The Role of Artificial Intelligence
in Software Engineering

Mark Harman
CREST Centre, University College London, Malet Place, London, WCI1E 6BT, UK.

Abstract—There has been a recent surge in interest in the
application of Artificial Intelligence (AI) techniques to Software
Engineering (SE) problems. The work is typified by recent
advances in Search Based Software Engineering, but also by
long established work in Probabilistic reasoning and machine
learning for Software Engineering. This paper explores some
of the relationships between these strands of closely related
work, arguing that they have much in common and sets out
some future challenges in the area of Al for SE.

I. INTRODUCTION

The history of the field of Artificial Intelligence (Al) is long
and illustrious, tracing its roots back to the seminal work of
Turing [[1] and McCarthy [2]. The idea that machines can be
intelligent has provided a staple diet for science fiction. Despite
this, Al can also seem rather commonplace: Computational
intelligence regularly provides examples of specific areas
of intelligent behaviour for which machines comfortably
surpass the performance of even the best human. Right
from its intellectual origins in the 1950s the field stimulated
philosophical as well as technological debate and raised much
interest, not to mention a little concern, from the wider public.

Software engineers, by contrast, are less used to seeing
their work in the science fiction literature. They are typically
focussed on more prosaic and practical engineering concerns.
Nevertheless, the software engineering research and practitioner
communities have fallen under the ‘Al spell’.

Artificial Intelligence is about making machines intelligent,
while software engineering is the activity of defining, designing
and deploying some of the most complex and challenging
systems mankind has ever sought to engineer. Though software
engineering is one of the most challenging of all engineering
disciplines, it is often not recognised as such, because software
is so well concealed.

Consider the Eiffel tower, a marvel of engineering reputedly
containing no fewer than 2.5 million rivets [3]. It is an unmiss-
able physical manifestation of engineering prowess, dominating
the Paris skyline. By contrast, the scale of the engineering
challenge posed by software remains entirely invisible. When
one of the Eiffel Tower’s 2.5 million rivets fails, the tower
itself does not fail. Compare this enormous engineering edifice
with a typical tiny smart phone, which may contain five to ten
million lines of code, the failure of any one of which could
lead to total system failure[ﬂ The space of inputs to even the
smallest app on the phone is likely to comfortably exceed 10%°
(a reasonable current estimate for the number of atoms in the

't is important to recognise that there will be many lines of code that can
be deleted with no observable effect of the behaviour of the device. However,
we can be almost certain that there will exist a non-trivial set of statements,
the deletion of any one of which would lead to a total system failure.

observable universe), yet all but a single one of these inputs
may fail to reveal the presence of just such a critical fault.

Faced with the daunting challenge of designing, building and
testing engineering systems at these scales, software engineers
fortunately have one critical advantage that other engineers
do not posses; the software engineer’s own material, software,
can be used to attack the challenges posed by the production
of systems in this very same material. Al algorithms are well
suited to such complex software engineering problems, because
they are designed to deal with one of the most demanding
challenges of all; the replication of intelligent behaviour.
Which software engineer would not want to have the assistance
of intelligent software tools?

As a result of this natural technological pull, the software en-
gineering community has adopted, adapted and exploited many
of the practical algorithms, methods and techniques that have
emerged from the Al community. These Al algorithms and tech-
niques find important and effective applications that impact on
almost every area of software engineering activity. In particular,
the SE community has used three broad areas of Al techniques:

1) Computational search and optimisation techniques (the
field known as Search Based Software Engineering
(SBSE).

2) Fuzzy and probabilistic methods for reasoning in the
presence of uncertainty.

3) Classification, learning and prediction.

Of course, neither Software Engineering nor Artificial Intelli-
gence are static fields of activity; there is surely more to come.
In the past five years there have been important breakthroughs in
Al with which previously insoluble challenges have been over-
come [4]. The existing work has already amply demonstrated
that there is considerable potential for Software Engineers to
benefit from Al techniques. This paper provides a brief analysis
of this development, highlighting general trends, shared and
overlapping nomenclature, open problems and challenges.

