
Inverse, forward and other dynamic computations computationally
optimized with sparse matrix factorizations

Francesco Nori1

Abstract— We propose an algorithm to compute the dynamics
of articulated rigid-bodies with different sensor distributions.
Prior to the on-line computations, the proposed algorithm
performs an off-line optimisation step to simplify the computa-
tional complexity of the underlying solution. This optimisation
step consists in formulating the dynamic computations as a
system of linear equations. The computational complexity of
computing the associated solution is reduced by performing
a permuted LU -factorisation with off-line optimised permu-
tations. We apply our algorithm to solve classical dynamic
problems: inverse and forward dynamics. The computational
complexity of the proposed solution is compared to ‘gold
standard’ algorithms: recursive Newton-Euler and articulated
body algorithm. It is shown that our algorithm reduces the
number of floating point operations with respect to previous
approaches. We also evaluate the numerical complexity of our
algorithm by performing tests on dynamic computations for
which no gold standard is available.

I. PREVIOUS WORKS

Real-time control of complex robots (such as humanoids)
asks for efficient ways of computing position, velocity, ac-
celeration and applied wrenches on all the bodies composing
the robot articulated chain. Within this paper, we will refer to
these quantities with the term dynamic variables even though
they include positions and velocities which are strictly speak-
ing kinematic. Efficiently computing the dynamic variables
of a (possibly free-floating) robot is nowadays a solved
theoretical problem. Several state of the art algorithms [1]
have a computational complexity which scales linearly in
the number of rigid links composing the robot. All these
efficient algorithms can be obtained by exploiting the prob-
lem sparsity which derives from the iterative propagation of
forces, torques and accelerations across articulated structures.
Classical problems have been extensively optimized from the
computational complexity point of view. As discussed in [1,
Table 10.1] the recursive Newton-Euler algorithm as imple-
mented in [2, Algorithm 5.7] is the most computationally
efficient solution of the inverse dynamics problem. Similarly,
the articulated body algorithm as implemented in [3, method
3] is the most computationally efficient solution of the
forward dynamics problem. Yet another relevant problem is
the hybrid dynamics solution, which can be efficiently solved
with the articulated-body hybrid dynamics [1, Section 9.2].

In this paper we consider the computationally efficient
solution of dynamic problems which do not fall within

1Francesco Nori is with iCub Facility, Istituto Italiano di Tecnologia,
Italy. francesco.nori@iit.it. This paper was supported by the
FP7 EU projects CoDyCo (No. 600716 ICT 2011.2.1 Cognitive Systems
and Robotics), and An.Dy funded by the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 731540.

the scope of the inverse, forward and hybrid dynamics
even though they are of practical interest. The paper is
organized as follows. Section II present the notation. Section
III presents a specific formulation of the Newton-Euler
equations and Section III-A discuss the matrix form of
these constraints. Section IV presents the inverse dynamics
problem and its solution with the recursive Newton-Euler
algorithm (Section IV-A). Section V presents the forward
dynamics problem and its solution with the articulated body
algorithm (Section V-A). An alternative but computationally
comparable solution of the inverse and forward dynamics
is proposed in Section IV-D and Section V-D respectively.
Finally, Section VI extends this solution to dynamic problems
which do not fall within the scope of the inverse, forward
and hybrid dynamics.

II. NOTATION

Let A and B be two arbitrary sets with cardinality |A| =
m and |B| = n. For any element in a ∈ A let’s associate
a vector da. Similarly, for any pair of elements a, b with
a ∈ A and b ∈ B, let’s associate a unique matrix Da,b. Let
p = (a1, . . . , am) ∈ SA and q = (b1, . . . , bn) ∈ SB be two
permutations of the elements in A and B respectively1. We
define the permuted vector dp and the permuted matrix Dp,q

induced by p and q as follows:

dp =

da1...
dam

 , Dp,q =

Da1,b1 . . . Da1,bn
...

. . .
...

