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Abstract—In recent years, point clouds have gained popularity
as a promising representation for volumetric contents in immer-
sive scenarios. Standardization bodies such as MPEG have been
developing new compression standards for point cloud contents to
reduce the volume of data, while maintaining an acceptable level
of visual quality. To do so, reliable metrics are needed in order
to automatically estimate the perceptual quality of degraded
point cloud contents. Whereas several objective metrics have
been developed to assess the geometrical impairment of degraded
point cloud contents, fewer publications have been devoted to
evaluating color artifacts. In this paper, we propose new color-
based objective metrics for quality evaluation of point cloud
contents. Our work extracts color statistics from both reference
and degraded point cloud contents, in order to assess the level
of impairment. Using publicly available ground-truth data, we
compare the performance of our proposed work with state-of-the-
art metrics, and we demonstrate how the color metrics are able
to achieve comparable results with respect to widely adopted
solutions. Moreover, we combine color- and geometry-based
metrics in order to provide a global quality score. The novelty
of our works resides in simultaneously taking both degradation
types into account, while being independent of the rendering
process. Results show that our solution is able to overcome the
limitations of focusing on only one type of degradation, achieving
better performance with respect to current metrics.

Index Terms—point cloud, objective quality metrics, compres-
sion
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I. INTRODUCTION

In recent years the availability of low cost sensors, af-
fordable head mounted displays and the computational power
of commodity hardware have allowed content providers to
serve a broad range of users with immersive virtual reality
experiences. In order to allow free movement within the virtual
world these immersive experiences require volumetric photore-
alistic reconstructions of real world objects. Point clouds have
emerged as a popular format to represent such reconstructions.
A point cloud is a collection of points sampled from the
surface of the object with a specified geometry in the form
X, Y and Z coordinates along with some associated attributes
at each point. Point clouds are typically captured by depth
sensors or with multi-camera capture using photogrammetry.
They allow a simple representation of geometry using a set of
un-ordered points that require no pre-processing to reconstruct
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the surface. Point clouds are also versatile as there are no
restrictions imposed on the attributes that can be recorded
at each point such as colour, surface normals, transparency
and material properties. Point clouds can contain millions of
points and require compression in order to store and transmit
them efficiently. Uncompressed point cloud sequences can
require several Gigabytes per second to transmit. Point cloud
compression has received significant research interest in recent
years including an MPEG standardisation activity with a new
compression standard expected to be released later this year
[1]. The upcoming MPEG VPCC codec has been shown to
reduce the bandwidth requirements to the range of 3 to 55
Mbps [1].

In order to evaluate the effectiveness of lossy compression
and to measure the errors introduced, a quality degradation
metric is required. In previous research, several objective met-
rics to measure geometrical distortions have been proposed.
However, such metrics are not able to capture the impact
of color distortions on the visual quality of point clouds. In
this paper, we propose the use of global color statistics, such
as color histograms and correlograms, to compare the level
of distortion of a degraded point cloud with respect to its
unaltered reference. Moreover, we introduce a new metric,
obtained through a linear regression between geometry-only
and color-only metrics, in order to better approximate the
perceived visual quality.

The contributions of this paper are two-fold. We present a
thorough investigation of color-based statistic as a means to
extract color features from point cloud data, and we employ
several distance metrics in order to quantify the discrepancies
between an altered point cloud and its original reference. To
test the validity of color-based metrics, we use a publicly
available dataset of objective and subjective quality scores for
point cloud contents under compression distortions. Then, we
analyze the performance improvements brought by combining
geometry- and color-based approaches in a single, rendering-
independent metric.

II. RELATED WORK

Full reference point cloud distortion metrics can be broadly
categorized as point based or projection based. Point based
metrics rely on finding correspondences for all points in the
distorted cloud with points from the original cloud. Projection
based metrics rely on the fact that point clouds are typically
rendered before being consumed. Therefore, distortions can be978-1-7281-5965-2/20/$31.00 ©2020 IEEE



measured by rendering the original and distorted point clouds
from the the same viewpoint, and using image distortion
metrics on the resulting 2D images.

