
Title SMASH: a Supervised Machine Learning Approach to Adaptive
Video Streaming over HTTP.

Authors Sani, Yusuf;Raca, Darijo;Quinlan, Jason J.;Sreenan, Cormac J.

Publication date 2020-05

Original Citation Sani, Y., Raca, D., Quinlan, J. J. and Sreenan, C. J. (2020) 'SMASH:
A Supervised Machine Learning Approach to Adaptive Video
Streaming over HTTP', 2020 Twelfth International Conference on
Quality of Multimedia Experience (QoMEX), 26-28 May 2020, 1-6,
doi: 10.1109/QoMEX48832.2020.9123139

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/document/9123139 - 10.1109/
QoMEX48832.2020.9123139

Rights © 2020 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-18 12:35:45

Item downloaded
from

https://hdl.handle.net/10468/9829

https://hdl.handle.net/10468/9829

SMASH: a Supervised Machine Learning
Approach to Adaptive Video Streaming over HTTP

Yusuf Sani, Darijo Raca, Jason J. Quinlan, Cormac J. Sreenan
School of Computer Science and Information Technology

University College Cork, Cork, Ireland
Email: {ys8, d.raca, j.quinlan, cjs}@cs.ucc.ie

Abstract—The growth of online video-on-demand consump-
tion continues unabated. Existing heuristic-based adaptive bit-
rate (ABR) selection algorithms are typically designed to op-
timise video quality within a very narrow context. This may
lead to video streaming providers implementing different ABR
algorithms/players, based on a network connection, device ca-
pabilities, video content, etc., in order to serve the multitude of
their users’ streaming requirements.

In this paper, we present SMASH: a Supervised Machine
learning approach to Adaptive Streaming over HTTP, which
takes a tentative step towards the goal of a one-size-fits-all
approach to ABR. We utilise the streaming output from the
adaptation logic of nine ABR algorithms across a variety of
streaming scenarios (generating nearly one million records) and
design a machine learning model, using systematically selected
features, to predict the optimal choice of the bitrate of the next
video segment to download. Our evaluation results show that not
only does SMASH guarantee a high QoE but its performance is
consistent across a variety of streaming contexts.

Index Terms—SMASH, HAS, HTTP Adaptive Streaming,
DASH, Machine Learning

I. INTRODUCTION

Video-on-demand providers continue to grow their domi-
nance in the area of subscription-based online video stream-
ing services. These providers target a variety of customers
distributed around the world. This diversity of customers
poses a huge technical challenge in providing a high level
of Quality of Experience (QoE) globally. As the underlying
transmission medium characteristics can vary quite dramati-
cally, these providers encode their video content into a discrete
number of quality levels and implement an adaptive video
content delivery mechanism to maximise QoE. Currently, the
most prominent adaptive video streaming technology is HTTP
Adaptive Streaming (HAS).

Traditionally, the algorithms that adapt the quality of video
content to the available network capacity, are categorised
into buffer-based, throughput-based or a hybrid of both. Each
of these Adaptive Bitrate (ABR) selection algorithms is op-
timised, through significant tuning, to improve QoE for a
given streaming context. Several studies [1], [2] have found
these schemes do not perform uniformly across a multitude
of network conditions and QoE requirements, because the
tuned parameters are sensitive to a change in network channel
conditions. This lack of generalisation is found to increase
re-buffering ratio, video quality fluctuation and start-up de-
lay whenever the statistical distribution of the underlying

transmission medium changes [1]. Recently, several machine
learning (ML) based ABRs have been proposed. These models
promise to enhance the ability of an ABR to generalise its
performance across different network channels. These ML-
based ABRs are designed to either dynamically reconfigure the
parameters of an existing ABR [1] or rely on a predictive agent
trained to optimise a particular QoE model [2]. However, the
former typically consider a restricted set of network conditions
and/or rely on a particular ABR algorithm, while the later are
either computationally intensive, or rely on a small dataset,
hence their performance do not generalise.

An intuitive solution is to determine how the current state-
of-the-art algorithms maximise QoE and then aggregate their
functionality into a single implementation. This can be a
quite daunting task as the dynamics of the underlying QoE
metrics optimised by each ABR may be opposite in nature.
For example, it is well-known that there is a trade-off be-
tween maximising video bitrate and rebuffering events, and
between responsiveness and video quality fluctuation. Hence,
we contend that an easier and more effective approach can
be realised when an ABR predictive model is trained to learn
the art of streaming from a large collection of state-of-the-art
ABRs, where each of the ABRs is optimised to serve a specific
streaming context.

