
odors are compared to the changes during stimulation with
unpleasant odors. We aim at exploring the EEG changes in
the power spectrum of different brain frequency bands, as
well as identifying the brain regions of interest resulting from
the difference between perception of pleasant and unpleasant
odors. Moreover, in order to explore the possibility of deter-
mining the pleasantness of an odor implicitly, only by means
of EEG signal processing, a classification problem is posed
and the results are presented.

This paper is organized as follows. Section 2 describes
the experimental protocol and the signal processing methods
used in this study. The results and the further discussion are
detailed in Section 3. Finally, the conclusions are presented
in Section 4.

2. MATERIALS AND METHODS

2.1. Participants

Five right-handed male PhD students and Postdoctoral re-
searchers participated in the study. They were between 26
and 32 years old and were recruited from Swiss Federal In-
stitute of Technology (EPFL). According to their self-reports,
none of them had a history of injury in the olfactory bulb or
incapability of smelling. All of them stated that they were
not suffering from any respiratory, mental or chronic disease.
Participants were informed about the protocol and about the
purpose of the study, but they were not informed about the
odors they would smell. Before the beginning of the experi-

Fig. 1. A participant before the beginning of the experiment.

ments, participants filled in a consent form. During the exper-
iments, participants were seated in a comfortable chair with
controlled environment. Finally, neither participants nor ex-
perimenters were wearing perfumed products on the day of
the experiment.

2.2. Set up

The EEG was recorded at 250 Hz sampling rate from 256
electrodes placed at the standard positions on the scalp. An
EGI’s Geodesic EEG System (GES) 300 was used to record,
amplify, and digitalize the EEG signals. Figure 1 illustrates
the EEG set-up and a subject short before the beginning of the
experiment.

2.3. Experimental protocol

Subjects were asked to close their eyes and breath normally
while the experimenter was moving bottles with different
odorants towards them to smell. The odorants consisted of
valerian, lotus flower, rosewater and fermented Swiss Tomme
goat cheese. The odorants were placed inside covered bottles
so as to avoid effects of their visual characteristics, such as
color and shape.

The experiment consisted of four runs. During each run,
after a ”smell” command, the experimenter was randomly
choosing a bottle with an odor to place it under the subject’s
nose (1-2 cm under both nostrils) and keep it there for about
2 seconds, constituting a single trial. This process was re-
peated for twenty to thirty times with the same odor resulting
in twenty to thirty single trials.

The time between two single trials of the same odor was
set to four seconds in order to avoid adaptation and subject’s
fatigue. After one run was performed, the subjects were given
two minutes break in order to forget the odor (to avoid mask-
ing effect) and in order for the odor to be evacuated. During
this break, the subjects were asked to rate the odor in terms
of intensity and pleasantness, on a scale from 0-10, ranging
from no odor to intolerable for intensity, and from extremely
unpleasant to extremely pleasant for pleasantness. After this



break another odor was randomly selected and the same pro-
cedure was repeated until all four odors were presented. In
this study, only the most pleasant and the most unpleasant
odor for each participant were used for data analysis.

2.4. Signal preprocessing

Before any processing on the acquired data, the electrodes
corresponding to muscle and eye activity were rejected, lead-
ing to a total 216 electrodes further analysis. The preprocess-
ing of EEG data was performed in the following order:

1. High-pass filtering
In order to remove the slow drifts from the acquired
data, it was filtered using a third order Butterworth
high-pass filter with cutoff frequency of 3 Hz.

2. Referencing
The common average signal of all electrodes was used
for referencing.

3. Single trial extraction
Single trials of duration 1000 ms were extracted from
the data. Single trials started at stimulus onset. Fur-
thermore, in order to remove the influence of the
stimulus-unrelated variations, a one-second baseline
was recorded before each run and used later for baselin-
ing.

