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Abstract—Single image super-resolution (SISR) algorithms
reconstruct high-resolution (HR) images with their low-resolution
(LR) counterparts. It is desirable to develop image quality as-
sessment (IQA) methods that can not only evaluate and compare
SISR algorithms, but also guide their future development. In
this paper, we assess the quality of SISR generated images in a
two-dimensional (2D) space of structural fidelity versus statistical
naturalness. This allows us to observe the behaviors of different
SISR algorithms as a tradeoff in the 2D space. Specifically, SISR
methods are traditionally designed to achieve high structural
fidelity but often sacrifice statistical naturalness, while recent
generative adversarial network (GAN) based algorithms tend
to create more natural-looking results but lose significantly on
structural fidelity. Furthermore, such a 2D evaluation can be
easily fused to a scalar quality prediction. Interestingly, we
find that a simple linear combination of a straightforward local
structural fidelity and a global statistical naturalness measures
produce surprisingly accurate predictions of SISR image quality
when tested using public subject-rated SISR image datasets.
Code of the proposed SFSN model is publicly available at
https://github.com/weizhou-geek/SFSN.
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I. INTRODUCTION

Single image super-resolution (SISR) aims to recover a
high-resolution (HR) image given a single low-resolution (LR)
image. SISR plays a significant role in a wide range of
applications, from satellite imaging, web browsing, to video
surveillance [1]. During the past decades, numerous SISR algo-
rithms have been proposed, including interpolation-based [2],
[3], dictionary-based [4]–[6], and deep learning-based methods
[7]–[12]. The visual appearance and quality of SISR generated
images vary dramatically when different SISR approaches are
employed. Nevertheless, there is still no consensus on how
the quality of SISR created images should be assessed. This is
critically important because image quality assessment (IQA)
methods not only help evaluate and compare SISR algorithms,
but also guide the development of future SISR methodologies.

In general, the most reliable quality assessment method is
human subjective evaluation [13]–[15]. But subjective tests are
usually expensive, time-consuming and hard to be integrated
into SISR optimization frameworks. Therefore, it is highly
desirable to design effective objective IQA models for SISR
generated images. Depending on the availability of the original
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Fig. 1. SISR generated images and 2D quality assessment of statistical
naturalness versus structural fidelity (SF vs SN). A0, B0, C0: original HR
images; A1, B1, C1: reconstructed images by VDSR [7] at scaling factor 4;
A2, B2, C2: reconstructed images by SRGAN [12] at scaling factor 4.

pristine image, full-reference (FR) IQA [16]–[22] and no-
reference (NR) IQA approaches [23]–[27] may be applied.
Additionally, since many SISR algorithms produce blurry
reconstructed images, image sharpness assessment (ISA) or
blur measures [28]–[30] may also be employed.

Despite the success in other IQA applications, existing
FR-IQA, NR-IQA and ISA methods often fall short when
evaluating the quality of SISR generated images. The gap is not
only on the accuracy in predicting subjective scores, but also
on effectively interpreting the nature of key quality degradation
trends in SISR images. An example is given in Fig. 1,
where traditional SISR methods such as VDSR [7] are highly
effective at achieving high signal fidelity in terms of signal-to-
noise ratio or structural similarity [16] when compared to the
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Fig. 2. Sample SISR generated images at different scaling factors (top) and their corresponding points in (SF vs SN) plots (bottom), where the level sets of
the proposed quality prediction Q(y) are also shown.

original images, but the resulting images often look artificial.
On the other hand, recently proposed generative adversarial
network (GAN) based approaches such as SRGAN [12] are
impressive at producing natural-looking reconstructed images,
but their signal fidelity measures are significantly lower. These
observations motivate us to look at the problem in a two-
dimensional (2D) space of structural fidelity versus statistical
naturalness, as demonstrated at the bottom part of Fig. 1.