Dam,b1 . . . Dam,bn

 . (1)

As for dynamic quantities, in this paper we follow the
same notation used in [1] but we avoid using the bold
symbols for matrices, since the bold symbols are reserved for
distinguishing Da,b, a ∈ A, b ∈ B from Dp,q , p ∈ SA, q ∈
SB; v denotes the spatial velocity (a six dimensional vector
including angular velocities in the first three components and
the rest as linear velocities), a denotes the spatial acceleration
(again angular and then linear), f denotes the spatial force
(couples in the first three components and forces in the
remaining), BXA is the motion vector transformation from A
to B coordinates and BX∗A is the analogous transformation
for a force vector. Given a vector v and its coordinates
Av in A we denote with Av̇ its temporal derivative in the
A coordinates. The Euclidean cross operator × (on R3)
is defined as the usual vector product, while for a spatial

1Equivalently, let p ∈ SA and q ∈ SB , i.e. let p and q be two elements
of the symmetric group on A and B respectively.

ar
X

iv
:1

70
5.

04
65

8v
1

 [
cs

.R
O

]
 1

2
M

ay
 2

01
7

velocity v the cross spatial cross operator and its dual ×∗
are defined as follows:

v× =

[
ω
ṗ

]
× =

[
ω× 0
ṗ× ω×

]
, v×∗ =

[
ω
ṗ

]
×∗ =

[
ω× ṗ×
0 ω×

]
In the following sections, we restrict the analysis to robots
described by kinematic trees (i.e. robots with no kinematic
loops) composed of NB rigid links numbered from 0 to NB ,
0 being the selected fixed base (world reference frame) and 1
being the selected floating base (reference rigid body in the
articulated chain). Links numbering is obtained by defining a
suitable spanning tree where each rigid link is associated to
a unique node in the tree. Numbers can be always selected in
a topological order so that each node i has a higher number
than its unique parent λi and a smaller number than all the
nodes in the set of its children µi. Links i and λi are coupled
with the joint i whose joint motion constraints are modelled
with Si ∈ R6×1 (therefore without loss of generality we are
assuming that all joints have a single degree of freedom). For
each rigid link i, the system is modelled also by supplying
the spatial inertia tensor2 Ii and the motion-vector transform
from the reference frame of the rigid link i to the reference
frame of the rigid link j, denoted jXi. For each link i the
considered kinematic variables are:

vi: the link spatial velocity,
qi: the joint i position,
q̇i: the joint i velocity,

Similarly, the dynamic variables associated to the link i are:
ai: the link spatial accelerations,
q̈i: the joint i acceleration,
τi: the joint i torque,
fi: the spatial force transmitted to body i from λi,
fxi : external forces acting on body i.

Remark 1: All these variables are expressed in body i
coordinates including fxi which is more often expressed in
absolute (i.e. body 0) coordinates.

III. DYNAMIC CONSTRAINTS

Let’s assume that all kinematic quantities, i.e. those de-
pending on q and q̇ have been precomputed. In practice, these
quantities are the transformation matrices jXi, jX∗i and the
linear/angular velocities vJi, vi. The latter can be efficiently
computed with the following recursion, propagated from
i = 1 to NB :

vi = iXλivλi + Siq̇i, (2)

The dynamics quantities instead (τ , q̈, fx1 , . . . , f
x
NB

,
a1, . . . , aNB , f1, . . . , fNB) have to satisfy the Newton-Euler
equations:

2The spatial inertia tensor of the rigid link i has the following form in
the link reference frame:

Ii =

[
IC,i +mici × c>i mici×

mici×> miI3×3

]
,

where IC,i is the spatial inertia tensor with respect to the body’s centre
of mass, mi is the total mass, ci is the relative displacement between the
centre of mass and the origin of the link reference frame.

ai = iXλiaλi + Siq̈i + ci, (3ai)

τi = S>i fi, (3τi)

fi = Iiai + νi − fxi +
∑
j∈µi

iX∗j fj . (3fi)

where we defined νi = vi ×∗ Iivi and ci = vi × Siq̇i.

A. Dynamic constraints in matrix form
Let’s define the set of dynamic variables D = {ai, fi, τi,

fxi , q̈i }NBi=1. We have |D| = 5NB . The elements in D can be
thought as generic quantities, not necessarily expressed in a
specific reference frame. As described in Section II, for any
a ∈ D, let’s associate a vector da (e.g. dai might correspond
to the coordinates of ai expressed in a specific reference
frame). Given a permutation q ∈ SD, dq contains an ordered
sequence of the elements in D expressed in specific reference
frame(s).