A. Point Based Metrics

Point based metrics rely on identifying correspondences
between points in the distorted decompressed cloud and the
original uncompressed cloud. The euclidean distance between
corresponding points can then be used to measure the distor-
tion [2] introduced by compression. Cignoni et al proposed
a mesh based approach where a mesh is created from the
original point cloud in order to recreate the surfaces from
which the points were sampled. The distance between the
surfaces and the points in the distorted point cloud can then
be measured [3]. However this method relies heavily on the
mesh construction process and these are often tuned differently
for specific reconstructed objects. Tian et al [4] propose a
point to plane metric. The authors compute the normal to
the surface at every point in the original uncompressed point
cloud as an indication of the local surface. The displacement
of every corresponding point in the distorted point cloud
is then projected onto the normal to calculate the point to
plane distance. Linear approximations of surfaces, as well
as more complex curvature approximations, have also been
used to quantify the angular distortions between two sets of
points [5], [6]. Once the point distances have been calculated
the overall geometric distortion can then be measured using
mean squared error (MSE) or Hausdorf Distance. The quality
can then be expressed using a Peak Signal to Noise Ratio
(PSNR). Once point correspondences between the original and
distorted cloud have been identified the changes to the color
attribute introduced during compression can also be measured
at each point.

B. Projection Based Metrics

Point clouds are typically rendered using graphics engines,
by placing a primitive such as a triangle of fixed size at each
point location. The primitives are then projected onto a 2D
surface during rasterization, before being viewed by the user.
The final image seen by the user can be used to measure the
distortion, by comparing the images for the original and the
distorted point cloud from the same viewport. Existing image
distortion metrics such as SSIM, VIF and PSNR can be used to
measure the distortion. This approach has been used by Quiroz
et al [7] to drive rate distortion optimization in their codec
design. Alexiou et al. [8] investigated the impact of the number
of viewports on the performance of the metric, and proposed
a weighting system based on user interaction. However, this
approach is not suitable to be used in rate-distortion evaluation
for lossy compression, as a large number of views would be
needed in order to evaluate the geometry of the entire object.

III. COLOR-BASED OBJECTIVE QUALITY METRICS

In order to measure distortions introduced by compression
on the colour domain, 2D image based metrics, such as PSNR,
have been applied on the color information of couples of points

taken from the reference and distorted point cloud. The metrics
thus capture variations in color on a point-to-point basis.
However, these metrics fail to capture the broad variations
in texture, often resulting in poor prediction capabilities [9].

The intuition behind this paper resides in trying to capture
the difference between colored point clouds from a global
perspective. We use color statistics, such as color histogram,
to analyze how the general distribution of the colors changes
when artifacts are introduced. We also incorporate spatial
information using the concept of color correlogram [10].

A. Histogram-based objective quality metric

In image processing, color histograms represent the prob-
ability distribution of pixel values for the entire image. Dis-
tortions applied on the color channel, such as compression
artifacts, tend to modify the statistical distribution of the
colors, for example by applying quantization. Thus, computing
the distance between the color histogram of a distorted model
with respect to the one obtained from its unaltered reference,
will give us an idea of the level of distortion.

We propose the use of histogram distance as a measure of
distortion of a test point cloud with respect to a reference. We
compute the color histogram on the luminance channel, which
has been shown to better correlate with human perception of
color [11]. Moreover, following the literature [12], we apply
a weighted average between the distances associated with the
YCbCr channels, in order to have a distance metric that takes
chrominance into account:

distY CbCr =
6 · distY + distCb + distCr

8
. (1)

Several distances can be defined between two histograms.
In our work, we compare the L1 (Cityblock), L2 (Euclidean)
and L∞ (Chebyshev) distances, as well as the χ2 distance and
the Earth Moving Distance (EMD) [13].

B. Correlogram-based objective quality metric

The concept of color correlogram was first introduced by
Huang et al. [10], as a way to improve image indexing and
comparison by introducing spatial correlation information to
the color histogram. For 2D images, it is defined as the
probability, for any pixel with color ci, that a pixel at k-
distance from it has color cj .

