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Abstract—The performance of objective video quality measures is
usually identified by comparing their predictions to subjective assessment
results which are regarded as the ground truth. In this work we
propose a complementary approach for this performance evaluation by
means of a large-scale database of test sequences evaluated with several
objective measurement algorithms. Such an approach is expected to detect
performance anomalies that could highlight shortcomings in current
objective measurement algorithms. Using realistic coding and network
transmission conditions, we investigate the consistency of the prediction
of different measures as well as how much their behavior can be predicted
by content, coding and transmission features, discussing unexpected and
peculiar behaviors, and highlighting how a large-scale database can help
in identifying anomalies not easily found by means of subjective testing.
We expect that this analysis will shed light on directions to pursue in
order to overcome some of the limitations of existing reliability assessment
methods for objective video quality measures.

I. INTRODUCTION

Subjective assessment is usually considered as ground truth for
the training, verification, and validation of objective video quality
measures. The number of test cases that may be obtained in subjective
assessment is however limited. Less than 200 video sequences of
about 10 seconds in one session may be evaluated when using one of
the most efficient methods, Absolute Category Rating [1]. In addition,
with a reasonable number of observers, only about 75% of the test
cases are pairwise distinguishable with confidence intervals around
0.3 on a five point scale [2]. Even with recent collections of available
databases, notably the Qualinet Database [3], the choice of available
annotated databases for a particular usage scenario stays limited.

The purpose of this contribution is to propose a complementary
approach for measuring performance of objective measurements: The
usage of a large-scale database of test sequences evaluated with
several objective measurement algorithms. It is complementary, as
it may be expected that performance anomalies, such as outliers,
may be detected that may be missing in the limited selection per-
formed for subjective assessment. It should be noted though that the
trustworthiness of subjective assessment can not be targeted. In [4],
Ciaramello and Reibman explained a similar approach for image
quality predictors by creating a large amount of test images with
specific degradations.

The focus of this paper is on the characterization of three well-
known objective video quality predictors with realistic coding and
lossy network transmission conditions. To this aim, we present an
extension to our previous database [5] which adds a large number
of objective quality evaluations when compressed video streams are
subject to data loss. It shall be noted that none of the three measures
was specifically designed for measuring degradations due to packet
loss, notably concealment artefacts and time varying quality. However,

they have been used repeatedly in the literature in order to mea-
sure such scenarios regardless of such considerations. Transmission
degradations have therefore been considered as being at least in the
extended scope of application: prediction with a limited accuracy was
expected using these measurement algorithms.

In this paper, three goals are targeted. First, a new large-scale
database with a total of 496,000 video sequences with packet loss
degradations is introduced. Second, the performance of the three
quality predictors PSNR, SSIM, and VIFP is evaluated on in terms
of ranking agreement and distance. Third, a link will be established
between Full Reference and future Hybrid No-Reference measures
by showing how to predict the results of one of the measures, in
this case PSNR, to information extracted from the transmitted video
sequences, notably content features, coding parameters, and network
characteristics.

This paper is organized as follows. First, the large database on
which our analysis is performed will be described. Then, the objective
features and measures introduced in Section III will be used to analyze
the large database in Section IV. Finally, discussion and conclusion
sections are provided.

II. DATABASE OVERVIEW

This work relies on our publicly available database1, which
comprises 59,520 video sequences encoded according to the HEVC
standard using the test model software HM 12.1 [6]. The database
covers three resolutions (ranging from 960×544 to 1920×1080), and
ten original test signals, each 10 seconds long. The database can be
fully and exactly reproduced since the sequences, the encoding con-
figuration and the test model software are freely available. Moreover,
several objective video quality metrics have been computed for each
encoded video sequence. These publicly accessible results include
both the final value for each sequence and the intermediate values
used for the computation, e.g., per-frame quality values.