Equations (3) can be seen as a set of equations which the
vector of dynamic variables dp have to satisfy. Let’s put these
constraints in matrix form by defining the set of constraints
C = {c(3ai), c(3fi), c(3τi)}

NB
i=1. We have |C| = 3NB . Given

c ∈ C let’s define vectors bc as follows:

bc(3ai) =

{
iX0a0 + ci if λi = 0
vi × Siq̇i if λi 6= 0

,

bc(3fi) = νi,

and bc = 0 otherwise. Given c ∈ C and d ∈ D, let’s define
matrices Dc,d as follows (where j ∈ µi):

Dc(3ai),ai = −16, Dc(3ai),aλi
= iXλi , (4a)

Dc(3ai),q̈i = Si, (4b)

Dc(3fi),fi = −16, Dc(3fi),ai = Ii, (4c)

Dc(3fi),fxi
= −16, Dc(3fi),fj = iX∗j , (4d)

Dc(3τi),τi = −1ni , Dc(3τi),fi = S>i (4e)

and Dc,d = 0 otherwise.
Given two permutations p and q of the elements in C and
D, the permuted matrix Dp,q and permuted vectors dq , bp
satisfy the following linear equation:

Dp,q(q, q̇)dq + bp(q, q̇) = 0, (5)

where we explicitly indicated the dependency on q and q̇.

IV. INVERSE DYNAMICS

The inverse dynamics problem consists in finding τ1, . . . ,
τNB which satisfies (3) given q̈1, . . . , q̈NB , fx1 , . . . , fxNB .
In [1] the problem is formulated as the computation of the
following function:

τ = InvD(model, q, q̇,q̈, fx1 , . . . , f
x
NB). (6)

In the above equations we grayed out some variables that
will not play a role in the following sections, and can be
assumed either to be contestant (model) or measured (q, q̇).

A. Inverse dynamics solved with RNEA

An efficient solution of inverse dynamics is given by
the recursive Newton-Euler algorithm (RNEA), described
hereafter. Equations (2) and (3ai) are propagated from 1
to NB with initial conditions v0 = 0 and a0 = −ag
which corresponds to the gravitational spatial acceleration
vector expressed in the body frame 0 (null in its first three
components and equal to the gravitational acceleration in the
last three). Equations (3fi) and (3τi) are propagated from NB
to 1.

B. Inverse dynamics solved with matrix inversion

In this Section, we propose a way to solve the inverse
dynamics problem with a matrix inversion. Remarkably, (5)
represents the set of linear constraints in dq . Additionally,
certain components of dp are known since q̈1, . . . , q̈NB , fx1 ,
. . . , fxNB are given:

q̈i = yq̈i , (7q̈i)
fx1 = yfxi . (7fxi)

These constraints, will extend the set of constraints C. In
particular, we should define Cid = C ∪ {c(7q̈i), c(7fxi)}NBi=1 so
that |Cid| = 5NB . To extend the definition of Dc,d and bc
we define:

Dc(7q̈i),q̈i = 1ni , bc(7q̈i) = −yq̈i , (8a)

Dc(7fxi),f
x
i

= 16, bc(7fxi)
= −yfxi , (8b)

and Dc,d = 0, bc = 0 otherwise. Again, given two permuta-
tions pid and q of the elements in Cid and D, the permuted
matrix Dpid,q and permuted vectors dq , bpid satisfy the
following linear equation:

Dpid,q(q)dq + bpid(q, q̇) = 0, (9)

which is representation of the inverse dynamics problem. In
particular, inverting the matrix Dpid,q we can compute the
solution dq of the inverse dynamics. A more computation-
ally efficient solution can be obtained as described in the
following section.

C. Inverse dynamics solved with forward substitution

In this section we prove that with suitable permutations
we can compute dq which solves (9) with a computationally
efficient algorithm, which is the forward substitution as
defined in [4]. The idea is to build two find permutations
pid and q of the elements in Cid and D which lead to a
lower triangular matrix Dpid,q and then to solve (9) with a
forward substitution. The permutations are inspired by the
RNEA described in Section IV-A. Let’s first consider the q
permutation of the elements in D. We choose:

q =
[
fx1 , q̈1, . . . , f

x
NB , q̈NB , a1, . . . , aNB ,

fNB , τNB , . . . , f1, τ1] . (10)

Let’s also choose a permutation pid of the elements in Cid :

pid =
[
c(7fx1), c(7q̈1) . . . c(7fxNB), c(7q̈NB), c(3a1) . . . c(3aNB),

c(3fNB), c(3τNB), . . . , c(3f1), c(3τ1)

]
. (11)

Property 1: The permuted matrix Dpid,q induced by the
permutations defined in (10) and (11) is lower triangular.