As point cloud color information does not generally lie
on a regular, fully occupied grid, the concept of k-distance
becomes less meaningful, as it is not certain that, for a given
point pl, there will be a point pm at distance k. In order to
apply the correlogram concept to our data, we defined the
color correlogram γ(k) as the probability, for any point pl in
point cloud P with color ci ∈ [0, N − 1], that the k-nearest
neighboring point pm has color cj ∈ [0, N − 1]:

γ(k)(ci, cj) := Pr
pl∈Pci

,pm∈P
[pm ∈ Pcj | pm ∈ Nk(pl)] (2)

in which N (pl) is the set of K-nearest neighbours of pl,
and Pci is the set of points belonging to point cloud P with



TABLE I: Performance indexes for histogram-based objective quality metrics, separately for luminance channel and weighted
luminance and chroma channels (best performance in bold).

Linear Cubic Logistic

SRCC PLCC RMSE OR PLCC RMSE OR PLCC RMSE OR

Y
L1 0.8679 0.5641 1.1233 0.8664 0.8176 0.7833 0.8578 0.8351 0.7485 0.7845
L2 0.8841 0.5318 1.1521 0.8707 0.8195 0.7796 0.8362 0.8532 0.7096 0.7802
L∞ 0.8492 0.4673 1.2027 0.8621 0.7459 0.9061 0.8707 0.8157 0.7893 0.8103
χ2 0.8750 0.3718 1.2628 0.8707 0.6487 1.0353 0.8966 0.8321 0.7596 0.8319

EMD 0.7110 0.4960 1.1812 0.8664 0.6452 1.0393 0.8534 0.6623 1.0273 0.8448

Y
C

bC
r

L1 0.7879 0.5720 1.1158 0.9009 0.7521 0.8966 0.8793 0.7538 0.8939 0.8578
L2 0.7020 0.5161 1.1651 0.8836 0.6698 1.0101 0.8491 0.6763 1.0021 0.8319
L∞ 0.6373 0.4615 1.2068 0.8793 0.6362 1.0705 0.8879 0.6327 1.0537 0.8319
χ2 0.7412 0.4199 1.2346 0.8836 0.6494 1.0344 0.8491 0.6873 0.9890 0.8621

EMD 0.7036 0.5019 1.1766 0.8707 0.6438 1.0409 0.8448 0.6544 1.0346 0.8578

color ci. The resulting correlogram matrix is γ(k) ∈ RNxN ; in
the case of 8-bit color information, N = 256. By definition,
the correlogram is a symmetric matrix. It is worth noting
that for k = 1, the nearest neighbor corresponds to the point
under consideration. In this case, the resulting correlogram is
a diagonal matrix, whose diagonal corresponds to the color
histogram. Conversely, for k = ∞, the matrix contains the
color histogram in every row.

Several norms and distances can be defined between two
matrices. In this work, we use the L1, L2, LFro and L∞ norms
to get a global measure of difference between the correlograms
associated with reference and distorted point cloud, along with
the pairwise χ2 distance and EMD. Moreover, we use the d1
distance as defined in [10], as well as the sets of features
described in [14]. For the latter, we create vector fk, for both
reference and distorted contents, by concatenating several fea-
tures, namely diagonal energy, entropy, contrast, homogeneity
and energy ratio, as defined in the aforementioned paper. We
then compute the distance between feature vectors using the
Euclidean distance. As with the color histogram, we compute
the color correlogram in the YCbCr space, and we report
results for the Y channel, as well as the results obtained with
the weighted average in (1).

IV. RESULTS

A. Experimental data

To test the validity of our metric, we used a publicly
available dataset [9]. The dataset consists of subjective and
objective quality scores given to 8 point cloud contents, of
which 4 depicting human bodies, under compression distor-
tions, for a total of 232 stimuli. We recreated the distorted
contents following the description given by the authors, and
we applied our metric on the resulting point clouds. We then
computed several performance indexes on the data, to assess
the prediction power of our metrics with respect to the subjec-
tive ground truth, expressed as Mean Opinion Score (MOS).
In particular, Pearson Linear Correlation Coefficient (PLCC),
Spearman Rank Correlation Coefficient (SRCC), Root Mean
Square Error (RMSE) and Outlier Ratio (OR) were chosen to
account for linearity, monotonicity, accuracy and consistency,
respectively, following ITU-T Recommendations P.1401 [15].

Before computing the indexes, linear, cubic and logistic fitting
was applied on the results of the objective metrics, similarly
to what was done in [9].

B. Histogram-based objective quality metric

Table I depicts the results of the performance indexes for
the histogram-based objective quality metrics. Results are
shown separately for the luminance channel and for the YCbCr
weighted average.

