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Abstract—Automatically generating test inputs for components
without source code (are ‘black-box’) and specification is chal-
lenging. One particularly interesting solution to this problem is to
use Machine Learning algorithms to infer testable models from
program executions in an iterative cycle. Although the idea has
been around for over 30 years, there is little empirical information
to inform the choice of suitable learning algorithms, or to show
how good the resulting test sets are. This paper presents an
openly available framework to facilitate experimentation in this
area, and provides a proof-of-concept inference-driven testing
framework, along with evidence of the efficacy of its test sets on
three programs.

I. INTRODUCTION

Automated test generation typically requires either access
to source code, or to some hand-crafted model of software
behaviour. Depending on the circumstances, neither of these
will necessarily be available. The program in question might
for example be a pre-compiled COTS component, or be
an embedded system. Models are rarely available, or easily
become out-dated as the program evolves.

In the absence of code or models, random (or quasi-random)
testing is typically chosen as an alternative. However, this
approach has several downsides. The random selection of
inputs can favour the execution of ‘easy-to-reach’ behaviour,
and miss out faulty behaviour that arises from specific input
combinations. Furthermore, without access to code or runtime
information, there is no basis upon which to establish how
adequate a resulting test set is – how much confidence can be
derived from a successful test set execution.

In the early eighties, Weyuker [21] and Budd and Angluin
[3] examined this problem from the perspective of Machine
Learning. They advanced the argument that testing and model
inference are, in effect, two sides of the same coin. Testing
is about selecting program inputs to elicit program behaviour
that demonstrates certain properties, and model inference is
concerned with deducing these properties from the observed
behaviour.

With the rise of Machine Learning this idea has gradually
started to gain traction. However, efforts to investigate this idea
have been overwhelmingly geared towards the relatively nar-
row class of sequential systems that can be modelled as state
machines [13], [17], [20], [19], [11] (possibly because such
models are associated with an extensive range of state-machine
testing techniques). Similar work on data-driven programs, of
the sort that can be executed by a single command on the
command-line, remains limited, and the authors are not aware
of any openly available implementations (that do not require

the source-code of the program under test) to facilitate this
experimentation.

In this paper we present framework that is designed to
support the inference-driven test generation for programs that
are not sequential. Importantly, the framework is designed
to be modular; it is not necessarily tied to a specific model
inference or test generation framework, and can be in principle
applied to any executable program, without the need for access
to source code. The key contributions of this paper are as
follows:

• The Model-Inference driven Testing (MINTEST)
framework. The framework is deliberately flexible; for
our proof of concept we show how to use WEKA’s J48
[9] implementation of Quinlan’s C4.5 algorithm [12] to
infer decision trees from program executions, and use the
Z3 solver [5] to generate and execute tests from it. These
are analysed to produce new test inputs, and the cycle
iterates.

• An openly-available implementation. We provide an
openly-available Java implementation that can be (and
is in the process of being) extended to handle different
types of programs, models, and test generators.

• An evaluation on three openly-available programs.
The evaluation shows how inference-driven testing can
produce better test sets more efficiently than random
testing.

The rest of this paper is structured as follows. Section II
provides the basic knowledge required to render this paper
reasonably self-contained. Section III introduces our tech-
nique and implementation. Section IV contains the evaluation.
Section V contains related work, and Section VI contains
conclusions and future work.

II. BACKGROUND

A. Inference and Testing
A general framework for the process of combining model

inference with automated test generation is shown in Figure
1. This can be used to characterise most of the previous
approaches. The main steps are elaborated below:

1) Any existing tests are executed and the outputs are
recorded.

2) The inputs and outputs are treated as a training set, and
fed to a model inference engine.