In this paper, we present SMASH: a Supervised Machine
learning approach to Adaptive Video Streaming over HTTP.
SMASH is a simple and lightweight client-side learning-based
video quality adaptation predictive model. To build SMASH,
we generated data from streaming real video using nine well-
known ABRs across a variety of scenarios. The dataset is
composed of a systematically selected set of features that relate
to various aspects of the underlying bitrate selection decision
processes, such as throughput, buffer-level and encoding rate.
For evaluation, we deployed SMASH into a production grade
player, our results show SMASH consistently outperforming
the state-of-the-art players.

The following outlines the remainder of the paper. Sec-
tion II, introduces the background and related work and is
followed by Section III, where we discuss data generation,
feature selection and the model training. Experimental results
are then presented in Section IV, while Section V concludes
the paper.

II. BACKGROUND AND MOTIVATION
HTTP-based adaptive streaming (HAS) divides a video file

into a number of segments of video content (also known as
segments). Each segment is encoded into multiple bitrates to
facilitate access for clients with differing stream requirements.
A client sequentially request a video segment with the highest
bitrate that the estimated network capacity should be able to
sustain. ABR is the process through which a client decides the
optimal bitrate of segment to download.

The traditional heuristic-based approach to the design and
implementation of ABR is based on a fixed set of rules that do
not capture the nuances of the variety of streaming scenarios
that can occur in the production environment, and typically
performs sub-optimally when the intended operational context
changes [1], [2]. Recent attempts to help ABRs improve
their ability to generalise their performance relies heavily on
machine learning techniques. At a high level, ML-based ABR
schemes can be classified into two groups. The first group
dynamically reconfigure the parameters of an existing ABR.
In [1], a scheme that pre-computes the parameters of an ABR
is proposed. The scheme helps an ABR to dynamically adapt
its parameters based on a pattern of changes in the network
condition. In [3], a deep learning based scheme for tuning
the parameters of ABRs, when streaming context changes, is
presented.

The second set of schemes, share similarity with SMASH
in that they rely on trained predictive ABR models for bitrate
selection decisions. In [4], a composite classification scheme
is used to map network-related features to bitrate. This scheme
marked an important milestone for the implementation of
supervised ML-based ABR. However, it has some drawbacks.
First, both the features engineering and the ML algorithm se-
lections were not implemented in a systematic way. Secondly,
the trained model is designed to help, rather than replace,
the existing fixed-rule based adaptation algorithms. A recently
proposed model-free scheme [2], called Pensieve, utilises a re-
inforcement learning technique to train a neural network based
ABR. The scheme makes no explicit assumption about the
operational context. Several papers have reported issues with
Pensieve , hence we conducted a comprehensive experimental
evaluation of Pensive, using different sets of video content
and network traces. For lack of space, we only present the
summary of our finding here, for that were not reported in
the literature (for more details on other issues please refer to
[5]).:

1) When the network trace used, during training, is highly
variable, we found the Pensieve policy gradient suffers
from high variance and failure to converge.

2) When training with a video data-set that contains a wide
range of bitrates, for example, when using the UHD, 4K,
data-set presented in [6], we found the selection of the
appropriate value of the rebuffing penalty significantly
affecting the learning ability of Pensieve. In our evalu-
ation, when we use 1 second of a rebuffing event to be
equivalent to the lost of 1 second of the highest bitrate,
as presented in the original paper, we found the RL agent

TABLE I: Adaptation Algorithms used for data generation

Rate Base Buffer Base Hybrid

Minimum rate BBA-2 [7] Elastic [8]
Median rate Logistic [9] Arbiter+ [10]
Conventional [11] BOLA [12] Exoplayer Default [13]

learned to stream only at the lowest bitrate. And when
the penalty is equal to the loss of 50% percentile bitrate,
the trained model only learned to stream at the highest
bitrate resulting in unacceptable level of video freezes.

The heterogeneity of wireless networks means that high
variability will be common, and that increasing video resolu-
tions are destined to become more popular. Hence motivating
for this work.