It is perhaps tempting to categorise, compartmentalise and
deconstruct the overall area of Al for SE into sub-domains.
However, as we shall see there is considerable overlap between
SE applications and applicable Al techniques and so this
would be a mistake, albeit an appealing mistake for those
whose professional life is spent studying classifiers!

This paper briefly reviews the three primary areas where Al
techniques have been used in Software Engineering, showing
their relationships and (considerable) overlap of aims and
techniques. It concludes with five challenges that lie ahead
in the development of Al for SE.

II. WHEN DOES AI FOR SE WORK WELL?

The areas in which Al techniques have proved to be useful in
software engineering research and practice can be characterised
as ‘Probabilistic Software Engineering’, ‘Classification,
Learning and Prediction for Software Engineering’ and ‘Search
Based Software Engineering’.

In Fuzzy and probabilistic work, the aim is to apply to
Software Engineering, Al techniques developed to handle
real world problems which are, by their nature, fuzzy and
probabilistic. There is a natural fit here because, increasingly,
software engineering needs to cater for fuzzy, ill-defined, noisy
and incomplete information, as its applications reach further
into our messy, fuzzy and ill-defined lives. This is not only
true of the software systems we build, but the processes by
which they are built, many of which are based on estimates.

One example of a probabilistic Al technique that has proved
to be highly applicable in Software Engineering has been the use
of Bayesian probabilistic reasoning to model software reliability
[S]], one of the earliest [6] examples of the adoption of what
might be called, perhaps with hindsight, ‘Al for SE’. Another
example of the need for probabilistic reasoning comes from the
analysis of users, inherently requiring an element of probability
because of the stochastic nature of human behaviour [7].

In classification, learning and prediction work there has
been great interest in modelling and predicting software costs
as part of project planning. For example a wide variety of
traditional machine learning techniques such as artificial neural
networks, cased based reasoning and rule induction have been
used for software project prediction [§]], [9], ontology learning
[LO] and defect prediction [11]. An overview of machine
learning techniques for software engineering can be found in
the work of Menzies [12].

In Search Based Software Engineering (SBSE) work,
the goal is to re-formulate software engineering problems
as optimisation problems that can then be attacked with
computational search [13], [14]. This has proved to be a widely
applicable and successful approach, with applications from
requirements and design [[15]], [16] to maintenance and testing
[IL7]], [L8], [19]. Computational search has been exploited by all
engineering disciplines, not just Software Engineering. However,
the virtual character of software makes it an engineering
material ideally suited to computational search [20]. There
is a recent tutorial that provides a guide to SBSE [21]].

III. RELATIONSHIP BETWEEN APPROACHES TO Al FOR SE

The various ways in which Al techniques have been applied
in software engineering reveal considerable overlaps. For
instance, the distinctions between probabilistic reasoning and
prediction for software engineering is extremely blurred, if not
rather arbitrary. One can easily think of a prediction system as
nothing more than a probabilistic reasoner. One can also think
of Bayesian models as learners and of classifiers as learners,
probabilistic reasoners and/or optimisers.

Indeed, all of the ways in which AI has been applied to
software engineering can be regarded as ways to optimise
either the engineering process or its products and, as such,

they are all examples of Search Based Software Engineering.

That is, whether we think of our problem as one couched in
probability, formulated as a prediction system or characterised

by a need to learn from experience, we are always seeking
to optimise the efficiency and effectiveness of our approach
and to find good cost-benefit trade offs.

These optimisation goals can usually be formulated as
measurable objectives and constraints, the solutions to which
are likely to reside in large spaces, making them ripe for
computational search.

There is very close interplay between machine learning
approaches to Software Engineering and SBSE approaches. Ma-
chine learning is essentially the study of approaches to computa-
tion that improve with use. In order to improve, we need a way
to measure improvement and, if we have this, then we can use
SBSE to optimise according to it. Fortunately, in Software Engi-
neering situations we typically have a large number of candidate
measurements against which we might seek to improve [22]].