3) The resulting model provides a hypothetical approximate
generalisation of the program behaviour that has been
tested so far.



output

input

MINTEST

Map of inputs 
to outputs

(training set)

Component 
under test

Prior 
test 

inputs

Model 
Inference

Test 
Generation

Input set

(1a)

(2)

(3)

(4) (5)

Input / output 
model

Test 
Runner

Interface
Specification

(1b)

(a) Process

very 
obese

healthy under
weight

height <= 1.263973height > 1.263973

height > 2.749478
inference

Test generation & execution

Initial test set (1) Inferred decision tree (2)

Constraints, solutions (test cases) and resulting outputs (3)

New test 
cases (4)

(b) BMI Example
Fig. 1. Inference-driven test generation process

4) The inferred model is used to guide the selection of new
test inputs, with a view to finding input / output relations
that contradict the inferred model (i.e. executing ‘new’
program behaviour). Previous approaches have used the
inferred model to drive genetic algorithms [8], [7], or
to use state machine testing strategies [13], [20], [19],
[11].

5) The loop is repeated, until some termination criterion is
met (e.g. no further contradictory tests can be found).

One useful ‘by-product’ of this approach is the inferred
model. This is useful because it provides a non code-based
perspective on what software behaviour has (probably) been
tested. This can therefore be used to formulate novel notions
of test adequacy Weyuker [21], [18].

B. Motivation

Experimental work on the interplay between testing and
inference is challenging. The components involved in the test-
generation cycle (inference algorithm, an accompanying model
representation, test generation algorithm and test execution
framework) can involve an extensive amount of implemen-
tation effort. This invariably makes it difficult to experiment
with the effect of different model inference or test generation
algorithms for example.

One inference-testing tool-set that has been particularly
successful for sequential systems has been LearnLib [13]. One
reason for this comes down to its inherent modularity, which
works around the problems mentioned above. It enables the
selection of different algorithms or strategies for various parts
of its test-generation cycle.

The motivation for the work presented in this paper is to
develop an equivalent for LearnLib, but for programs that do
not necessarily operate on sequential inputs and outputs. The
approach should however be modular, to enable the selection
of different inference and test-generation algorithms. It should

also be possible to easily direct the technique towards any
program that can be executed via the command-line.

III. APPROACH AND IMPLEMENTATION

Here we introduce our MINTEST framework of the loop
shown in Figure 1 (a). It is deliberately modular, in that each
component in the loop can be readily replaced by a variety of
alternative implementations. We describe the components of
our technique in terms of the components shown in Figure 1
(a). The key steps are illustrated on a small running example
- a black-box BMI calculator function, shown in Figure 1 (b).
The source code for the approach, an executable Jar file, and
some instructions are available online1.

a) Component Under Test: The component under test
refers to any programs that can be executed with a single
invocation that takes a (possibly empty) list of parameters.
These parameters can either contain categorical values (e.g.
String / boolean values) or numbers. The output must be a
single value that is again either a categorical value or a number.
Note that, given the black-box nature of the approach, there
are no constraints on the implementation language or source
code complexity.

For our small running example, we consider a simple routine
of a BMI calculator. This takes as input someone’s height (in
metres) and weight (in kilograms), and returns an assessment
of whether they are underweight, normal, overweight, obese,
or very obese. The output illustrates what we mean by ‘cate-
gorical’ output. It may be encoded in reality as a string or a
number, but one that can only assume a finite range of values.
An example of these inputs is shown in Figure 1(b)-1.

b) Model Inference: We link up to the WEKA inference
framework [9] to infer suitable models from the resulting data.
Although there are numerous potential choices for algorithms,
these can only be chosen if there exists a test generator that is
capable of processing the inferred model. So far, we have only

1https://bitbucket.org/nwalkinshaw/efsminferencetool/wiki/TestGeneration



{
{

"command": "/tmp/tcas",
"parameters":[

{
"name": "cur_vertical_sep",
"type": "integer"

},
{

"name": "High_Confidence",
"type": "integer",
"min": "0",
"max": "1"

},
...
{

"name": "Climb_Inhibit",
"type": "integer",
"min": "0",
"max": "1"

}
],
"output-type": "string"

}
}

Fig. 2. JSON interface specification for TCAS program

produced a test-generator for decision trees. So by default we
currently use the C4.5 decision tree inference algorithm (more
precisely, WEKA’s J48 implementation of it).