II. 2D QUALITY ASSESSMENT OF SISR IMAGES

Multi-scale image decomposition such as Laplace and
wavelet transforms have been shown to be effective at char-
acterizing not only local perceptual degradation, but also the
statistical naturalness of images. Therefore, we apply a multi-
scale image transform and construct local structural fidelity and
global statistical naturalness measures both in the transform
domain. Given the original HR image x, and the SISR gener-
ated test image y, inspired by the success of MS-SSIM [17],
we define subband patch level structural fidelity measure as:

SF klocal(x, y) =
σxy + C

σxσy + C
, (1)

where x and y denote the patches extracted from the k-th
subband from x and y, respectively, σx and σy are their
standard deviations, σxy represents the covariance between x
and y, and C is a positive stabilizing constant. The scale level

structural fidelity measure is then computed by spatial pooling:

SF k(x,y) =
1

M

M∑
m=1

SF klocal(x, y), (2)

where M denotes the number of local patches in the subband.
Finally, we fuse across scales to obtain the overall structural
fidelity between x and y:

SF (x,y) =

K∏
k=1

[SF k(x,y)]αk , (3)

where K is the total number of scales/subbands, and αk is
the weight assigned to the k-th scale as in [17]. Furthermore,
natural texture-rich content tends to have higher entropy in
the transform domain [31]. Thus, we use the global entropy
of transform coefficients as a statistical naturalness measure:

SN(y) = −
∑

P (cy) log(P (cy)), (4)

where P (cy) denotes the probability of subband coefficients
of the test image y and may be approximated with histograms.

Although the proposed pair of (SF, SN) measure is rather
simple, it offers a meaningful 2D illustration of the behaviors
of SISR algorithms. Fig. 1 shows three original HR images
with their corresponding SISR images generated by VDSR [7]
and SRGAN [12]. The (SF vs. SN) plot clearly indicates
the relative advantage of VDSR over SRGAN on the SF
measure, and conversely the advantage of SRGAN over VDSR
on the SN measure. The pattern is consistent over all three



content, as indicated by the pairs of points (A1, A2), (B1,
B2) and (C1, C2). Fig. 2 shows images generated by different
SISR algorithms applied to LR images of different sizes and
enhanced by different scaling factors. The (SF vs. SN) plots
offer a platform to examine the behaviors of different SISR
algorithms across scaling factors. It can be observed that the
the general trend of any SISR algorithm is that both SF and
SN measures drop with increasing scaling factors. However,
the speed of change may vary depending on the algorithm
and possibly the image content. For example, the DRRN [10]
method appears to be much more sensitive to scaling factor
change than VDSR [7] and DCSCN [9] for the right image.

III. FUSING 2D ASSESSMENT FOR 1D PREDICTION

In practice, it is often desirable to obtain a single quality
score indicating the overall quality of SISR generated images.
This can be achieved by collapsing the proposed 2D measure
into a scalar quality prediction, e.g., by a linear combination:

Q(y) = wFSF (x,y) + wNSN(y), (5)

where the weighting factors wF and wN adjust the relative
importance of the two measures, and are set empirically at 0.9
and 0.1, respectively, in the current implementation. We name
Q the SFSN measure, which creates straight lines as level
sets in the 2D space, as shown in the bottom plots of Figs. 1
and 2. This scalar quality prediction can then be validated by
comparing against subject-ratings of SISR generated images.

TABLE I. SRCC PERFORMANCE COMPARISON OF OBJECTIVE

MODELS ON WIND [13], CVIU [14] AND QADS [15] DATABASES.

Methods WIND CVIU QADS Average
PSNR 0.6320 0.5663 0.3544 0.5176

SSIM [16] 0.6125 0.6285 0.5290 0.5900
MS-SSIM [17] 0.8246 0.8048 0.7172 0.7822

FSIM [18] 0.8503 0.7481 0.6885 0.7623
CW-SSIM [19] 0.8626 0.7591 0.3259 0.6492

GSIM [20] 0.7649 0.6505 0.5538 0.6564
GMSD [21] 0.7966 0.8469 0.7650 0.8028
SPSIM [22] 0.8141 0.6698 0.5751 0.6863

BRISQUE [23] 0.7676 0.5863 0.5463 0.6334
NIQE [24] 0.6263 0.6525 0.3977 0.5588

BLIINDS-II [25] 0.5281 0.3705 0.3838 0.4275
DIIVINE [26] 0.5465 0.5479 0.4817 0.5254

LPSI [27] 0.6669 0.4883 0.4079 0.5210
S3 [28] 0.4455 0.5050 0.4636 0.4714

LPC-SI [29] 0.5375 0.5450 0.4902 0.5242
HVS-MaxPol-1 [30] 0.6166 0.6421 0.6170 0.6252
HVS-MaxPol-2 [30] 0.6309 0.6313 0.5736 0.6119
Proposed (SF only) 0.8642 0.8546 0.7867 0.8352
Proposed (SN only) 0.5873 0.6415 0.6115 0.6134