III. DATA PROCESSING AND MODEL TRAINING

In this section, we discuss how the data used in training
SMASH is generated, aggregated and pre-processed. To gen-
erate video adaptation logic for SMASH, we stream each of
the ABR algorithms, shown in Table I, across the most widely
used network technologies (3G, 4G and WiFi) and create
a dataset of almost one million records from approximately
1,050 hours of real-time Dynamic Adaptive Streaming over
HTTP (DASH).

Fig. 1: The data generation testbed

A. Data Generation

Fig. 1 illustrates the testbed architecture used for all exper-
iments. The testbed consists of one or more mobile devices,
a wireless access point (WAP), and a server machine. The
mobile devices used are Android-based smartphones. Phones
are connected via WiFi to the WAP and use ExoPlayer 1

to stream the video content. ExoPlayer is a production-grade
media platform for Android developed by Google. It supports
both the DASH standard and HTTP Live Streaming (HLS).
The server runs an Apache web server on top of Ubuntu 16.04,
equipped with 16GB of RAM and an Intel i7 CPU.

The link between the server and the WAP acts as the bot-
tleneck. To emulate various wireless network characteristics,
we use a Linux traffic control (tc) based traffic shaper for
bandwidth emulation. Different wireless channels (3G, 4G and
WiFi) are represented through collected network traces. The
traces collected by Riiser et.al [14] and Raca et al. [15] contain
bandwidth logs for 3G (mean=1.26Mbps, std=0.97Mbps)
and 4G (mean=11.32Mbps, std=13.17Mbps) network tech-
nologies, respectively. For the WiFi (mean=18.71Mbps,
std=17.73Mbps), we collected the WiFi traces using an

1https://github.com/google/ExoPlayer

TABLE II: Average Encoding Rate versus per Clip Resolution for the 4K clip Sintel [6]

40Mbps 25Mbps 15Mbps 4.3Mbps 3.85Mbps 3Mbps 2.35Mbps 1.75Mbps 1.05Mbps 750kbps 560kbps 375kbps 235kbps

Sintel 3840x1744 3840x1744 3840x1744 1920x872 1920x872 1280x582 1280x582 720x328 640x292 512x234 512x234 384x174 320x146

TABLE III: Networks utilised during data generation

Technology Number of Traces Mode

3G [14] 30 Static, Pedestrian, Bus, Car, Tram, Train
4G [15] 25 Static, Pedestrian, Bus, Car, Train
WiFi 5 Pedestrian, Static

TABLE IV: List of features logged in the collected dataset

Features Description
Chunk_Index Streamed segment number
Arr_Time Arrival time in milliseconds (ms)
Del_Time Time taken to receive the segment (ms)
Stall_Dur Stall duration (ms)
Rep_Level_i The bitrate of the ith previously downloaded

segments (kbps) (i ∈ [1, ..., 5])
Avg_Rep_Level_5 Average bitrate of the 5 previous chunks (kbps)
Avg_Rep_Level_2 Average bitrate of the 2 previous chunks (kbps)
Del_Rate Delivery rate (kbps) Byte_Size ∗ 8 bits

Del_Time

Act_Rate_i The actual rate (kbps) of ith previous chunk
(i ∈ [1, ..., 4]), Byte_Size ∗ 8 bits

Seg_Dur in seconds

Avg_Act_Rate_5 Average of 5 previous Actual rates (kbps)
Avg_Act_Rate_2 Average of 2 previous Actual rates (kbps)
Byte_Size Byte size of this segment
Buffer Buffer level (ms)
Codec Video encoder
Height Representation height in Pixels
Width Representation width in Pixels
FPS Frame rate of the streamed video
Chunk_Dur Segment duration (ms).
ChunkStartTime Video start time of the Segment (ms)
Avg_Thr Average Throughput (kbps)
Play_Pos current Playback position (ms)
Target_Rate The bitrate of next chunk (kbps)

Android mobile network monitoring application called G-
NetTrack Pro 2. It is worth noting that all traces used were
gathered on operational networks and thus the traces represent
the bandwidth available to a client while, possibly, contending
with other devices. From the pool of available network traces,
we selected 60 randomised traces, see TABLE III for more
detail. For each video streaming session, one or more mobile
devices, a wireless access point (WAP), and a server machine
are used.

Since it is not possible to include every ABR algorithm
available, we carefully select and implement eight video qual-
ity adaptation algorithms in addition to the ExoPlayer’s default
adaptation algorithm (shown in Table I). The selected ABR
algorithms cover a wide range of state-of-the-art approaches,
and include Rate based, buffer based and hybrid algorithms.
Except for ExoPlayer’s default adaptation algorithm, we vali-
dated our implementations of these algorithms by comparing
the results of the experiments we conducted, with the results
from the published papers.