Among the metrics under consideration, the L2 distance
on the Y channel achieves the best results for both cubic and
logistic fitting, according to all the performances indexes under
consideration. For linear fitting, the L1 distance achieves the
best performance in terms of PLCC, whereas for monotonicity
and accuracy, the L2 distance is the best performing one. In
terms of consistency, the L∞ distance achieves the best result
with linear fitting.

Results obtained by performing a weighted average on the
YCbCr color space show that aberrations in the chrominance
space do not correlate with human perception of distortions.
In fact, incorporating chrominance distance information leads
to generally poorer results in terms of performance indexes,
with the sole exception of the L1 metric with linear fitting,
for which slightly better linearity and accuracy is achieved.

C. Correlogram-based objective quality metric

Figure 1 depicts the PLCC index obtained with the color
correlogram comparison for values of k ranging from 2 to
20, for Y and weighted YCbCr color spaces. Due to space
restrictions, only the results from the best performing metric
d1 are displayed. A slight loss in performance can be seen,
for all metrics, for k = 3, followed by a slow increase as
values of k get larger. The best performance is achieved for
k = 20 with cubic fitting, closely followed by logistic fitting.
Figure 2 displays the distance d1 results against the MOS, for
all stimuli, separately for the cases k = 3 (worst performing
case) and k = 20 (best performing case). Logistic fitting is also
displayed. From the comparison of scatterplots, it is clearly
visible how the metric for k = 3 is not able to fully capture
the perceptual color loss. For example, a value of d1 = 1 can
be associated to stimuli that were rated as high as 4.5 or as
low as 1, showing that the metric is not able to accurately
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Fig. 1: PLCC index for correlogram
comparison using d1 distance, for differ-
ent values of k (solid line for Y channel,
dashed line for YCbCr).
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Fig. 2: Results of comparison between
correlograms using d1 distance, for k =
3 and k = 20, with relative logistic
fitting.
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Fig. 3: PLCC indexes obtained with all
distance metrics for correlogram compar-
ison, performed on the Y channel, for
k = 20.

predict the visual quality of the stimuli. On the other hand,
the scatterplot for k = 20 appears more compact, following
a monotonically decreasing trend. A comparison between the
SRCC values obtained in the two cases (0.5553 for k = 3,
0.8075 for k = 20) confirms the observed trends.

Figure 3 depicts the values of the PLCC index achieved
by every color correlogram distance under exam, for k = 20.
Results are shown for linear, logistic and cubic fittings. Among
the metrics, χ2 and d1 are the best performing ones, followed
by the L-norms. EMD shows a slightly poorer performance,
achieving a PLCC of 0.6595 with logistic fitting. Extract-
ing features from the correlogram leads to a significantly
poorer performance with respect to all the other metrics
under consideration. The features to be extracted from the
correlograms were proposed in relation to 2D image contents
under transmission artifacts; however, results indicate that the
same features do not correlate well with human perception of
3D contents.

An increase in performance is observed with higher values
of k, for all metrics. However, even the best-performing
metric fails to reach the same performance values as the
ones observed with the histogram-based metrics. In fact, with
the exception of the EMD metric, all metrics considered for
the histogram case achieve a higher PLCC than the best-
performing metric in the correlogram case. There are a few
possible explanations for the phenomenon. The correlogram
works by introducing spatial correlation as a way to describe
changes in color statistics; as such, it does not describe the
distribution of colors in the content, but rather the color
distribution of points in relation with each other. Correlation
with close neighbors leads to poorer results, as visible in
Fig. 1. This is justifiable considering that local variations
of colors may not be perceivable by the users, especially if
the content is observed from a distance. Moreover, it is also
possible that the size of the splats used to render the content
masks some of the variations. As k increases, larger and
larger neighborhoods of points are considered, thus moving
the analysis to a more global scale.

D. Comparison with existing metrics

In order to assess the validity of our color-based metrics, we
compare its performance with most commonly used objective
quality metrics for point cloud contents. A comprehensive
evaluation was performed in [9], along with the dataset used
in this work. In Table II we report some of the results, along
with our two proposed metrics for comparison. We refer the
reader to the original work for a more exhaustive benchmark.