Previous work on machine learning and SBSE also overlaps
through the use of genetic programming as a technique to
learn/optimise. Genetic programming has been one of the
most widely used computational search techniques in SBSE
work [23], with exciting recent breakthoughs in automatic
bug fixing [24], [25] porting between platforms, languages
and programming paradigms [26] and trading functional and
non-functional properties [27].

However, genetic programming can also be thought of as
an algorithm for learning models of software behaviour, a lens
through which it appears to be a machine learning approach
as well as an optimisation technique [28]], [29]. Therefore, we
can see that there are extremely close connections between
machine learning for SE and SBSE: one way of learning is
to optimise, while one way to think of the progress that takes
place during optimisation is as a learning process.

Terminological arguments should not become a trap into
which we fall, interminably and introspectively arguing over
problem and solution demarkations. Rather, this rich shared
and interwoven nomenclature can be regarded as an opportunity
for exchange of ideas. For example SBSE can be used to
optimise the performance of predictive models [30] and case
based reasoners [31]].

The first step for the successful application of any Al
technique to any Software Engineering problem domain, is
to find a suitable formulation of the software engineering
problem so that Al techniques become applicable. Once this
formulation is accomplished it typically opens a technological
window of opportunity through which many Al techniques
may profitably pass, as has been repeatedly demonstrated in
previous work [18]], [17]], [19], [16], [15].

IV. CHALLENGES AHEAD IN AI FOR SE

This section outlines some of the open problems in the
application of Al techniques to Software Engineering.

A. Searching for strategies rather than instances

Current approaches to the application of Al to SE tend to
focus on solving specific problem instances: the search for test
data to cover a specific branch or a specific set of requirements
or the fitting of an equation to predict the quality of a specific
system. There is scope to move up the abstraction chain from
problem instances to whole classes of problems and, from
there, to the provision of strategies for finding solutions rather
than the solutions themselves.

There has already been some initial work on ways of
searching for derived probability distributions for statistical
testing [32]] and for inferring strategies from paths in model
checking [33]]. There has also been work on the search for
tactics for program transformation [34]], [35]].

However, this work remains focussed on specific problems.
It remains to be seen how we can best migrate from searching
for solution instances to searching for strategies for finding
solution instances. Through this avenue of future work, we
shall be exploiting the natural connections between SBSE
and machine learning, since the search for strategies can be
thought of as a learning process over a training set.

Genetic Programming (GP), in particular, has the potential
to generalise from the solution of problem instances to the
solution of problem classes. Instead of searching for a test
input to achieve a test goal, why not use genetic programming
to characterise the strategies that find the next test input,
based on the behaviour so-far observed. Rather than seeking a
specific set of requirements for the next release of the software
we might move closer to the original goals of strategic release
planning [36]. That is, search for strategies to manage release
of the software, charactersing the release strategy using GP.

B. Exploitation of Multicore Computation

A somewhat dated view of Al techniques might consider
them to be highly computationally expensive, making them
potentially unsuited to the large scale problems faced by
software engineers. Fortunately, many of the Al techniques that
we may seek to apply to Software Engineering problems, such
as evolutionary algorithms, are classified as ‘embarrassingly
parallel’; they naturally decompose into sub-computations that
can be carried out in parallel.

This possibility for parallelisation has been exploited in work
on software re-modularisation [37]], [38], concept location [39]
and regression testing [40]. Although this work is very promis-
ing, more work is required to fully exploit the enormous poten-
tial of the rapidly increasing number of processors available.

One of the principal challenges for multicore computation
remains the task of finding ways to translate existing
programming paradigms into naturally parallisable versions
[41]. This is essential if any speed up is to be achieved.
Without it, execution on multicore can actually decrease
performance, since each core is typically clocked at a lower
rate than a similar single core system [42].

For many of the AI techniques discussed in this paper and
almost all of those associated with SBSE, the algorithms used
are naturally parallelisable. Yoo et al. [40] report that, with
an inexpensive General Purpose Graphics Processing Unit
(GPGPU), they are able to achieve speed ups over single
computations of factors ranging up to 25. They also report
that for larger regression testing problems the degree of scale
up also tends to increase. The increasing number of processors
available is an exciting prospect for scalability, chastened only
by the observation our software engineering problems may
be scaling at similar rates.