In addition, to investigate the effect of network impairments on
HEVC-compressed video sequences, the database in [5] has been
recently extended to include quality evaluation when compressed
video streams are subject to data loss. A set of 25 loss patterns
has been generated by means of a 2-state Markov model [7] using
loss rate values up to 1% and average burst length up to 2 slices.
Applying each loss pattern to each sequence, 25 degraded bitstreams
have been generated, decoded, and objective measurements have
been calculated. Note that for each degraded bitstream we used the
effective loss rate and average burst length, as measurable at the
receiver, which may be different from the settings of the model since

1ftp://ftp.ivc.polytech.univ-nantes.fr/VQEG/JEG/HYBRID/hevc database/978-1-5090-0354-9/16/$31.00 c© 2016 IEEE



only part of the loss pattern has been used. Currently, due to the
huge computational effort, this activity has been performed in full
only for the lower-resolution set of encoded sequences (i.e., 19,840).
Therefore, 496,000 combinations of encoded sequence and loss traces
have been evaluated with several objective quality metrics. Depending
on the position of the lost packets, determined by the 25 loss patterns,
and the encoding configuration, error propagation of different duration
occurs. Using a robust decoder simulation [8], all video sequences can
be decoded, there is no temporal offset, and the number of affected
frames can be exactly calculated.

This large-scale approach currently appears to be unique in video
quality research. In other words, we are not aware of other publicly
available datasets of similar size. In our opinion, such a large dataset
of values, coupled with the possibility to recompute, as needed, any
of the values and distorted sequences, allows to perform in-depth
investigation of issues encountered by objective quality measures,
in particular analyzing their coherence of and dependency on many
parameters such as content characteristics, coding settings and loss
parameters.

III. QUANTITATIVE DATABASE CHARACTERIZATION

Each processed video sequence in the database is characterized
using various content features, coding parameters, loss parameters,
and several quality measures as described next.

A. Content Features

Table I shows 209 content features that have been extracted
from the ten original video sequences. This is an approximation of
the extraction of the features from the degraded videos which has
been postponed due to lack of computational power. The features
cover spatial and temporal characteristics that are extracted from
the luminance frame (Y), and the chrominance frames (Cb and Cr),
in the spatial domain or in the frequency domain. The features
are extracted on both block or frame levels. For the features that
are extracted at the block level, the Minkowski sum with different
power is applied to obtain a scalar value of each frame, then several
statistical measures (e.g., mean, maximum, standard deviation, etc.)
are applied to get a scalar value that represents the video sequence.
Three spatial information features [1] are employed to measure the
edge information. Twelve chrominance information features [9] are
used to measure the color information. Five contrast information
features [9] are considered to measure the distribution of contrast
in the frame. Twelve features that belong to spatial perceptual
features [9] measure the perceptual spatial information and extract
the changes in the orientation of the spatial activity. One feature
measures the colorfulness of the video sequences [10]. Contrast,
energy, correlation, homogeneity, and entropy of the joint probability
distributions of pairs of pixels, namely Gray-Level Co-occurrence
Matrix (GLCM), as in [16] and [11] on the whole frame and on
64x64 blocks are measured using four neighboring directions (0, 45,
90, and 135 degrees). In total, 90 features have been extracted from
every video sequence using GLCM. Normalized cross correlation
features [12] are represented by 25 values that indicate how much
the top-left 16x16 sub-block is correlated in its 64x64 block. Other
8 features are extracted from the 4x4-DCT decomposition of the
luminance frame: these are kurtosis, smoothness, sharpness, similarity
between different frequencies (3 features), and vertical and horizontal
blockiness [13]. Features from Laplacian pyramid subband are also
extracted [14]. Energy, entropy, and kurtosis are extracted from each

TABLE I: List of extracted features

Features Formula Count

Spatial information
[1]

SI = F1{F2[Sobel(Y )]}
• {F1, F2} = {max, std},

{max,mean}, {std,mean}
3

Chrominance Infor-
mation [9]

CU = F1{F2{U}}
CV = F1{WR ∗ F2{V }},WR = 1.5

• {F1, F2} = {mean,mean},
{std,mean}, {mean, kurt},
{std, kurt}, {max, kurt},
{max,max}

12

Contrast
information [9]

CI = F1{F2[Y ]}
• {F1, F2} = {mean,mean},

{mean, std}, {max, std},
{mean, skew}, {mean, kurt}

5

Spatial perceptual
information [9]

FSI13 = F1{F2[SI13(Y )]}
SIHV = F3{

(mean(HV [Y ])|p)