Proof: Since Dpid,q is defined by blocks, we structure
this proof by considering the blocks that constitute the matrix
itself. First, we prove that the blocks in the main diagonal
are diagonal matrices. These blocks are:

Dc(7fxi),f
x
i

= 16, Dc(7q̈i),q̈i = 1ni , Dc(3ai),ai = −16,

Dc(3fi),fi = −16, Dc(3τi),τi = −1ni ,

which are indeed diagonal. We are left with proving that the
blocks in the upper triangular part of Dpid,q are identically
null. We consider the non-null blocks in (4) and prove that
each block Dc,d is positioned in the lower triangular part of
Dpid,q . This is equivalent to prove that if Dc,d 6= 0 then
ic ≥ id, being ic and id the position of c and d in the
permutations pid and q, respectively. In the definitions given
in (4), we can neglect the diagonal blocks, which have been
previously considered. We are left with:

Dc(3ai),aλi
, ic(3ai) = 2NB + i, iaλi = 2NB + λi

Dc(3ai),q̈i , ic(3ai) = 2NB + i, iq̈i = 2i

Dc(3fi),ai , ic(3fi) = 5NB − 2i+ 1, iai = 2NB + i

Dc(3fi),fxi
, ic(3fi) = 5NB − 2i+ 1, ifxi = 2i− 1

Dc(3fi),fj , ic(3fi) = 5NB − 2i+ 1, ifj = 5NB − 2j + 1

Dc(3τi),fi , ic(3τi) = 5NB − 2i+ 2, ifi = 5NB − 2i+ 1.

Easy computations can show that in these case ic ≥ id
considering a numbering scheme with λi < i and j > i,
∀j ∈ µi as described in [1].

D. Inverse dynamics solved with LU factorization

In Section IV-C, suitable permutations led to a lower
triangular structure for the matrix D in (8). After obtaining
the lower triangular structure, the underlying linear system
can be solved with a forward substitution which is a compu-
tationally efficient algorithm to solve a linear system. In this
section we are interested in computing these permutations
by solving the following problem.

Problem 1: Given arbitrary permutations p and q of the
elements in Cid and D, compute permutation matrices P and
Q to obtain a triangular matrix PDp,qQ.

In consideration of Property 1, Problem 1 has necessarily
a solution. In other terms, Dp,q is triangularizable with
permutations.

Definition 1 (triangularizable with permutations): A
square matrix A is triangularizable with permutations if
there exists a permutation of the rows and a permutation of
the columns which result in a triangular matrix.

To solve Problem 1, we resort to a classical problem in
matrix analysis: the sparse LU factorization with minimum
filling-in [4, Section 11.1.9].

Problem 2: Given a square matrix A find the permutation
matrices P and Q, a lower triangular matrix L and an upper
triangular matrix U such that PAQ = LU and the number
of filling-in (new nonzeros in L and U that are not present
in A) is minimum.

Remark 2: If A is triangularizable with permutations, i.e.
A = P̄ L̄Q̄ with L triangular, then the solution to problem
2 is given by P = P̄−1, Q = Q̄−1, L = L̄ and U equal
to the identity matrix. In this case in fact, we can obtain
zero filling-in which by definition is the minimum number
achievable. Under this considerations, we can apply Problem
2 to solve Problem 1

Remark 3: Deciding if a matrix is triangularizable accord-
ing to definition 1 is NP-complete [5]. Similarly, solving
problem 2 is also NP-complete [6]3. Available numeri-
cal tools for finding their solution are not guaranteed to
reach the minimum. In solving Problem 2 we will use the
unsymmetric-pattern multiFrontal method, as implemented
in UMFPACK [9].

Going back to Problem 1, we can take advantage of
Property 1 to guarantee that Dp,q is always triangularizable.
Therefore, remark 2 applied to Dp,q guarantees that solving
Problem 2 will give us also a solution to Problem 1. Given
the NP-completeness of the underlying problem, we are not
guaranteed to find a solution but numerical experiments4

conducted so far with UMFPACK shows that a solution
is always found if NB ≤ 100. As to this concern, one-
hundred can be considered a a practical upper-bound for
robotic applications.

Remark 4: Even though Problem 2 is NP-complete, in
practice the problem is solved once in a preliminary op-
timization phase and its benefits can be exploited in the
runtime computations. The preliminary optimization consists
in solving Problem 2 for a worst-case sparsity pattern.
The runtime computations instead consist in solving (9) for
different positions q and velocities q̇ exploiting the optimized
permutations computed previously.