C. Giving Insight to Software Engineers

Al techniques do not merely provide another way to find
solutions to software engineering problems, they also offer
ways to yield insight into the nature of these problems and the

spaces in which their solutions are to be found. For instance,
though much work has been able to find good requirements
[43], [44], project plans [45], [46], designs [47], [48] and test
inputs [49]], [50], [32], there is also much work that helps us
to gain insight into the nature of these problems.

For instance, SBSE has been used to reveal the trade
offs between requirements’ stakeholders [51] and between
requirements and their implementations [52] and to bring
aesthetic judgements into the software design process [33].
There has also been work on understanding the risks involved
in requirements miss-estimation and in project completion
times [54], [55]], while predictive models of faults, quality,
performance and effort [56l, [29]], [57]], [58]] are naturally
concerned with the provision of insight rather than solutions.

There remain many exciting and interesting ways in which Al
techniques can be used to gain insight. For example some open
problems concerning program comprehension are described
elsewhere [59]]. Such work is, of course, harder to evaluate
than work which merely seeks to provide solutions to problems,
since it involves measuring the effects of the Al techniques on
the provision of insight, rather than against existing known best
solutions. This is inherently more demanding, and the referees
of such papers need to understand and allow for this elevated
evaluation challenge. However, there is tremendous scope for
progress; Al techniques have already been shown to outperform
humans in several software engineering activities [60].

D. Compiling Smart Optimisation into Deployed Software

Most of the work on Al for SE, such as optimisation,
prediction and learning has been applied off-line to improve
either the software process (such as software production,
designs and testing) or the software itself (automatically
patching improving and porting). We might ask ourselves

“If we can optimise a version of the system, why not
compile the optimisation process into the deployed
software so that it becomes dynamically adaptive?”

In order to deploy optimisation into software products, we
need to identify the parameters that we should optimise [57],
which could, itself be formulated as an optimisation problem.
We might also speculate that work on genetic programming
as a means of automatically patching, improving and porting
software [24]], [26], [25], [27], may be developed to provide
in situ optimisation.

This would provide us with a set if tools and techniques
with which to address long-standing challenges such as
autonomic computing [61] and self-adapting systems [62].

E. Novel Al-Friendly Software Development and Deployment

We cannot expect to simply graft Al techniques into existing
Software Engineering process and use-cases. We need to adapt
the processes and products to better suit a software engineering
world rich in the application of Al techniques. Al algorithms are
already giving us intelligent software analysis, development, test-
ing and decision support systems. These smart tools seek to sup-
port existing software development methods and processes, as
constructed for largely human-intensive software development.

As the use of automated smart Al-inspired tools proliferates,
we will need to rethink the best ways in which these can be
incorporated into the software development process.

For instance, if faults can be automatically fixed, we need
a release policy that accounts for this. Perhaps automated
patches may not be, at least initially, so fully trusted as
human-generated patches, then they might be used in tandem
with the original system for ongoing regression testing.

If deployed software is able to take advantage of dynamic
optimisation, in situ, then we may need to design software
products that are able to seamlessly and unobtrusively
monitor user ‘comfort’ and ‘satisfaction’ with the dynamically
optimising code. Users will need a way to express their level
of frustration and dissatisfaction with a system implicitly,
simply by using it, without interfering with this use. It will
be no use asking the user every few seconds whether they
are happy; the system must be designed to continually monitor
this, rather than merely monitoring the surrogate non-functional
properties against which it seeks to optimise.

V. CONCLUSION

The rapid growth in interest in topics such as Search
Based Software Engineering is a testimony to the appetite the
Software Engineering community clearly has for Al techniques.
This is not merely a capricious fashion. It is grounded in the
way in which Software Engineering is, itself, becoming less
of a craft and more of an engineering discipline.