(mean(HV [Y ])|p)
},

p(threshold) = 3

• {F1, F2} = {mean,mean},
{mean, std}, {mean, skew},
{mean, kurt}, {mean,max},
{std,mean}, {max,max}

• F3= mean, std, skew, kurt,
max

12

Colorfulness [10] CF = mean{CF{Y UV }} 1

Gray-Level Co-
occurrence Matrix
(GLCM) [11]

Contrast = F1{cont(GLCM)} ,
Correlation = F1{corr(GLCM)},
Energy = F1{enrg(GLCM)},
Homogeneity = F1{homo(GLCM)},
Entropy = F1{entropy(GLCM)}
• F1 = mean, std, max
• It is calculated per frame (5x3=

15) and per block with different
Minkowski power p=(1,2,4,10, 0.1) =
(5x3x5 = 75)

90

Normalized cross
correlation [12]

FNCC = F1{NCC(block64x64)}
• F1 = mean, max, std, skew,

kurt
• It is calculated per block with dif-

ferent Minkowski power p=(1,2,4,10,
0.1)(5x5=25)

25

DCT based features
[13] See the reference for more details 8

Laplacian based
features [14] See the reference for more details 46

Temporal informa-
tion [1]

TI = F1{F2[Y2 − Y1]}
• {F1, F2} = {max, std},

{std,max}
2

MPEG-7 Motion
Activity [15] See the reference for more details 5

How to read the formula:
• For instance, to read the formula SI = F1{F2[Sobel(Y )]} with

{F1, F2} = {max, std}:
- Apply the Sobel filter to each Y frame and keep the

maximum value.
- Calculate the standard deviation of maximum values.

• Key to read abbreviations: standard deviation (std), maximum (max),
skewness (skew), and kurtosis(kurt)

intra-subband and the ratio between different subbands are considered
as features, yielding 33 values. Other 13 features represent the
inter subbands smoothness, subbands similarity and SSIM similarity.
Regarding the temporal domain, 7 features are computed. Two of
them directly represent the temporal information [1]. Others are
computed according to the definitions the MPEG-7 motion activity
descriptor [15]: they represent motion intensity, motion direction, and
spatial distribution of objects.

B. Quality Measures

Three widespread objective quality measures have been consid-
ered in this work, i.e., PSNR, SSIM, and VIFP [17], [18], which



have been computed using the vqmt tool [19]. Each measure has
been computed for each sequence in the database. In all cases, the
original uncompressed source sequence is taken as a reference.

During the analysis of the quality values included in the database,
we noticed that the PSNR value for content named src09 presented
infinite values for some encoded frames. Further investigation showed
that the content includes smooth transitions to and from fully-black
frames which are encoded perfectly, that is without any difference,
by HEVC. Therefore, the frame difference is zero and PSNR, by the
classical definition, returns infinity. For this reason we decided to
exclude src09 from the remaining part of this work.

Moreover, for some sequences, we noticed that the PSNR value
of the sequence affected by losses has a slightly higher PSNR than
the one of the encoded-then-decoded sequence not affected by losses.
This surprising behavior has been traced back to video content charac-
teristics and coding parameter options. Sequences such as src05 have
a completely static background with small foreground movements.
Therefore, concealment of the background area is almost perfect in
case of loss. The HM video encoder [6], instead, has the peculiarity,
for some coding configurations, to provide poor encoding quality in
proximity of scene cuts therefore in case of loss the quality of the
concealed video sequence, composed for a large part of background
area, can temporarily be higher than the one provided by the encoder
for the uncorrupted sequence. This unusual phenomenon remarks the
importance of performing analysis and investigation using a large
database of video sequences comprising many different encoding
configurations and loss patterns, so that unexpected behaviors can
be observed and taken into consideration. However, note that in
our experiment, the effect is limited since the PSNR “gain” due to
concealment is, at most, 0.1 dB.

IV. IDENTIFICATION OF INTERESTING PARAMETER

COMBINATIONS

This section will explain how to isolate parameter combinations
that yield to remarkable behaviors of the considered measures. By
means of this analysis we intend to study the stability and predictabil-
ity of the behavior of the measures with the ultimate goal of better
understanding the intrinsic limits of the measures themselves.