It can be observed that histogram-based metric with L2

distance is able to outperform the majority of the metrics under
consideration, and has comparable performance with respect
to the best-performing metric p2planeMSE for logistic fitting.
In particular, the p2planeMSE metric has slightly higher values
of PLCC (0.858 against 0.853), as well as lower values of
RMSE (0.700 against 0.710). On the other hand, our metric
achieves better OR (0.780 for our metric, as opposed to 0.832
for the p2planeMSE), whereas for SRCC, the two metrics are
equivalent.

A notable increase in performance can be seen when using
our histogram-based metric with respect to the traditional
point cloud color-based metrics MSEYCbCr and PSNRYCbCr.
The latter metrics use a point-to-point approach to compute
the error between reference and distorted point clouds. How-
ever, as already observed in the correlogram-based metrics, a
local approach does not seem to adequately approximate the
perception of point cloud contents.

E. Combining color and geometry

Point-based metrics are traditionally used to assess the qual-
ity of geometry-only or color-only distortions. The histogram-
based metric, as it is, can reflect geometry distortions, if they
result in a loss of points. In that case, the statistics of the
color distribution would likely change between the reference
and distorted contents, even if the color information itself is
not altered. On the other hand, geometry-only metrics are not
able to assess the perceived quality of point cloud contents, if
the distortions are introduced only on the color values without
altering the topology.



TABLE II: Performance indexes for traditional objective quality metrics for point cloud contents [9]. Last two rows represent
the color-only metric HY

L2
and the combined metric dgc presented in this paper.

Linear Cubic Logistic

SRCC PLCC RMSE OR PLCC RMSE OR PLCC RMSE OR

p2pointMSE 0.868 0.484 1.193 0.858 0.691 0.985 0.841 0.845 0.728 0.841
p2planeMSE 0.884 0.448 1.219 0.862 0.663 1.021 0.841 0.858 0.700 0.832
PSNR - p2pointMSE 0.759 0.679 0.935 0.833 0.723 0.880 0.801 0.720 0.885 0.819
PSNR - p2planeMSE 0.807 0.711 0.896 0.833 0.757 0.833 0.833 0.756 0.834 0.852
MSEYCbCr 0.663 0.410 1.244 0.884 0.528 1.158 0.888 0.653 1.033 0.849
PSNRYCbCr 0.660 0.646 1.040 0.879 0.654 1.032 0.866 0.653 1.033 0.849

PSNR 0.628 0.597 1.093 0.871 0.611 1.079 0.858 0.667 1.015 0.802
VIFp 0.742 0.697 0.978 0.853 0.716 0.951 0.823 0.698 0.977 0.858

HY
L2

0.884 0.532 1.152 0.871 0.820 0.780 0.836 0.853 0.710 0.780
dgc 0.920 0.490 1.186 0.866 0.806 0.804 0.875 0.904 0.585 0.724
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Fig. 4: Performance indexes PLCC and
SRCC for values of α. For α = 0, only
the color-based metric is used; for α = 1,
only the geometry metric is selected.
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Fig. 5: Proposed metric dgc against
MOS values. To improve readability,
results are shown for lower levels of
dgc only.
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Fig. 6: PLCC index for every validation
set for the proposed metric dgc, along
with the geometry- and color-based met-
rics, and chosen α.

To overcome the limitations of both approaches, we propose
to combine geometry- and color-based metrics in an individual
metric which can capture both deviations. In particular, we
define a new metric dgc as a linear combination of the
geometry-only metric dgeom and the color-only metric dcolor:

dgc = α · dgeom + (1− α) · dcolor, (3)

in which α is a real number in [0, 1]. In our case, the
p2plane metric with MSE error p2planeMSE is selected as
dgeom, whereas the L2-distance color histogram metric on the
Y channel HY

L2
is selected as dcolor.

We performed a grid search on values of α, to understand
whether an improvement in performance could be found by
linearly combining the two metrics. Figure 4 displays the
performances indexes PLCC and SRCC obtained for different
values of α. Logistic fitting was applied on the metric dgc
before computing the indexes. As can be seen, combining
the two metrics always leads to an increase in performance.
In particular, the lowest indexes are obtained for α = 0,
which corresponds to using only the histogram-based color
metric, and α = 1, for which only the geometry metric is
used. The highest value of linear correlation is reached for
α = 0.6597, for which PLCC=0.9037. In terms of SRCC, the
highest value of 0.9205 is reached for α = 0.6364. Figure 5

shows the scatterplot of our proposed metric against the MOS,
for α = 0.6597. For the best-performing α, the null hypothesis
of equivalence between the PLCC associated with dgc,and
the PLCC obtained with p2planeMSE and HY

L2
, is rejected,

according to the procedure described in [15].