To stress test both the algorithms and the network traces,

2http://www.gyokovsolutions.com/

it was decided to stream content at a maximum resolution
of 4K, (Ultra High Definition - UHD), which is currently
gaining popularity. We utilised Sintel [16], which is a short
animation clip of 14 minutes and 48 seconds duration, from
the UHD dataset [6]. The clip is encoded using H.264/AVC,
and contains eight resolutions across thirteen representation
rates. Table II presents the detailed mapping of the video
resolution to bitrate. Furthermore, the three most commonly
used DASH segment sizes: 2, 4, 8 (seconds) were utilised
from [6]. Each streaming session ran for five minutes and
was repeated five times. In total, the video was streamed for
a total of 63,750 minutes. Table IV presents the twenty-two
features logged during each streaming session. All features
are captured at the application layer. The logging module, we
added to ExoPlayer, runs on a lightweight thread. Whenever
new data is generated, the main thread raises an event that
notifies the logging thread, which writes to a file in a non-
blocking mode. In the current implementation, the main thread
raises a notification after an ABR has decided on the bitrate of
the video chunk to request next. Thus permitting us to capture
all features, including the Target_Rate, and those features that
a particular ABR might not support, e.g., throughput estimate
and buffer level in the case of buffer-based and rate-based
ABRs respectively. For both rate-based and hybrid ABRs,
we use the same throughput estimation techniques as per the
original cited paper for each algorithm. However, for buffer-
based approaches, the averages of the previous two and five
segments are recorded.

B. Data Preprocessing

Our generated data needs further processing to be in a form
that is acceptable by most machine learning algorithms. In this
section, we present the steps taken to pre-process the logged
dataset. It should be noted that we did not encounter any
missing value issues, because all experiments with missing
values were repeated. First, we encoded the Stall_Dur with
categorical values such that:

Stall_Dur =

{
1 Stall_Dur > 0

0 Stall_Dur = 0.

Furthermore, wherever the value of Stall_Dur is 1, the value
of Target_Rate was replaced with the minimum video repre-
sentation. With this, our aim is to help SMASH to learn to
predict the lowest bitrate whenever a video stall event occurs,
regardless of the length of the stall duration. Next, we encoded
the following features: Rep_Level_i where i > 1, Chunk_Dur
and Target_Rate into ordinal values. This ensures that during
training, the ML algorithm is aware of the natural order that
exists in their values. Finally, we normalised and scaled all
the numerical features.

Fig. 2: Features correlation matrix
C. Feature Selection

Existing ML-based video rate adaptation approaches rely on
the same set of features as the fixed-rule based ABRs, such
as throughput and buffer occupancy [2], [17]. To investigate
the contribution of non-traditional parameters, as seen in the
previous section, we extend the set of features we collect.
We adopt this comprehensive approach to ensure that we
reduce the chances of overlooking any potentially beneficial
features. Next, we investigate how each of the selected fea-
tures contribute to the quality of our model. Throughout the
experimentation presented in this section, we use scikit-learn,
a Python module for machine learning algorithms [18].

We start by investigating the relationship between the
features logged during each streaming session, as shown in
Table IV. It is known that features that are highly correlated
contain similar information. In other words, it is redundant
to keep all correlated features [19]. Figure 2 depicts the
correlation matrix of the collected dataset. We use (correlation
> 0.8) as a threshold value for high correlation. As can be
seen, Rep_Level_2 , Rep_Level_3 and Rep_Level_4 are highly
correlated with Rep_Level, hence all columns of Rep_Level_i,
where i > 1 are dropped. Also we see, Avg_Rep_Level_2
is highly correlated with Avg_Rep_Level_5, so we drop the
former. Other features that are dropped at this stage are:
Avg_Act_Rate_2, Act_Rate_3, Act_Rate_4, Height, Width,
ChunkStartTime, and PlayBackPos.