For several decades we have been moving away from small,
localised, insulated, bespoke, well-defined construction towards
large-scale development and maintenance of connected, intel-
ligent, complex, interactive systems. The engineering character
of the problems we face as software engineers, such as noisy,
partially- and ill- defined application domains with multiple
competing, conflicting and changing objectives, is dragging us
from an unrealistic utopia of perfect construction to the more
realistic, but imperfect world of engineering optimisation.

This change in the nature of software forces us to change
our development and deployment techniques. It should come as
no surprise that Al techniques are proving to be well-suited to
this changing world, since their inspiration comes from human
intelligence; the archetype of a noisy, ill-defined, competing,
conflicting, connected, complex, interactive system.

Acknowldegments: Mark Harman is funded by EPSRC
grants GISMO (EP/1033688) RE-COST (EP/1010165) CREST
Platform Grant (EP/G060525) DAASE Programme Grant
(EP/JO17515) and by the EU FITTEST project (257574) and
by a Google Research Award.

Yuanyuan Zhang maintains a comprehensive repository on
SBSE, with over 1,000 papers:

http://crestweb.cs.ucl.ac.uk/ resources/sbse_repository/

Bill Langdon maintains a similarly comprehensive repository
on Genetic Programming, with over 7,000 papers:

http://www.cs.bham.ac.uk/ wbl/biblio/

These two repositories contain searchable lists of papers and
authors and are both managed by a human, not an automated
process, so the contents are likely to be carefully chosen to
ensure high precision and recall of appropriate papers. Readers
interested in predictive modeling will surely also find many
useful materials in the PROMISE repository [63], while a
more general overview survey of repositories can be found
in the work of Rodriguez et al. [64].

(11
[2

—

(3]
[4

=

[5

—

=N
2

[7

—

[8

[l

(91

[10]
(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 49,
pp. 433-460, Jan. 01 1950.

J. McCarthy, “Programs with common sense,” in Proceedings of the
Symposium on Mechanisation of Thought Processes, vol. 1. London:
Her Majesty’s Stationery Office, 1958, pp. 77-84.
J. P. Cramer, Almanac of Architecture and Design.
Communications, 2000.

S. Gelly, L. Kocsis, M. Schoenauer, M. Sebag, D. Silver, C. Szepesvari,
and O. Teytaud, “The grand challenge of computer Go: Mnote Caril
tree search and extensions,” Communications of the ACM, vol. 55, no. 3,
pp. 106-113, Mar. 2012.

N. E. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, and P. Krause,
“On the effectiveness of early life cycle defect prediction with Bayesian
Nets,” Empirical Software Engineering, vol. 13, no. 5, pp. 499-537, 2008.
B. Littlewood and J. L. Verrall, “A Bayesian reliability growth model for
computer software,” Applied Statistics, vol. 22, no. 3, pp. 332-346, 1973.
E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse, “The
Lumiere project: Bayesian user modeling for inferring the goals and
needs of software users,” in Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence. San Mateo: Morgan Kaufmann,
Jul. 1998, pp. 256-265.

A. Idri, T. M. Khoshgoftaar, and A. Abran, “Can neural networks be
easily interpreted in software cost estimation?” Honolulu, Hawaii, p.
11621167, 2003.

C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M. Shepperd,
and S. Webster, “An investigation of machine learning based prediction
systems,” The Journal of Systems and Software, vol. 53, no. 1, pp.
23-29, Jul. 2000.

A. Maedche and S. Staab, “Ontology learning for the semantic web,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 72-79, 2001.

V. U. B. Challagulla, F. B. Bastani, I.-L. Yen, and R. A. Paul, “Empirical
assessment of machine learning based software defect prediction
techniques,” International Journal on Artificial Intelligence Tools, vol. 17,
no. 2, pp. 389-400, 2008.

T. Menzies, “Practical machine learning for software engineering and
knowledge engineering,” in Handbook of Software Engineering and
Knowledge Engineering. World-Scientific, December 2001, available
from http://menzies.us/pdf/00ml.pdf.

J. Clark, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating software engineering as a search problem,” [EE
Proceedings — Software, vol. 150, no. 3, pp. 161-175, 2003.