A. Measure Disagreement

Having several measures for the same video sequence naturally
yields to the question if such measures are consistent in ranking. In
other words, given two processed video sequences (PVS), do all the
measures agree about which is the one with the highest quality score?
The underlying idea is that if one or more of these measures do not
agree, this condition should deserve further investigation. In [8], we
used a similar approach when dealing with PVSs which do not contain
data loss impairments.

Table II reports results for the nine sources considered in this
work. The first data column shows the percentage of comparisons
with disagreement among all comparisons within the same source
(i.e., 1,230,055,200 pairs). The next three columns show how many
cases (as a percentage out of all disagreement cases) can be ascribed
to each measure (PSNR, SSIM, VIFP).

These results can be directly compared with the ones in [8]
showing that, in the considered scenario, the loss impairments tends
to increase the amount of disagreement. Moreover, for most sources

TABLE II: Reasons of disagreement among quality measurements for each
sequence. src09 is not included due to the PSNR issue.

% of % due to % due to % due to
Source disagreement PSNR SSIM VIFP

src01 12.74 38.81 41.60 19.59
src02 4.29 61.37 23.97 14.66
src03 12.07 45.47 26.42 28.11
src04 10.41 57.51 22.55 19.94
src05 4.11 47.26 32.27 20.47
src06 9.98 71.81 12.43 15.76
src07 5.64 65.27 11.89 22.84
src08 5.46 59.19 19.73 21.07
src10 12.44 46.67 32.12 21.21

Fig. 1: Reason of disagreement (expressed as a ratio over the total pairs)
between the various algorithms as a function of the normalized difference for
src03.

the share of disagreement attributed to PSNR increases compared to
the case in [8] (i.e., no losses), whereas there is a decrease for the
VIFP measure. This behavior may suggest that some measures are
more influenced (and perhaps are more sensitive) to loss impairment
than others.

However, the previous results should be taken carefully since very
limited variations around the equivalence between the pairs could
yield disagreement that may be due to potentially tiny modifications
of the characteristics of the PVS. Therefore, for each algorithm we in-
troduce a normalized difference by linearly rescaling the results in the
interval [0..1]. Normalized values are denoted by the hat symbol (e.g.,̂PSNR). Then, the individual differences of all the measurements for
a sequence pair are combined in a single normalized difference d̂ by
using the Euclidean distance:

d̂ =

√
∆ ̂PSNR

2
+ ∆ ̂SSIM 2

+ ∆V̂IF
2

(1)

so that the results can then be plotted in one dimension using a
histogram for each source, as suggested in [8].

Figure 1 presents a sample histogram showing the reason of
disagreement as a function of the normalized difference for src03.
As expected, the amount of disagreement decreases as the distance
increases. Moreover, the figure shows a smooth reduction trend for all
the three considered measures, though the share is generally higher
than the one in [8]. This result is in part different from [8], in
particular for src03, where the share strongly fluctuates as the distance
increases. This effect was described as being potentially attributed to
the characteristic of the sequence content.

Since the share of agreement increases more slowly compared



Fig. 2: Reason of disagreement (expressed as a ratio over the total pairs) between the various algorithms as a function of the normalized difference for src01
and src06. To simplify comparisons, the black vertical line shows the point up to which Fig. 1 and all histograms in [8] have been plotted.

to [8], we plotted the histograms for a larger distance, as shown in
Fig. 2 for src01 and src06. For convenience, a black vertical line
shows the point up to which Fig. 1 and all histograms in [8] have
been plotted. It can be noticed that the disagreement spans over a
larger interval of normalized distances: this is expected since loss
impairments typically have stronger influence on the measurements.
However, strong differences in the reasons of disagreement can be
observed: src01 is dominated by SSIM disagreement, whereas PSNR
is the main reason of disagreement for src06. Therefore, content
characteristics appear to play a significant role in this regard.