Next, we check how the remaining features help us improve
the prediction for the next bitrate quality (representation level)
to request from the video server (Target_Rate). We employed
two widely used techniques to measure the dependency be-
tween the Target_Rate and each of the remaining features,
namely: Chi-square (χ2) statistic and Mutual information
(MI). While the ranking for the features slightly varies across
the two techniques, overall the result is similar. Therefore,
we only present the result of the MI test (for more detail
on Chi-square (χ2) statistic refer to [20]). The MI score is a
non-negative value that measures the dependency between two
variables (X, Y), which quantifies the amount of information
that can be obtained about Y, from variable X. MI is computed
using the following formula:

MI(X,Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(1)

Chu
nk

_In
de

x

Arr_
Tim

e

Del_
Tim

e

Sta
ll_D

ur

Rep
_Le

ve
l

Avg
_Rep

_Le
ve

l_5

Del_
Rate

Act_
Rate

Act_
Rate

_2

Byte
_Si

ze

Buff
er_

Lev
el

Chu
nk

Dur

Avg
Th

r

Features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ut

ua
l I

nf
om

at
io

n
Sc

or
e

Fig. 3: Mutual Information score

where p(x, y) is the joint probability density function of
x and y, and p(x) and p(y) are the probabilities of x and y,
respectively. For feature selection, the goal is to select features
K ⊂ X , where |K| = k such that

K = argmax
k

MI(X,Y).

We ran this ML test between each of the remaining features
x and the target variable (Target_Rate). The result of the test
is shown in Figure 3. As can be seen, the MI values of the
Chunk_Index, Arr_Time and Chuck_Dur are very close to
zero, hence are dropped as input to the training of SMASH.
What we found counter-intuitive is that the MI value of
the Stall_Dur is extremely low. We are surprised because
Stall_Dur is the only feature that encodes stall events, so
we expect it to be significant in predicting the Target_Rate.
Therefore, we conducted further analysis of our training data-
set. From the investigation, we found that less than 3% of our
entire data-set records contains stall events. This happened
because once the stall starts no content follows hence no data
is logged, until it finishes. As such, at the data capturing stage,
each stall duration is logged once regardless of the length of
stall duration. And since the average stall duration is longer
than the average chuck duration, the number of stall events,
we recorded, is significantly reduced. As we have emphasised
earlier in the previous section, when stall event occurs, the
values of all features are irrelevant except that of Stall_Dur
and Target_Rate. In light of this fact, we created a range of
systemic records with values of Stall_Dur set to 1 and and
Target_Rate set to the lowest representation. For the remaining
features, we generated values from a normal distribution with
the mean and standard deviation of the original columns, The
augmented data is then added to the dataset, to double the
level of stall instances in our training dataset to 6%.

D. Model Training

In this section, we evaluate eight well-known machine
learning (ML) models and select the model with highest cross-
validation accuracy. To select the best ML model to be used
in training our prediction engine, we split our data-set into
training and test sets at the ratio of 90% : 10% which is
typical in ML modeling.

We use a k-fold cross-validation (CV) method to compare
the accuracy of eight ML algorithms. Table V presents each
of the ML algorithms and the corresponding hyper-parameters

TABLE V: ML models evaluated

ML Model Scikitlearn Parameters
Logistic Regression (LR) penalty=L2, solver=liblinear,
Quadratic Discriminant
Analysis (QDA)

priors=None, reg_param=0.0,
store_covariance=False,
tol=0.0001

K-Nearest Neighbors (KNN) n_neighbors=20
Decision Tree Classifier (DTC) max_depth=None, criterion=gini
Gaussian Naive Bayes (NB) priors=None,

var_smoothing=1e-09
Ada Boost Classifier (ADO) algorithm=’SAMME.R’,

base_estimator=None,
learning_rate=1.0,
n_estimators=100, random_state=0

Random Forest Classifier (RFC) n_estimators=100
Multi-layered perceptron (NN) solver=lbfgs, alpha=1e-5,

hidden_layer= (10, 20, 10),
random _state = 1

Fig. 4: Result of 10-fold cross-validation.

used. Each ML model is cross-validated using the training
portion of the data-set. In a k-fold CV, the training set is
divided into k equal-sized parts. First, a portion is used as
a validation set and the remainder of the data is used as a
training set. The accuracy ai, which represents the correctly
classified instances, is then recorded and the process continues
for k times. The average accuracy (CVa) is computed as

CVa =

k∑
k=1

ak. (2)