M. Harman and B. F. Jones, “Search based software engineering,” Infor-
mation and Software Technology, vol. 43, no. 14, pp. 833-839, Dec. 2001.
Y. Zhang, A. Finkelstein, and M. Harman, “Search based requirements
optimisation: Existing work and challenges,” in International Working
Conference on Requirements Engineering: Foundation for Software
Quality (REFSQ’08), vol. 5025. Montpellier, France: Springer LNCS,
2008, pp. 88-94.

O. Riihd, “A survey on search-based software design,” Computer
Science Review, vol. 4, no. 4, pp. 203-249, 2010.

W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based
testing for non-functional system properties,” Information and Software
Technology, vol. 51, no. 6, pp. 957-976, 2009.

S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test-case generation,” IEEE Transactions on Software
Engineering, pp. 742-762, 2010.

M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering trends, techniques and applications,” ACM Computing
Surveys, 2012, to appear.

M. Harman, “Why the virtual nature of software makes it ideal for search
based optimization,” in 13t International Conference on Fundamental
Approaches to Software Engineering (FASE 2010), Paphos, Cyprus,
March 2010, pp. 1-12.

M. Harman, P. McMinn, J. Souza, and S. Yoo, “Search based software
engineering: Techniques, taxonomy, tutorial,” in Empirical software
engineering and verification: LASER 2009-2010, B. Meyer and
M. Nordio, Eds. Springer, 2012, pp. 1-59, LNCS 7007.

M. Harman and J. Clark, “Metrics are fitness functions t0o,” in 10t" Inter-
national Software Metrics Symposium (METRICS 2004). Los Alamitos,
California, USA: IEEE Computer Society Press, Sep. 2004, pp. 58—69.
M. Harman, “Software engineering meets evolutionary computation,”
IEEE Computer, vol. 44, no. 10, pp. 31-39, Oct. 2011.

Atlanta: Greenway

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Arcuri and X. Yao, “A Novel Co-evolutionary Approach to Automatic
Software Bug Fixing,” in Proceedings of the IEEE Congress on
Evolutionary Computation (CEC ’08). Hongkong, China: IEEE
Computer Society, 1-6 June 2008, pp. 162-168.

W. Weimer, T. V. Nguyen, C. L. Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in International Conference
on Software Engineering (ICSE 2009), Vancouver, Canada, 2009, pp.
364-374.

W. B. Langdon and M. Harman, “Evolving a CUDA kernel from an
nVidia template,” in IEEE Congress on Evolutionary Computation.
IEEE, 2010, pp. 1-8.

D. R. White, J. Clark, J. Jacob, and S. Poulding, “Searching for resource-
efficient programs: Low-power pseudorandom number generators,” in
2008 Genetic and Evolutionary Computation Conference (GECCO 2008).
Atlanta, USA: ACM Press, Jul. 2008, pp. 1775-1782.

E. O. Costa, A. Pozo, and S. R. Vergilio, “A genetic programming
approach for software reliability modeling,” IEEE Transactions on
Reliability, vol. 59, no. 1, pp. 222-230, 2010.

J. J. Dolado, “On the problem of the software cost function,” Information
and Software Technology, vol. 43, no. 1, pp. 61-72, Jan. 2001.

M. Harman, “The relationship between search based software engineering
and predictive modeling,” in 6" International Conference on Predictive
Models in Software Engineering, Timisoara, Romania, 2010.

C. Kirsopp, M. Shepperd, and J. Hart, “Search heuristics, case-based
reasoning and software project effort prediction,” in GECCO 2002:
Proceedings of the Genetic and Evolutionary Computation Conference.
San Francisco, CA 94104, USA: Morgan Kaufmann Publishers, 9-13
July 2002, pp. 1367-1374.

S. M. Poulding and J. A. Clark, “Efficient software verification:
Statistical testing using automated search,” IEEE Transactions on
Software Engineering, vol. 36, no. 6, pp. 763-777, 2010.

J. Staunton and J. A. Clark, “Finding short counterexamples in Promela
models using estimation of distribution algorithms,” in 13" Annual
Genetic and Evolutionary Computation Conference (GECCO 2011),
N. Krasnogor and P. L. Lanzi, Eds. Dublin, Ireland: ACM, July
12th-16th 2011, pp. 1923-1930.