Proposed SFSN 0.8867 0.8714 0.8407 0.8663

We validate the proposed fused SFSN quality prediction
method on three public SISR IQA databases, including WIND
[13], CVIU [14], and QADS [15]. The WIND database con-
siders 8 interpolation algorithms with scaling factors of 2,
4, and 8. It contains 312 SISR images corresponding to 13
reference images. The CVIU database consists of 30 reference
HR images and 1,620 SISR generated images created by
9 algorithms with 6 pairs of (scaling factor, kernel width)
combinations, where a larger scaling factor corresponds to
a larger blur kernel width. The QADS database contains 20
original HR images and 980 images generated by 21 SISR
algorithms, including 4 interpolation-based, 11 dictionary-
based, and 6 deep learning (DL) based models applied for

upsampling factors of 2, 3, and 4. In all three databases, each
SISR generated image is subject-rated and annotated by a
mean opinion score (MOS). We compare the proposed method
with 8 FR-IQA, 5 NR-IQA, and 4 ISA models. The Spearman
Rank-order Correlation Coefficient (SRCC) comparison results
are reported in Table I, where the best performances are
highlighted in bold. Other common evaluation criteria [32]
produce similar results but are not included due to space limit.
Despite its simple and straightforward construction, SFSN
achieves surprisingly competitive performance against state-
of-the-art IQA and ISA models.

TABLE II. SRCC PERFORMANCE COMPARISON OF OBJECTIVE

MODELS ON DIFFERENT SISR CATEGORIES ON QADS [15] DATABASE.

Methods Interpolation Dictionary DL Overall
PSNR 0.2972 0.3808 0.2656 0.3544

SSIM [16] 0.4015 0.5481 0.5121 0.5290
MS-SSIM [17] 0.6340 0.7425 0.7104 0.7172

FSIM [18] 0.5471 0.6846 0.6637 0.6885
CW-SSIM [19] 0.5254 0.4362 0.0986 0.3259

GSIM [20] 0.3946 0.5332 0.5661 0.5538
GMSD [21] 0.7054 0.7709 0.7363 0.7650
SPSIM [22] 0.4545 0.5518 0.5871 0.5751

BRISQUE [23] 0.5096 0.4951 0.4357 0.5463
NIQE [24] 0.4639 0.4547 0.4190 0.3977

BLIINDS-II [25] 0.1814 0.3628 0.6547 0.3838
DIIVINE [26] 0.4267 0.4175 0.5654 0.4817

LPSI [27] 0.2726 0.3309 0.6034 0.4079
S3 [28] 0.4016 0.3171 0.5458 0.4636

LPC-SI [29] 0.3301 0.3798 0.2558 0.4902
HVS-MaxPol-1 [30] 0.4584 0.5048 0.5032 0.6170
HVS-MaxPol-2 [30] 0.5318 0.4742 0.2991 0.5736
Proposed (SF only) 0.8273 0.7964 0.7766 0.7867
Proposed (SN only) 0.6210 0.5118 0.4975 0.6115

Proposed SFSN 0.8979 0.8379 0.8004 0.8407

Since different categories of SISR methods often generate
drastically different appearance of the reconstructed images, it
is intriguing to investigate how IQA methods perform for dif-
ferent SISR categories. The results on the QADS [15] database
are reported in Table II, where the proposed method deliv-
ers superior performance in each of the interpolation-based,
dictionary-based, and DL-based SISR categories, as well as
when all three categories are evaluated together. Ablation test
has also been conducted to assess the performance when only
the SF or SN measure is employed. The results are shown in
Tables I and II. It appears that both SF and SN measures make
important contributions, but the best performance is achieved
by the SFSN model that combines both of them.

IV. CONCLUSION

In this work, we opt to a 2D approach to assess the
quality of SISR generated images as a tradeoff between
structural fidelity and statistical naturalness. This allows us to
better understand the nature of quality degradations and better
observe the varying behaviors of different SISR algorithms.
We also show that a rather straightforward implementation
of a local structural fidelity assessment, a global statistical
naturalness measure, and a linear combination of the two,
results in an SFSN model that achieves surprisingly high
correlations with MOS. In the future, better structural fidelity
and statistical naturalness measures, and more sophisticated
combination methods may be developed. The 2D assessment
idea may also be integrated into novel SISR algorithms, aiming
to achieve an optimal balance between the two goals.
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