B. Prediction of ∆PSNR

In this section we focus on a method to predict the behavior of one
of the measures, namely PSNR, from a set of features by employing
a machine learning approach, so that difficult-to-predict situations
(i.e., outliers) can be identified. All features that are used in this
paper are normalized linearly. In order to increase the confidence of
content features’ values, since the dataset contains only 10 sequences,
the features are also extracted from other 37 video sequences and
then normalized. In total, 220 features are included (209 content
features, 8 encoding parameters, and 3 channel parameters). The data
is divided into training and test sets. The main goal of this machine
learning process is to highlight the content features, besides the
encoding and channel parameters, that have an impact on improving
the prediction of the difference in quality between sequences with and
without packet loss, i.e. ∆PSNR, that is calculated as the difference
between the PSNR of each condition with coding-only degradation
and the PSNR of the same condition with applied packet loss pattern.
The features are selected as described in Algorithm 1, which relies
on the LIBSVM tool [20]. Epsilon-SVR with radial basis function
is used to train the model with 5-fold cross validation. The SVR
parameters are computed before applying the training algorithm. After
the end of the training, 7 features are selected: temporal information
(std(max)), block based correlation of GLCM (max(p = 1) and
mean(p = 0.1)), block based energy of GLCM (std(p = 2)),
block based entropy of GLCM (std(p = 2)), DCT based smoothness
measure, and MPEG-7 short length of zero of spatial distribution of
the objects. The syntax of the feature extraction is described at the
bottom of Table I. Table III shows the performance of the prediction
model using the test data set. Pearson Correlation Coefficient (PCC),
Spearman Rank Order Correlation Coefficient (SROCC), and Root
Mean Squared Error (RMSE) are used to compute the prediction
model performance. In addition, Figure 3 shows the correlation
between the predicted data against the original data. It can be

observed that when ∆PSNR decreases (i.e. the encoded and degraded
sequences are approximately of the same quality), the prediction error
increases.
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Fig. 3: Performance of predicting ∆PSNR from content features only. Please
note the lack of significant outliers.

TABLE III: Performance of the predicting model

Performance PCC SROCC RMSE

Test data (reduced feature set) 0.9320 0.833 0.0305
Train data (reduced feature set) 0.9310 0.832 0.0305
Test data (All features) 0.9144 0.770 0.0368
Train data (All features) 0.9135 0.769 0.0368

C. Analysis based on ∆PSNR prediction

By modelling on all the features, as described in the previous
section, the importance of every feature can be derived. Such analysis
indicated that counting the number of frames that get affected by
packet loss (frames affected) is one of the appropriate features
that correlate well with simple objective measures. Aided by this
observation, questions arise about how the amount of affected frames
influences the agreement between different quality measures. In



Fig. 4: The analyzed objective measures, namely PSNR, SSIM, and VIFP plotted together with the transmission feature frames affected of all src5 sequences.
Darker dots indicate high disagreement, lighter dots indicate small disagreement.

Algorithm 1 Training algorithm

Input: (data,target) {data is m × n, where m is the samples and n is
number of features, and target is the response of each data sample
(∆PSNR)}

Output: F {set of selected features}
1: F ⇐ data(channel and encoding parameters)
2: Train SVM model with 5-fold cross validation
3: pBest = Save the performance results of the training as best perfor-

mance
4: for i = 1 : n do
5: for i = 1 : n do
6: F ′ ← F + data(i)

7: Train SVM model with 5-fold cross validation using F ′

8: p(i) = performance {Save the training results}
9: end for

10: [p′ indx] ← max(p)
11: if p′ > pBest then
12: F ← F + data(indx)

13: pBest← p′

14: else
15: break
16: end if
17: p← 0

18: end for

Fig. 4, this analysis has been performed on all the sequences of src5.
Other sources show a similar behavior. On the Y-axis, the number of
affected frames of all src5 sequences has been displayed with respect
to the PSNR of these sequences on the X-axis. Every dot represents a
sequence of src5, each having a different number of affected frames,
caused by the packet loss scenario and the video stream structure,
and each having a different PSNR. First of all, when looking at
the distribution of the points, it can be observed that the number
of affected frames does not behave linearly with respect to the PSNR
that the model needs to learn. Using simple reasoning, one would
expect that when many frames are affected by a slice loss, a strong
PSNR reduction would result from this loss. In contrast, it can be
observed that a large part of the range of the objective measure can
be obtained from any different amount of frames affected. Obviously,
even the smallest impact or change of a frame is considered as an
additional affected frame. Because there is not a simple linear relation
between the feature and the measure, it could be useful to design other
features from which further linear correlation can be derived. Such
feature would be able to provide more insight than the ones that are
available in this set. So, although the precision of the designed model

is high, the features should not yet be regarded as a comprehensive
generic set.