A solution of Problem 2 can be used to compute permu-
tations that allow to solve (9) efficiently. The solution uses
the sparsity pattern of Dp,q(q), i.e. the pattern of non-zero
elements in the matrix. However, in practical applications we
are interested in a sparsity pattern which somehow represents
the sparsity of Dp,q(q) for all possible values of q. As to this
concern, we define the worst case sparsity pattern.

The basic observation is that the robot structure (e.g.
number of degrees of freedom, joint types, joint positions,
tree structure of the robot) does not change. As a conse-
quence, the underlying sparsity structure of (9), i.e. the non-
zero elements in D, changes only for the state-dependent
elements, i.e. those that depend on q and q̇. Looking at (4),
the only state-dependent blocks are the transformations iX∗j ,

3Even though [6] is cited several times [7], [8] as a proof of the NP-
completeness of Problem 2, it has to be observed that it is not clear to the
authors of the present paper how to extend the results in [6] to the case of
non-symmetric positive definite matrices

4Experiments are avaialble here https://github.com/
iron76/bnt_time_varying/tree/master/experiments/
computationalComplexity/RNEA.

iXλi which depend on q. These sub-matrices do have a state-
dependent sparsity structure but for the purpose of this paper,
we can consider the associated worst-case sparsity structure,
i.e. if an element is non-zero for at least one value of q, then it
is considered as a non-zero element in the associated sparsity
pattern. For classical joint types (revolute, prismatic, helical,
cylindrical, planar, spherical and free-motion) the worst-case
sparsity pattern can be easily computed by observing that
the only q dependent elements are either sines of cosines
(see [1, Table 4.1, page 79]). These functions are zero only
on a countable number of configurations (and therefore on a
subset whose Lebesgue measure is zero) which are easy to
enumerate.

V. FORWARD DYNAMICS

The inverse dynamics problem consists in finding q̈1, . . . ,
q̈NB which satisfies (3) given τ1, . . . , τNB , fx1 , . . . , fxNB .
In [1] the problem is formulated as the computation of the
following function:

q̈ = FwdD(model, q, q̇, τ, fx1 , . . . , f
x
NB). (12)

Again, in the above equations we grayed out some variables
that will not play a role in the following sections, and can
be assumed either to be contestant (model) or measured (q,
q̇).

A. Forward dynamics solved with the ABA

The articulated-body algorithm [1, ABA] solves the for-
ward dynamics problem in O(NB) computational complex-
ity. The algorithm consists in the following steps. First, the
articulated body bias forces pAi and the articulated body
inertias IAi are recursively computed iterating with i = NB ,
. . . , 1 the following equations:

pAi = νi − fxi +
∑
j∈µi

iX∗j

{
pAj + Iaj cj+

+ IAj Sj

(
S>j I

A
j Sj

)−1 (
τj − S>j pAj

)}
,

(12pi)

Iaj = IAj − IAj Sj
(
S>j I

A
j Sj

)−1
S>j I

A
j (12Iai)

IAi = Ii +
∑
j∈µi

iX∗j I
a
j
jXi (12IAi)

Then the following two equations are iterated with i = 1,
. . . , NB and initial condition a0 = −ag .

q̈i =
(
S>i I

A
i Si

)−1 {
τi − S>i

[
IAi
(
iXλiaλi + ci

)
+ pAi

]}
(13q̈i)

ai =
iXλiaλi + Siq̈i + ci.

B. Forward dynamics solved with matrix inversion

In solving the inverse dynamics, the fact that Dpid,q

is lower triangular follows from the specific structure of
the measurement equations (7). Changing the measurement
equations would compromise the lower triangularity of
Dpid,q . As a consequence, the associated linear system
would not have the suitable structure to apply the forward
substitution. Within this context, forward dynamics give a
useful example. The measured variables for the forward

https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/RNEA
https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/RNEA
https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/RNEA

dynamic case are fxi and τi. The latter in matrix notation
can be expressed as follows:

τi = yτi , (14τi)

These constraints, will extend the set of constraints C. In
particular, we should define Cfd = C∪{c(14τi), c(7fxi)}NBi=1 and
extend the definition of Dc,d and bc as follows:

Dc(14τi),τi = 1ni , bc(14τi) = −yτi ,

and Dc,d = 0, bc = 0 otherwise. Given two permutations
pfd and q of the elements in Cfd and D, a solution of the
forward dynamics can be computed as the unique solution
dq of the following liner system:

Dpfd,q(q)dq + bpfd(q, q̇) = 0, (15)

C. Forward dynamics solved with forward substitution

Similarly to what observed in the inverse dynamic case,
we might try to find permutations for pfd of the elements in
Cfd and q of the elements in D to obtain a matrix Dpfd,q

somehow simple to invert. Specifically, we might think that
the articulated-body algorithm [1, the ABA] presented in
Section (V-A), could be translated into suitable permutations
that transform Dpfd,q into a lower triangular matrix. Unfor-
tunately, the ABA algorithm is instead something more than
a permutation as discussed in the following.

Property 2: There exist:
- a permutation pfd of the elements in Cfd;
- a permutation q of the elements in D;
- matrices WR

q1,q2 defined for q1, q2 ∈ D;
- matrices WL

p1,p2 defined for p1, p2 ∈ Cfd;
such that:

WL
pfd,pfd

Dpfd,qW
R
q,q

is lower triangular. These quantities lead to the following
matrix reformulation of the ABA algorithm:

WL
pfd,pfd

Dpfd,qW
R
q,qdq + bpfd(q, q̇) = 0.

The proof of the preposition above is constructive and can
be found in Appendix B.

D. Forward dynamics solved with LU factorization

Again, part of the computational optimizations of the
ABA proposed in Section V-A and revisited in Section V-
C consists in row and column permutations. In this section
we will suggest an algorithm for simplifying the forward
dynamics computations by leveraging the intrinsic sparsity
of the underlying matrices (15) and pre-computing suitable
row and column permutations that will reduce the underlying
computational cost. The idea consists in computing the
worse case sparsity pattern for Dpfd,q(q) in (15). Solving
Problem 2 with this sparsity pattern will give the row-column
permutations P and Q suitable for solving (15). At run-time
regardless of the specific q the idea is to perform the sparse
LU factorization on PDpfd,q(q)Q followed by a backward
substitution on U and a forward substitution on L. Figure
1 shows the computational cost of this solution against the

0 10 20 30
0

0.5

1

1.5

2

2.5
104

Fig. 1. Comparison of the different proposed algorithms for solving the
forward dynamics of a serial chain with NB links.

algorithms proposed in Section V-A (ABA) and Section V-
C (matrix reformulation of the ABA). The computational
cost of ABA is the one reported in [1, Page 202] and
corresponds to the algorithmic solution proposed in [10]. The
other computational costs are numerically computed with
software which is available open source5.

VI. DYNAMIC EQUATIONS AND LU-FACTORIZATION

In the previous sections, we have seen how the RNEA
and the ABA are computationally efficient solutions of the
inverse and forward dynamics problems. The reduction of
the computational costs is obtained by suitable permutations
of the matrices {Dc,d}c∈Cid,d∈D and {Dc,d}c∈Cfd,d∈D. In
this section we consider the problem of finding similar
permutations for a wider class of problems. Inspired by
the matrix representations (9) and (15) of the inverse and
forward dynamics respectively, we consider a generic esti-
mation problem consisting in computing the solution d of
the following linear system:[

Dp,q(q)
DY (q)

]
︸ ︷︷ ︸

,D(q)

d +

[
bp(q, q̇)
bY (q, q̇)

]
︸ ︷︷ ︸

,b(q,q̇)

= 0, (16)

obtained by combining (5) with a generic measurement equa-
tion DY (q)d+bY (q, q̇) = 0. In Section IV-C and Section V-
C respectively, suitable permutations led to a lower triangular
structure for the matrix D. The underlying linear system
could then be solved with a forward substitution. However,
the proposed solutions rely on the specific structure of the
problem and therefore extending them to solve (16) is non
trivial. The algorithm proposed in Section IV-D and Section
V-D seems more suitable to simplify the computational
complexity of solving (16) in its generic form (i.e. beyond
the inverse and forward dynamics cases).