Figure 4 illustrates the result of the our cross-validation,
when k = 10 is used. As can be seen, ADO exhibited the
highest variability in its accuracy score and QDA is the least
accurate, with an accuracy score of 54%. RFC with a 91%
accuracy has the highest score, hence was selected as the
chosen ML model. Next, when we evaluated the performance
of the selected model, RFC, on the test dataset, it recorded
a test accuracy is 87.0%. From this, we conclude our trained
model does not suffer from either underfitting or overfitting.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of SMASH, we deploy, the
trained RFC model, to the ExoPlayer framework. For model
training, we use a Java-based Weka framework 3. The same pa-
rameter(s) as shown in Table V are used. For the performance
evaluation of SMASH, the same testbed shown in Figure 1,

3https://www.cs.waikato.ac.nz/ml/weka/

is used. For comparison, we use: BBA2 [7] a buffer-based
player, ARBITER+ [10] a hybrid player and Pensieve [2] an
ML-based player. For Pensieve, we implemented its client
interface in ExoPlayer, while we use the authors’ original
implementation of the server-side logic 4. We retrained the
Pensive model using a linear reward function, and using the
same video content and network traces used in generating the
SMASH training dataset.

During the experimentation 3G (mean=0.83Mbps,
std=0.86Mbps, 4G (mean=18.15Mbps, std=20.97Mbps and
WiFi (mean=12.078Mbps,std=6.82Mbps networks were
emulated. For each category of network channel, we use four
traces, and each experiment is run five times, with the results
showing the average over the runs. We used different network
traces during our evaluation. Throughout the experimentation
a DASH video chunk size of 4s is used. Figure 5 presents
the result of our evaluation. All metrics are normalised to the
Pensieve score.

Figure 5a shows the result of all players streaming over a
4G network. SMASH achieves the highest average bitrate and
the lowest number of switches compared to other algorithms.
In particular, SMASH improves bitrate quality by 38% com-
pared to Pensieve while having 15% fewer bitrate switches.
Furthermore, Pensieve suffers the highest number of video
stall events, while remaining algorithms complete stall-free
sessions. However, stall-free sessions come at the expense of
the lowest average bitrate and the highest number of switches
for the ARBITER+. BBA-2 falls into the middle between
ARBITER+ and SMASH regarding bitrate and switching
performances. Overall, SMASH achieves the best performance
in a 4G environment.

When we stream video over a 3G network, a link that
is known for low throughput and high capacity fluctuation,
Pensieve is found to be very aggressive (see Figure 5b)
and achieved an average bitrate of 3490kbps. Furthermore,
Pensieve is very consistent in its choice of bitrate and is the
least responsive to change in network capacity. Even when it
switches its bitrate, we found it suffers from high amplitude
variation, a technique known to have a detrimental impact on
QoE. Consequently, it exhibited the lowest number of bitrate
switches. However, this comes at the cost of a significant
increase in both number of video stall events (average of 18
stalls per streaming session) and stall duration, staying on
average 238 seconds in re-buffering state. This corresponds
to approximately half the duration of the streaming session.
The two baseline players (BBA2 and ARBITER+) record
comparable bitrate but with a significant increase in bitrate
switches. BBA2 recorded 252% more switches, while Arbiter
suffered 153% more bitrate quality switches compared to to
SMASH. Overall SMASH achieves the lowest number of
switches, video stalls, and shortest stall duration while having
comparable average bitrate. As a result, SMASH strikes the
best balance across the QoE metrics and achieves the best
performance in a 3G environment.

4https://github.com/hongzimao/Pensieve

ARBITER+ BBA-2 SMASH

(a) 4G evaluation results (b) 3G evaluation results (c) WiFi evaluation results

Fig. 5: Relative improvement of different QoE metrics across different HAS algorithms (The metrics are normalised to the
results of the Pensieve algorithm with numbers in white boxes representing the metric value for the Pensieve algorithm)

Figure 5c depicts the result of our evaluation of streaming
video over a WiFi channel. Similar to the 4G case, Pensieve
achieved the worst performance (lowest average bitrate, the
highest number of stalls and longest stall duration), followed
by ARBITER+. Though BBA-2 and SMASH enjoy a sim-
ilar performance in terms of average video bitrate, BBA-2
recorded 40% more video switches, making SMASH the best-
performing algorithm in a WiFi environment.

Furthermore, it is worth noting the performance of the base-
line algorithms change as the underlying network condition
varies, for example, BBA-2 performs better when network
capacity is both abundant and stable, while ARBITER+ per-
formed better in a resource-constrained environment. However,
by learning from a variety of players, SMASH learns to
customise its behaviour as streaming context changes, and
provides the best results across all evaluated networks.