D. Fatiregun, M. Harman, and R. Hierons, “Evolving transformation
sequences using genetic algorithms” in 4*" International Workshop
on Source Code Analysis and Manipulation (SCAM 04). Los Alamitos,
California, USA: IEEE Computer Society Press, Sep. 2004, pp. 65-74.
C. Ryan, Automatic re-engineering of software using genetic programming.
Kluwer Academic Publishers, 2000.

D. Greer and G. Ruhe, “Software release planning: an evolutionary and
iterative approach,” Information & Software Technology, vol. 46, no. 4,
pp. 243-253, 2004.

B. S. Mitchell, M. Traverso, and S. Mancoridis, “An architecture
for distributing the computation of software clustering algorithms,”
in IEEE/IFIP Proceedings of the Working Conference on Software
Architecture (WICSA °01). Amsterdam, Netherlands: IEEE Computer
Society, 2001, pp. 181-190.

K. Mahdavi, M. Harman, and R. M. Hierons, “A multiple hill climbing
approach to software module clustering,” in [EEE International
Conference on Software Maintenance. Los Alamitos, California, USA:
IEEE Computer Society Press, Sep. 2003, pp. 315-324.

F. Asadi, G. Antoniol, and Y. Guéhéneuc, “Concept location with
genetic algorithms: A comparison of four distributed architectures,” in
Proceedings of 2% International Symposium on Search based Software
Engineering (SSBSE 2010). Benevento, Italy: IEEE Computer Society
Press, 2010, pp. 153-162.

S. Yoo, M. Harman, and S. Ur, “Highly scalable multi-objective test suite
minimisation using graphics cards,” in 3"% International Symposium
on Search based Software Engineering (SSBSE 2011), 10th - 12th
September 2011, pp. 219-236, LNCS Volume 6956.

M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng, “Merge:
a programming model for heterogeneous multi-core systems,” in 13t/
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Seattle, WA, USA:
ACM, Mar. 2008, pp. 287-296.

A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, and S. Tomov,
“The impact of multicore on math software,” in 8t International
Workshop Applied Parallel Computing (PARA 2006), vol. LNCS 4699.
Umea, Sweden: Springer, June 2006, pp. 1-10.

J. Karlsson and K. Ryan, “A cost-value approach for prioritizing
requirements,” [EEE Software, vol. 14, no. 5, pp. 67-74,
September/October 1997.

Y. Zhang, M. Harman, A. Finkelstein, and A. Mansouri, “Comparing
the performance of metaheuristics for the analysis of multi-stakeholder

[45]

[46]

[47]

(48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]
[62]

[63]

[64]

tradeoffs in requirements optimisation,” Journal of Information and
Software Technology, vol. 53, no. 7, pp. 761-773, 2011.

A. Barreto, M. Barros, and C. Werner, “Staffing a software project: A
constraint satisfaction and optimization based approach,” Computers and
Operations Research (COR) focused issue on Search Based Software
Engineeering, vol. 35, no. 10, p. 30733089, October 2008.

G. Antoniol, M. Di Penta, and M. Harman, “The use of search-based
optimization techniques to schedule and staff software projects: An
approach and an empirical study,” Software — Practice and Experience,
vol. 41, no. 5, pp. 495-519, April 2011.

S. Mancoridis, B. S. Mitchell, Y.-F. Chen, and E. R. Gansner, “Bunch:
A clustering tool for the recovery and maintenance of software system
structures,” in Proceedings; IEEE International Conference on Software
Maintenance. 1EEE Computer Society Press, 1999, pp. 50-59.

K. Praditwong, M. Harman, and X. Yao, “Software module clustering
as a multi-objective search problem,” IEEE Transactions on Software
Engineering, vol. 37, no. 2, pp. 264-282, 2011.

G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,
in 11*" International Conference on Quality Software (QSIC), M. Niifiez,
R. M. Hierons, and M. G. Merayo, Eds. Madrid, Spain: IEEE Computer
Society, July 2011, pp. 31-40.