When analyzing the disagreement properties of all these se-
quences, the intensities of the plotted sequences needs to be inves-
tigated. Light dots indicate sequences which have a low maximum
disagreement with other sequences in the set. Dark points, on the
other hand, depict regions where the objective measures can reach a
high disagreement when compairing all sequences of src5. This high
disagreement means, that when one sequence is compared with all
the others from the same source, disagreement is measured as the
normalized amount of sequences on which PSNR disagrees. When
taking the maximum value resulting from all comparisons with other
sequences, a high value is colored darker in the plot. Fig. 4 also
provides these plots with respect to SSIM and VIFP. It may be
observed that agreement mainly occurs in the high and low PSNR
range. So, when objective quality measures indicate a very high or a
very low quality, it is more likely for the measures to agree. On the
other hand, when operating at more average values, PSNR, SSIM, and
VIFP tend not to agree. In both the plots of SSIM and VIFP, it can
be observed that the frames affected indicator influences the rate of
agreement in an insignificant way. For PSNR, the frames affected
indicator influences the amount of agreement in the high PSNR
quality range. This agreement persists longer at lower PSNR values
when frames affected is high.

V. DISCUSSION

The analyses presented in Section IV shows that our approach
can help investigating the stability of video quality measures even
when a large number of test sequences are involved, which makes
subjective assessments impossible. However, we remark that our
aim is not substituting subjective assessment. On the contrary, we
aim at identifying potential shortcomings in terms of, e.g., stability
and agreement, of existing video quality metrics that could not be
investigated without resorting to large scale assessment. Interesting
conditions and outlier situations can be identified, further studied,
and analyzed.

Moreover, the possibility to correlate the values of video quality
measures with content and channel features has interesting implica-
tions. For the case analyzed here (PSNR) it seems that the video
quality metric value can be predicted quite reliably by a subset of
content and channel features selected by using the algorithm proposed
in this work. This could be the first step towards designing a hybrid



No-Reference quality metric that can show good agreement with
traditional full reference metrics such as PSNR.

Furthermore, although the number of affected frames provides
the highest importance in predicting the PSNR within the developed
model, there is no easily interpretable correlation between this feature
and PSNR. Therefore, it would be beneficial to look further for
features that can provide this easy to understand knowledge. Ad-
ditionally, this analysis provides insight in the ranges in which the
objective quality measures PSNR, SSIM, and VIFP agree. Especially
in the average quality regions, comparing different sequences results
in higher disagreement of the measures. This region is certainly
of higher interest when performing subjective evaluation in order
to further improve the large database approach of quality metric
investigation.

Finally, we remark that such results can only be achieved by
means of using a large scale database. In particular, we noted how
some peculiar observations on the behavior of metrics such as PSNR
are due to the use of a large number of combinations of coding
parameters. Therefore, we plan to further extend the database, in
particular in the direction of new source content and new channel
conditions.

VI. CONCLUSION

This work showed how statistical analysis of a large scale
database including about half a million video sequences distorted
by data loss can provide insights on the behavior and particular
limits of widespread simple objective video quality measures that
are used partly out of scope. The agreement between the three tested
measures PSNR, SSIM, and VIFP showed that the results of their
prediction is similar, notably in the high and low quality range, less
so in the middle range. It was further noted that the disagreement
of the measurements is more pronounced in case of packet loss than
for coding-only conditions which may be seen as a first step towards
an automatic identification of the scope of application for objective
measures. Thanks to the large size of the analyzed dataset, some
important effects on the characterization of the performance were
highlighted that are not evident when a limited set of sequence and
parameters is considered.

It was shown that the results of the Full-Reference measures may
be predicted from content features, coding, and packet-loss parameters
with a high correlation, even if a reduced set of only seven parameters
are used. This indicates that the complete image data may not be
required in order to achieve the typical prediction performance of the
evaluated measures. This is important for Reduced-Reference and No-
Reference measures. Future work will investigate in more details the
highlighted issues by means of, e.g., objective measures with higher
computational cost and subjective evaluation, so that more effective
variants of currently available video quality measures can be designed.
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