V. CONCLUSION

In this paper, we propose a Supervised Machine learning ap-
proach to Adaptive Streaming over HTTP (SMASH). SMASH
is a supervised adaptive bitrate (ABR) predictive machine
learning (ML) model which mimics the best behaviour of
a variety of ABR algorithms to predict the optimal choice
for the next video segment regardless of the complexity of
the streaming context. The results of evaluating SMASH
validate our hypothesis, that is, the best way to generalise the
performance of an ABR algorithm is for a predictive model to
learn the art of streaming from many high performing ABR
schemes, i.e., our ML adaptation model makes the correct
choice of segment quality irrespective of the transmission
context.

ACKNOWLEDGEMENTS

This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under
Grant 13/IA/1892, and also acknowledges the support of SFI
Grant 13/RC/2077.

REFERENCES

[1] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett,
B. Ribeiro, J. Zhan, and H. Zhang, “Oboe: auto-tuning video ABR al-
gorithms to network conditions,” in Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication.

[2] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video
Streaming with Pensieve,” in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication.

[3] L. De Cicco, G. Cilli, and S. Mascolo, “Erudite: a deep neural network
for optimal tuning of adaptive video streaming controllers,” in Proceed-
ings of the 10th ACM Multimedia Systems Conference.

[4] Y.-L. Chien, K. C.-J. Lin, and M.-S. Chen, “Machine learning based rate
adaptation with elastic feature selection for HTTP-based streaming,” in
2015 IEEE International Conference on Multimedia and Expo (ICME).

[5] P. G. Pereira, A. Schmidt, and T. Herfet, “Cross-Layer Effects on
Training Neural Algorithms for Video Streaming,” in Proceedings of
the 28th ACM SIGMM Workshop on Network and Operating Systems
Support for Digital Audio and Video. ACM, 2018, pp. 43–48.

[6] J. J. Quinlan and C. J. Sreenan, “Multi-profile Ultra High Definition
(UHD) AVC and HEVC 4K DASH Datasets,” in Proceedings of the 9th
ACM Multimedia Systems Conference, ser. MMSys ’18.

[7] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A
Buffer-based Approach to Rate Adaptation: Evidence from a Large
Video Streaming Service,” in 2014 ACM Conference on SIGCOMM.

[8] L. D. Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC:
A Client-Side Controller for Dynamic Adaptive Streaming over HTTP
(DASH),” in 2013 20th International Packet Video Workshop.

[9] Y. Sani, A. Mauthe, and C. Edwards, “Modelling Video Rate Evolution
in Adaptive Bitrate Selection,” in 2015 IEEE International Symposium
on Multimedia (ISM), Dec 2015, pp. 89–94.

[10] A. H. Zahran, D. Raca, and C. J. Sreenan, “ARBITER+: Adaptive Rate-
Based InTElligent HTTP StReaming Algorithm for Mobile Networks,”
IEEE Transactions on Mobile Computing.

[11] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran, “Probe
and Adapt: Rate Adaptation for HTTP Video Streaming At Scale,” IEEE
Journal on Selected Areas in Communications.

[12] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal
bitrate adaptationf for online videos,” in IEEE INFOCOM 2016 - 35th
Annual IEEE International Conference on Computer Communications.

[13] Google. (2018, mar) An extensible media player for android. [Online].
Available: https://github.com/google/ExoPlayer

[14] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute Path
Bandwidth Traces from 3G Networks: Analysis and Applications,” in
Proceedings of the 4th ACM Multimedia Systems Conference.

[15] D. Raca, J. J. Quinlan, A. H. Zahran, and C. J. Sreenan, “Beyond
Throughput: A 4G LTE Dataset with Channel and Context Metrics,”
in Proceedings of the 9th ACM Multimedia Systems Conference.

[16] B. Institute. (2010) Sintel - the durian open movie project. [Online].
Available: https://durian.blender.org/about/

[17] C. Sieber, K. Hagn, C. Moldovan, T. Hoßfeld, and W. Kellerer,
“Towards Machine Learning-Based Optimal HAS,” arXiv preprint
arXiv:1808.08065, 2018.

[18] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python ,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] C. Albon, “Machine Learning with Python Cookbook: Practical Solu-
tions from Preprocessing to Deep Learning,” 2018.

[20] A. Satorra and P. M. Bentler, “A scaled difference chi-square test statistic
for moment structure analysis,” Psychometrika.