5The software for these computations are available here:
https://github.com/iron76/bnt_time_varying/tree/
master/experiments/computationalComplexity/ABA/
serial/compare.

https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/ABA/serial/compare
https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/ABA/serial/compare
https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/ABA/serial/compare

As an example, we consider a relevant case study: the
inverse dynamic computation of a humanoid robot standing
on two feet. The specificity of this problem is that the robot
has two external wrenches applied at the feet. Differently
from the inverse dynamic computations presented in Section
IV-A, we assume that these external wrenches are unknown.
Using the notation used in previous sections, these external
wrenches can be denoted fx1 and fxNB by labelling with 1
and NB the right and the left foot respectively. We therefore
consider the following problem:

τ = InvD(model, q, q̇,q̈, fx2 , . . . , f
x
NB−1), (17)

where we explicitly indicated that fx1 and fxNB are unknown
even if they act on the system. The considered mechani-
cal system is a free-floating articulated rigid body subject
to constraints. Unfortunately solving (17) is ill-posed, i.e.
given q, q̇, q̈, fx2 , . . . , f

x
NB−1 there exist multiple τ , fx1 , fxNB

satisfying (3). To estimate τ we could try using additional
measurements. We hereafter consider quite a common sensor
distribution, nominally four load cells located on each foot6.
These sensors are available in the NAO robot [11], in the
QRIO robot [12] and the Atlas [13]. These sensors corre-
spond to a three-axes force-torque sensor, i.e. they measure
the net force orthogonal to the plane of the each foot and the
projection of the torque on the same plane. As it is often the
case, if we choose the left and right feet reference frames
with the x and y axis aligned to the foot plane we have:

fx1 = Y ylf +Hhlf , fxNB = Y yrf +Hhrf , (18a)

Y ,


0 0 0
0 0 0
0 0 1
1 0 0
0 1 0
0 0 0

 , H ,


1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1

 , (18b)

with ylf , yrf ∈ R3 being the measured three-axes force-
torque and hlf , hrf ∈ R3 being the non-directly measured
components of the contact wrench fx1 . We are now consid-
ering the following problem:

τ = InvD(model, q, q̇,q̈, fx2 , . . . , f
x
NB−1, ylf , yrf). (19)

To understand if this problem is well-posed, it is convenient
to resort to a specific form of equation (3). This formulation
is detailed in [14, eq. (41)] and it combines the floating-
base dynamics with the joint dynamics. We consider here a
simplified version obtained by choosing the left foot as the
base frame and choosing q a local parametrization of the
robot pose (composed by the free-floating six-dimensional
configuration and the joint n-dimensional configuration). We
have:

6We first prove that these sensors are not yet sufficient to solve the inverse
dynamics. Then we propose a different set of sensors which results in a well
posed inverse dynamics problem.

M(q)q̈+h(q̇, q) =

[
τ
0

]
+

[0
J>1
16

]
fx1 +

NB∑
j=2

[
0
J>j

0X∗j

]
fxj . (20)

Using (18) in (20) and grouping the unobservable/observable
quantities as in problem (19), we obtain:

Y (q, q̇, q̈, fx2 , . . . , f
x
NB−1, ylf , yrf) =

=

[
τ
0

]
+

[0
J>1 Hhlf
Hhlf

]
+

[
0
J>NBHhrf

0X∗NBHhrf

]
. (21)

Understanding if the inverse dynamic problem with these
measurements is well-posed boils down to understanding if
the following matrix is invertible:

[
1n

0
J>1 H

0
J>NBH

06×6 H 0X∗NBH

]
. (22)

Given the upper triangular form of this matrix, we are
left with proving the invertibility of [H, 0X∗NB

H]. We are
interested in guaranteeing the invertibility of this matrix for
any 0X∗NB , i.e. regardless of the feet relative pose.

Property 3: Let H = [H>f H>µ]
> with Hf ∈ R3×3,

Hµ ∈ R3×3. If Hf is singular, then there always exists 0X∗NB
which makes [H, 0X∗NB

H] singular.
Proof: Using the structure of 0X∗NB and H we obtain:[
H 0X∗NBH

]
=

[
Hf RHf

Hµ p×RHf +RHµ

]
R=13=

[
Hf 03×3
Hµ p×Hf

] [
13 13

03×3 13

]
,

and the results follows by observing that the multiplicand
matrix on the left is singular (the first three lines are linearly
dependent) and by using the fact that the rank of a product
is always less or equal the rank of the multiplied matrices.

Remark 5: Using Property 3 with definitions (18b) we can
conclude that (19) is an ill-posed problem. In other terms,
the inverse dynamics problem cannot be solved in the case
of a humanoid robot standing on the two feet with four load
cells on each foot.