M. Harman and P. McMinn, “A theoretical and empirical study of search
based testing: Local, global and hybrid search,” IEEE Transactions on
Software Engineering, vol. 36, no. 2, pp. 226-247, 2010.

A. Finkelstein, M. Harman, A. Mansouri, J. Ren, and Y. Zhang, “A
search based approach to fairness analysis in requirements assignments
to aid negotiation, mediation and decision making,” Requirements
Engineering, vol. 14, no. 4, pp. 231-245, 2009.

M. O. Saliu and G. Ruhe, “Bi-objective release planning for evolving
software systems,” in Proceedings of the 6" joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE) 2007,
I. Crnkovic and A. Bertolino, Eds. ACM, Sep. 2007, pp. 105-114.
C. L. Simons, I. C. Parmee, and R. Gwynllyw, “Interactive, evolutionary
search in upstream object-oriented class design,” IEEE Transactions
on Software Engineering, vol. 36, no. 6, pp. 798-816, 2010.

G. Antoniol, S. Gueorguiev, and M. Harman, “Software project planning
for robustness and completion time in the presence of uncertainty using
multi objective search based software engineering,” in ACM Genetic
and Evolutionary Computation COnference (GECCO 2009), Montreal,
Canada, 8th — 12th July 2009, pp. 1673-1680.

M. Harman, J. Krinke, J. Ren, and S. Yoo, “Search based data sensitivity
analysis applied to requirement engineering,” in ACM Genetic and
Evolutionary Computation COnference (GECCO 2009), Montreal,
Canada, 8th — 12th July 2009, pp. 1681-1688.

S. Bouktif, H. Sahraoui, and G. Antoniol, “Simulated annealing for
improving software quality prediction,” in GECCO 2006: Proceedings of
the 8th annual conference on Genetic and evolutionary computation, vol. 2.
Seattle, Washington, USA: ACM Press, 8-12 Jul. 2006, pp. 1893-1900.
K. Krogmann, M. Kuperberg, and R. Reussner, “Using genetic search
for reverse engineering of parametric behaviour models for performance
prediction,” IEEE Transactions on Software Engineering, vol. 36, no. 6,
pp. 865-877, November-December 2010.

D. Rodriguez, R. Ruiz, J. C. Riquelme-Santos, and R. Harrison,
“Subgroup discovery for defect prediction,” in 3¢ International
Symposium on Search Based Software Engineering (SSBSE), vol. 6956.
Szeged, Hungary: Springer, September 2011, pp. 269-270.

M. Harman, “Search based software engineering for program compre-
hension,” in 15" International Conference on Program Comprehension
(ICPC 07). Banft, Canada: IEEE Computer Society Press, 2007, pp. 3-13.
J. Souza, C. L. Maia, F. G. de Freitas, and D. P. Coutinho, “The human
competitiveness of search based software engineering,” in Proceedings
of 2™ International Symposium on Search based Software Engineering
(SSBSE 2010). Benevento, Italy: IEEE Computer Society Press, 2010,
pp. 143 — 152.

J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41-50, 2003.

A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach to adaptive
software: continuous assurance of non-functional requirements,” Formal
Aspects of Computing, vol. 24, no. 2, pp. 163-186, 2012.

G. Boetticher, T. Menzies, and T. Ostrand, “PROMISE repository
of empirical software engineering data,” 2007, available at
http://promisedata.org/ repository.

D. Rodriguez, 1. Herraiz, and R. Harrison, “On software engineering
repositories and their open problems,” in The International Workshop
on Realizing Al Synergies in Software Engineering (RAISE’12), Zurich,
Switzerland, 2012.

>

	Introduction
	When does AI for SE Work Well?
	Relationship between approaches to AI for SE
	Challenges Ahead in AI for SE
	Searching for strategies rather than instances
	Exploitation of Multicore Computation
	Giving Insight to Software Engineers
	Compiling Smart Optimisation into Deployed Software
	Novel AI-Friendly Software Development and Deployment

	Conclusion
	References