Figure 1(b)-2 shows the model inferred for the given initial
test set. It is read by starting from the root-node. Each path
to a leaf-node represents a specific conjunction of constraints
on the inputs that lead to a particular output. Given the small
number of tests, this initial model is a crude oversimplification
of the actual rules at play; it only considers the height of the
person, and does not factor in the person’s weight, for example.

c) Test Generation: The test-generation module takes an
inferred model as input, and generates test cases from it. So
far we have implemented, alongside a simple random test set
generator, a generator for decision tree models that identifies
inputs to ‘cover’ every path through the decision tree. This
is achieved by, for each leaf-node in the tree, deriving a set
of inputs that satisfy the conjunction of constraints on the
branches leading to that node. We use the Z3 solver [5] to
solve the constraints. If, upon execution, the program returns
a different value to that provided at the leaf node, then we
have found a test case that invalidates the model (which then
leads to the inference of a new model and a fresh iteration of
the loop).

Figure 1(b) - 3 illustrates this test-generation process. The
constraints derived from the paths to the leaf nodes in the
decision tree are shown in the left-most column. The solutions
produced by Z3 are shown in the second column, and the
expected outputs (as declared in the decision tree) are shown
in the third. The final column shows the results obtained by
actually running these inputs on the program. Here we see that
in two cases (the shaded cells), the outputs differ from the
expected outputs. In this case, these observations are added to
the full test set, and the whole loop iterates.

d) Running the Tool: To commence the test-generation
process, the developer has to supply a description of the
interface to the component under test. In our implementation,
this is structured as a simple JSON file, an example excerpt
of which is shown in Figure 2. This, contains three elements:
the command-line command, a list of typed parameters, and
a typed output. Parameters can (in the current version) either
be integers, strings, or reals.

We have included some basic capability to specify limits
that are known to apply to the parameters. This enables us to
guide the test-generation. Numerical values can be associated
with upper and lower limits. All types can be restricted to a list
of specific values. As an example, we might happen to know
that the High_Confidence parameter in the example is a
boolean that is read as an integer. Therefore we might wish to
constrain any input selections for that integer to being either
1 or 0.

In addition to the JSON file, it is also possible to provide an
initial set of test inputs (e.g. from an existing, albeit perhaps
inadequate test set). This can provide a useful basis from which
to infer the initial model. The initial test set simply takes the
form of a text file where each line represents a test case, where
parameter values are separated by spaces. This is the format
adopted by, for example, the Software Artefact Infrastructure
Repository [6].

IV. EVALUATION

The research question we address in our evaluation is as
follows:

Given a basic test set that executes every outcome
for a program at least once, does MINTEST improve
upon its adequacy?

To investigate this, we have carried out a preliminary
experiment on three programs, using mutation testing as an
approximation of test adequacy (the extent to which a test set
can detect faulty program behaviour). The rest of the section
describes the experiment set-up and the results. However, there
is also a subsection devoted to the detection of a non-mutant
fault in TCAS which, though not part of the measurable
experiment outcomes, is nonetheless illustrative of the ability
of the technique to detect faults that might evade traditional
techniques.

A. Methodology

For each program we either obtained an existing set of
mutations, or generated a set with a mutation testing tool.
We then selected an initial “seed” test set for the program.
This was randomly generated from existing test sets (with
constraints on input parameters where deemed sensible), with
the sole criterion that it should contain test cases that exercise
every outcome of the program at least once2, and that these
outputs must be reflected in the decision tree inferred from the
set of test cases (this deliberately did not involve the source

2For Triangle, contain one test case for every type of triangle, for BMI
contain a test case for every type of weight-category, and for TCAS, return a
true or a false.



code). For Triangle and BMI this was achieved with 50 test
executions. However, for TCAS, this led to an initial test set
of 500.

We then generated two test sets; one with MINTEST, and
the other with a random test generator. To measure the extent
to which the test set improved over time, we measured the
mutation score after each iteration of the MINTEST, recording
the equivalent mutation score for the equivalent number of
random tests. This, ultimately, provided us with data showing
the respective changes in mutation scores for MINTEST and
random over the course of the test generation.