In order to validate that the improvement in performance
was not caused by overfitting, we performed 100 random splits
on the data (80% training, 20% test set), and we computed
the optimal level of α in terms of PLCC. We then used
the α value we defined on the training set to compute dgc
on the test data. We also computed the PLCC obtained on
the test set for the geometry- and color-based metrics alone
(p2planeMSE and HY

L2
, respectively), to assess whether an

increase in performance could be observed. Results of the
iterations are shown in Figure 6. The mean value over the
iterations is shown with a dotted line. Small variations can
be observed in the performance index, depending on the
composition of the test set. Nonetheless, the combined metric
dgc achieves better results in term of PLCC with respect to the
color-only metric HY

L2
and geometry-only metric p2planeMSE

on 95 of the 100 iterations under consideration. On average,
dgc achieves a PLCC of 0.9048, σ = 0.0269, whereas HY

L2

and p2planeMSE achieve a PLCC of 0.8610 ± 0.0395 and
0.8584± 0.0410, respectively. In terms of SRCC, dgc has an



average value of 0.9152 ± 0.0262, whereas HY
L2

achieves a
value of 0.8826± 0.0380, and p2planeMSE reaches an average
value of 0.8777± 0.0352.

V. DISCUSSION

The dataset we use to assess the validity of our metric has
a comprehensive collection of compression artifacts, obtained
using the upcoming MPEG standard for point cloud coding.
In particular, the distortion points were based on the Common
Test Conditions, which were defined by the experts in the
MPEG community [16]. However, as it is, distortions to color
and geometry are applied at the same time, i.e., there is no
such case in which the geometry quantization parameter was
left constant while the color parameter varied, or vice versa.
This explains, for example, why a geometry-only metric is
able to achieve a good performance in predicting the quality
of compressed point cloud contest, despite being blind to
color artifacts. Our metric showed superior performance in
the dataset, which in all respects represents the benchmarking
standard for point cloud assessment. However, further tests
with larger datasets, including geometry-only and color-only
distortions, are needed in order to fully understand the gener-
alization capabilities of our metric.

Objective quality assessment for image and video contents
has been an active area of research in the past decades,
and several models have been proposed in order to mimic
the human perception of visual quality. In order to directly
exploit the vast body of research that has been done on
image and video objective quality assessment, it has been
proposed to project the 3D model onto a planar grid. In this
case, a 2D representation of the volumetric content from a
certain viewpoint would be obtained, and its visual quality
can then be assessed using popular metrics, such as PSNR
or VIF [8]. The method is usually praised for its ability to
simultaneously capture both geometry and color degradations.
However, one main limitation resides in the fact that rendering
parameters, such as splat size and orientation, distance from
the camera, and viewpoint, are needed in order to compute
the metric. On the other hand, the metric we propose has
the advantage of combining color and geometry distortions,
while being renderer-agnostic, i.e., no rendering parameter
needs to be taken into consideration when computing the
score. This represents an advantage when the metric needs
to be used in contexts where multiple rendering parameters
could be applied, or where the application is unknown, e.g.,
a streaming scenario in which different rendering devices
could be used. Moreover, it combines local (in the form of
geometric distortions) and global statistics (variations in color
histogram), which are able to better capture how users perceive
the contents.

VI. CONCLUSIONS

In this paper, we present an analysis of color-based met-
rics for visual quality assessment of point cloud contents.
Specifically, we employ color statistics such as histograms and
correlograms in order to assess the level of impairment of a

degraded point cloud with respect to its unaltered reference.
We also combine color-only and geometry-only approaches to
create a rendering-independent objective metric that is able to
simultaneously capture the distortions brought in the topology
and texture of the point cloud content. Results show that our
approach is able to outperform current metrics in terms of
performance indexes. Future work will focus on testing the
metric on other types of distortions, as well as exploring
different kinds of color statistics.
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