2.5. Feature extraction and classification

The power spectral density of the signals and the baseline
segments were extracted for frequencies between 4 and 47
Hz, using Welch’s non-parametric method with windows of
124 samples and 80% overlapping. In order to perform the
baselining for each run and extract the power changes without
considering the pre-stimulus period, the power spectral den-
sity of the baseline (1 second before the run) was subtracted
from the power spectral density of all single trials in the run.
These power changes were captured for different brain fre-
quency bands, namely theta band (4-7 Hz), alpha band (8-13
Hz), beta band (14-29 Hz) and gamma band (30-47 Hz). Fur-
thermore, in order to capture changes in the brain activity, as-
sociated with processes like workload, engagement and atten-
tion, a feature called workload index (WI) [9] was estimated
per electrode as follows:

WI =
beta power

theta power + alpha power
(1)

A Support Vector Machine (SVM) classifier with radial ba-
sis function (RBF) kernel was used to classify the EEG sig-
nals corresponding to pleasant and unpleasant odor percep-
tion. Given a training set of instance-label pairs (xi, yi), i =
1, ..., lwhere xi ε Rn and y ε {1,−1}l, denote the n-dimensio
-nal feature vector and ground-truth, respectively, and l is the

number of trials, SVMs acquire the solution of the following
optimization problem [10, 11]:

minw,b,ξ
1

2
wT w + C

l∑
i=1

ξi...

subject to yi(wTφ(xi) + b) ≥ 1− ξi, ... (2)
ξi ≥ 0,

where w is a vector that represents the adjustable parameters,
φ(xi) represents the predefined functions of x, b is a bias and
C is the penalty parameter. RBF kernel (with penalty pa-
rameter C and kernel parameter γ) was used due to the fact
that the number of features was not very large and the fact
that RBF kernel considers possible non-linear relationship be-
tween class labels and features. LIBSVM package was used
for this study [12].

3. RESULTS AND DISCUSSION

The Hilbert-Schmidt independence criterion (HSIC) [13] was
used in order to investigate the dependence between EEG
segments corresponding to the pleasant and the unpleasant
odor stimuli across subjects, for each brain frequency band.
The HSIC test was selected because it outperforms traditional
correlation tests and because it considers the subjects as i.i.d
samples. The HSIC test uses a kernel independence measure
in order to detect linear or non-linear dependencies between
arbitrary input variables. Furthermore, the HSIC test either
rejects or accepts the null hypothesis depending on a cer-
tain threshold. Following [13], the null hypothesis was that
the pleasant and the unpleasant odors are independent. The
p-value of the HSIC test was computed using Bootstrap ap-
proximation with 104 re-sampling repetitions and the confi-
dence interval was set to 95% to avoid Type II errors, where
a false hypothesis might not be rejected. Finally, the kernel
size of the HSIC test was set to the median distance between
the points [13].

HSIC test revealed significant independence between the
pleasant and unpleasant odor perception across subjects for all
brain frequency bands. Figures 2-6 illustrate the separability
of brain activity when stimulated with pleasant and unpleas-
ant odors. More precisely, each color represents the degree of
separability of the extracted EEG features during perception
of hedonically different odors. For the measure of separabil-
ity, the fisher discriminant ratio (FDR) [14] of each electrode
i was computed as follows:

FDRi =
(mp,i −mu,i)

2

σ2
p,i + σ2

u,i

(3)

where mp,i and σp,i represent the mean and the variance val-
ues of EEG single trials powers acquired from electrode i dur-
ing stimulation with pleasant odors and mu,i and σu,i repre-
sent the mean and the variance values of EEG single trials



Fig. 2. Separability of theta band EEG during perception of
unpleasant and pleasant odors

Fig. 3. Separability of alpha band EEG during during percep-
tion of unpleasant and pleasant odors

powers acquired from the same electrode when stimulated
with unpleasant odors. The larger the value of FDRi, the
more separable the EEG signals during pleasant and unpleas-
ant odor perception. Intuitively, as can be seen from the math-
ematical description of the metric, the two classes are more
separable when their mean values are far from each other and
their variances are as small as possible. In Figures 2-6, the
signed values of FDR, denoted by SFDR, are represented by
colors. The signed values of FDR is defined as follows:

SFDRi = sign(mp,i −mu,i)× FDRi (4)

where sign(x) equals +1 and -1 for positive and negative val-
ues of x, respectively. Small values of SFDR implies the in-
significant separability of the EEG signals during pleasant and
unpleasant odor perception, whereas large values of SFDR
suggest a good separability between these two classes. The

Fig. 4. Separability of beta band EEG during perception of
unpleasant and pleasant odors

Fig. 5. Separability of gamma band EEG during perception
of unpleasant and pleasant odors

positive and negative signs of SFDR values demonstrate the
increase and decrease in the brain activation respectively, dur-
ing pleasant versus unpleasant odor perception.

As it can be seen in these figures, when smelling an un-
pleasant odor, the brain activity increases in frontal and cen-
tral regions for almost all bands. This increase in the EEG
power is also an unilateral increase, creating an asymmetry
in the brain activity distribution. As the increase in the brain
power occurs in the right hemisphere, our results are consis-
tent with the results of the research on emotions and affective
computing, demonstrating a negative affect or withdrawal sit-
uation created after smelling an unpleasant odor [15, 16, 17,
18].

In order to perform single trial classification, the leave-
one-subject-out cross validation scheme was considered. In
other words, a classifier was trained based on the EEG sig-



Fig. 6. Separability of workload index during perception of
unpleasant and pleasant odors

Table 1. Single trial classification results of EEG signals us-
ing features of different frequency bands

Subject1 Subject2 Subject3 Subject4 Subject5 Average
Theta 70.00% 58.00% 50.00% 68.57% 50.00% 59.31%
Alpha 77.50% 66.00% 57.50% 62.86% 50.00% 62.77%
Beta 67.50% 58.00% 87.50% 51.43% 100% 72.89%

Gamma 62.50% 58.00% 55.00% 60.00% 100% 67.10%
W.I 55.00% 64.00% 62.50% 54.29% 75.00% 62.16%

nals of four subjects and the EEG signal of the remaining
subject was used as the test set. This was repeated until
all subjects had been considered as the test set once. The
leave-one-subject-out cross validation scheme provides infor-
mation about subject-independent EEG changes and explores
the possibility of developing a generic classifier, which can
automatically classify EEG signals of a new naive subject
without any other training. The single trial classification
results are presented in Table 1.

As it can be seen in this table, the results of single trial
classification suggest that using the information in the beta
and gamma bands result in relatively high classification accu-
racies. It can also be observed that the classification results
vary among the subjects, suggesting that some subjects have
very different EEG benchmarks during perception of pleas-
ant and unpleasant odor stimuli. One approach to deal with
this problem, is to repeat the methodology introduced in this
paper with a larger number of subjects. In this way, it could
be guaranteed that there are clusters of subjects with similar
EEG benchmarks and that the training set is comprehensive
enough to include all profiles.

4. CONCLUSION

In this paper, we explored the EEG alterations during percep-
tion of pleasant and unpleasant odors. To this end, a sub-

jective test was designed and five subjects participated in a
test, where they were asked to smell pleasant and unpleasant
odors while their EEG signal was being recorded. Analysis
of the recorded data demonstrated that there is a unilateral
right frontal activation in the brain activity during perception
of unpleasant odors. This is of significant interest, as it is in
consistency with the outcomes of emotion recognition stud-
ies, where it is shown that frontal activation on the right hemi-
sphere is created by a withdrawal-related emotion. The results
of this study suggest the feasibility of EEG signal processing
as a tool to inquire about the pleasantness of an odor for a
given subject. Further extension of this work can be to use
the proposed methodology for assessment of various odors
and to explore whether it is possible to extract information
about odor pleasantness on a continuous scale. If the answer
to the latter is positive, the proposed methodology in this pa-
per can be used for implicit quality assessment of different
odors in terms of their pleasantness.
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