B. Subject programs

Programs were selected according to two criteria. (1) they
had to fit the class of system we are seeking to test (i.e.
numerical / boolean / string input parameters, and a categorical
output type). (2) we had to be able to subject them to mutation
testing. Accordingly, they either had to have an existing set of
prior mutants (as is the case with artefacts on the Software
Artefact Infrastructure Repository [6]), or we had to be able
to generate mutants with an existing tool such as Milu [10].
The choice of programs is listed below:

• TCAS: An air traffic collision avoidance system (imple-
mented in C), used frequently for testing research. We
used the implementation, mutations, and initial test set
from the base material available on the Software Artifact
Infrastructure Repository [6].

• BMI: A program that categorises patients according to
their Body Mass Index, computed from their height and
weight. This was previously used in previous work by the
authors [7]. We selected a quasi-random initial test set
(with the inputs constrained to achieve all of the possible
body-mass categories at least once). We encoded the Java
version as C, so that we could use Milu to generate the
mutants.

• Triangle: A well known program that calculates the type
of a triangle from the lengths of its edges. We used a
similar strategy as above to generate an initial test set,
and used Milu to generate the mutants.

C. Results and Discussion

Figure 3 shows time-series plots of the mutation scores for
MINTEST and the same number of random tests. From these
results we can cautiously make two observations (bearing in
mind the threats to validity, to be discussed below):

Generated test sets are at least as adequate as equivalent
random test sets. In two cases the test sets produced by
MINTEST produced higher mutation scores than the equiva-
lent number of random tests. This was especially striking with
TCAS, where the mutation score for random testing stayed
at 71% (30 out of 42 mutants), whereas the the MINTEST
mutation score reached 83% (35 out of 42).

Generated test sets are more efficient than random equiv-
alents. In all cases, the mutation scores for the MINTEST
test sets increases much more rapidly than for the equivalent
random test sets (if the random score does increase at all).

It is striking that especially the first 10 iterations seem to
yield the largest increases in mutation score. This is especially
striking with the BMI example. After 6 iterations (85 tests)
MINTEST reaches its maximum mutation score. This score
is only eventually matched by random testing at the 40th
iteration, after 767 tests.

D. Non-Mutant Failure in TCAS

Interestingly, the test sets produced for the TCAS program
triggered a failure that was not the cause of a mutation.
Whenever the SUT returns an unexpected output (in our case
an output that does not conform to the declared output type),
it is logged as an Error output. Below is an example of such
an output to arise from TCAS:

Error output for tcas/source.alt/source.orig/tcas:
(cur_vertical_sep=1772623018 High_Confidence=1
Two_of_Three_Reports_Valid=0
Own_Tracked_Alt=601329925 Own_Tracked_Alt_Rate=0
Other_Tracked_Alt=1952921136
Alt_Layer_Value=1992045881 Up_Separation=562
Down_Separation=499 Other_RAC=0
Other_Capability=2 Climb_Inhibit=0 )

Executing TCAS with those inputs causes the following
output:

$ ./tcas 1756983438 1 0 615293700 599 1069169854
108928665 1191097874 715914807 2 2 0
Segmentation fault: 11

Upon inspection of the source code, the root cause for the
failure is that one of the inputs (Alt_Layer_value) is an
integer value that is expected to be limited to ≤ 3, which is
then used to access a value in an array of length four. In our
case, we did not limit the range of Alt_Layer_value.

It is important to note however that it is not simply the
breaching of this contract per-se that causes the segmentation
fault. Setting Alt_Layer_value to values that are much
higher than 3 (e.g. 5, 10, 150, 1500) do not cause the program
to fail. It is only when set to a much higher value is chosen
(in our case 1992045881) that it overshoots the target array to
such an extent that a segmentation fault arises.

Of course, it can be argued that it is unsurprising that
disobeying the contract of the program results in a failure.
However, the Software Artifact Infrastructure Repository pack-
age for TCAS is accompanied by a set of 1608 other test
cases, generated by a combination of black and white-box
approaches by researchers at Siemens. Many attempt ‘invalid’
values for Alt_Layer_value, and none of them trigger
a segmentation fault. In other words, here is an example
of an instance where the use of inference-driven testing has
highlighted a failure case that, though sought for, has not been
triggered by other techniques.

E. Threats to Validity

Given the preliminary nature of this study, there are clearly
several intrinsic risks to validity that need to be addressed
by a further, more comprehensive study (see Section VI).
The test-generation components in both MINTEST and the
random approach involve a degree of randomness; by only
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providing a single run per case study there is the risk that
the relative performance of the techniques is accidental as
opposed to representative. Furthermore, MINTEST relies on
an initial “seed” set of executions to provide an initial model.
There is the possibility that the results were biased by the
selection of this test set. Finally, there is the obvious threat to
external validity that we have only run these experiments on
three programs, and that more programs would be required to
obtain a true picture of how MINTEST performs with respect
to all programs of this class.

V. RELATED WORK

There has been a substantial amount of interest in the
relationship between model inference and software testing.
Until the mid-nineties this work was predominantly theoretical
[3], [21], [4], [15], [14], [23], [22]. This developed strong
theoretical underpinnings for test adequacy in an inference
context (by linking to Machine-Learning notions such as
Probably Approximately Correct learning, for example [23],
[18]).

Applied research into linking testing and inference has
generally arisen from work that takes a state machine-centric
view of software [13], [17], [20], [19], [11]. There are nu-
merous well-established state machine inference algorithms
and state machine testing algorithms, which makes the two
areas particularly complementary in this respect. However, in
practice, it is rarely practical to model program behaviour as
a finite state machine. On the one hand, FSMs assume that
the software is sequential in nature (e.g. a GUI or a network
protocol), but do not apply to non-sequential functions. More
importantly, they do not apply to software that operates on
data; where the output is in some way contingent upon the
data values of the input. This is the goal of our work.

There have been several approaches that have sought to
apply (at least some parts of) the inference-testing loop to

data-driven programs. The first applied approach known to the
authors was by Bergadano and Gunnetti [1] in 1996, who used
inference to generate test cases that are specific to a particular
version of a program (assuming that other versions are avail-
able). More recently, Briand et al. [2] have used inference
to drive the manual selection of test cases for the Category
Partition method. Ghani and Clark [8] presented a technique
to refine reverse-engineered Daikon models by finding test
cases to contradict the models. Fraser and Walkinshaw [7]
presented a model-inference driven framework that follows the
same loop, and uses the same algorithms as those presented
here. However, crucially, their approach is not black-box; the
core test-sets are generated by conventional white-box syntax
coverage.

These approaches all underpin the rationale for the
MINTEST framework, in that they make a compelling case
that model inference can, in parts, spur test generation. That
said, none of them have been evaluated as fully-automated test
generation approaches to a black-box system. It is the goal that
MINTEST will form a framework that can be used in this way.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced our MINTEST framework.
This enables the flexible implementation of the loop, first
explored by Weyuker [21] and Budd and Angluin [3], of
linking model inference to test generation. We provide an
instantiation of this framework that shows how the WEKA
implementation fo the C4.5 algorithm [12] can be linked up
to Z3 [5] to generate test sets for three programs. We also show
how the resulting test sets are more adequate than equivalent
random test sets, and are more efficient at identifying faults.

As far as future work is concerned, in the short term, we are
currently building up a stronger empirical study to address the
weaknesses mentioned previously. Although the preliminary
results are promising, we are keen to establish the limits of the



technique; to delineate more clearly between scenarios where
the MINTEST succeeds, and where it fails.

Looking into the longer term, the flexibility afforded by
MINTEST to combine different inference and test generation
algorithms raises several exciting areas in which we seek to
carry out further research. There are two particular questions
we seek to investigate:

1) Identifying model inference algorithms that are capable
of inferring accurate models with multiple-inputs (mod-
elling programs with multiple data outputs, instead of a
single categorical output).

2) Incorporating learning algorithms such as Suppport Vec-
tor Machines or Neural Nets that do not produce explicit,
”testable” models, and ...

3) ... developing novel test-generation techniques for such
models that are derived from the domain of Active
Machine Learning [16].
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