Additional assumptions are needed to compute the inverse
dynamics. A first realistic assumption in certain applications
is to assume that the robot is standing in a very slippery
surface and therefore the tangential forces along the x and
y axis are negligible. In this case:

fx1 = Y ylf +Hhlf , fxNB = Y yrf +Hhrf , (23a)

Y ,


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 , H ,


0
0
0
0
0
1

 , (23b)

8 10 12 14 16 18 20
0

5000

10000

Fig. 2. Comparison of the different proposed algorithms for solving the
inverse dynamics (i.e. joint torque estimation) of a serial chain with NB
links. Considered measurements are load-cells at extremal links.

with ylf , yrf ∈ R3 being the measured contact forces and the
measured torques on the x-y plane and hlf , hrf ∈ R being
the torques on the z axis. In this case it was numerically
observed7 that the associated inverse dynamics problem is
solvable. Fig. 2 shows a comparison of the number of
floating point operations necessary to solve this specific
inverse dynamics problem with or without a sparse LU
factorization. Remarkably this case cannot be solved with
classical algorithms (e.g. hybrid dynamics [1]).

APPENDIX

A. The articulated body equation of motion

The idea consists in recursively computing (i = NB , . . . ,
1) the quantities pAi (articulated body bias forces) and IAi
(articulated body inertias) which satisfy the articulated body
equation of motion:

fi = IAi ai + pAi . (23fabi)

For defining these quantities, let’s start by considering i such
that µi = ∅. In this case (3fi) gives fi = Iiai + νi− fxi and
therefore IAi = Ii and pAi = νi − fxi . Recursively, let’s
assume that IAj and pAj have been defined for every j ∈ µi
(this time non-empty) and let’s find suitable expressions for
IAi and pAi . This is achieved by a five step procedure.
Step 1 - S1. Replace (23fabi) in (3):

ai = iXλiaλi + Siq̈i + ci, (24ai)

τi = S>i
(
IAi ai + pAi

)
(24τi)

fi = Iiai + νi − fxi +
∑
j∈µi

iX∗j
(
IAj aj + pAj

)
. (24fi)

The latter is almost the equation we need for the recursive
definition of IAi and pAi if only we could write aj as a
function of ai. This is achieved with the following steps.
Step 2 - S2. Substitute (24ai) in (24τi):

7https://github.com/iron76/bnt_time_varying/tree/
master/experiments/computationalComplexity/SIE

τj = S>j
[
IAj
(
jXλjaλj + Sj q̈j + cj

)
+ pAj

]
. (25)

Step 3 - S3. Multiply the previous equation by the inverse
of S>j I

A
j Sj to obtain (13q̈i) for q̈j :

q̈j =
(
S>j I

A
j Sj

)−1 {
τj − S>j

[
IAj

(
jXλjaλj + cj

)
+ pAj

]}
j∈µi=

(
S>j I

A
j Sj

)−1 {
τj − S>j

[
IAj
(
jXiai + cj

)
+ pAj

]}
,

Step 4 - S4. Substitute the last equation in (24ai):

ai = iXλiaλi + ci + Si
(
S>i I

A
i Si

)−1{
τi − S>i

[
IAi
(
iXλiaλi + ci

)
+ pAi

]}
.

which evaluated with the substitution i→ j ∈ µi leads to:

aj = jXiai + cj + Sj
(
S>j I

A
j Sj

)−1{
τj − S>j

[
IAj
(
jXiai + cj

)
+ pAj

]}
. (26)

Step 5 - S5. Substitute aj in (24fi) with its expression in
(26):

fi =
(
Ii + iX∗j I

A
j
jXi

)
ai + νi − fxi +

+
∑
j∈µi

iX∗j I
A
j Sj

(
S>j I

A
j Sj

)−1
τj

+ iX∗j

[
1− IAj Sj

(
S>j I

A
j Sj

)−1
S>j

]
pAj

−
[
iX∗j I

A
j Sj

(
S>j I

A
j Sj

)−1
S>j I

A
j
jXi

]
ai

+ iX∗j

[
IAj − IAj Sj

(
S>j I

A
j Sj

)−1
S>j I

A
j

]
cj . (27)

and enforcing fi = IAi ai + pAi leads to the definitions in
(12pi), (12Iai) and (12IAi).

B. Proof of Property 2

We hereafter assume that the articulated body inertias
IAi (i = 1, . . . , NB) have been computed. The idea is to
follow the steps presented in Section A to compute the
sub-blocks of the matrices WL and WR. The latter is
defined as a matrix equivalent of Step 1. The former as
WL = WL,4WL,3WL,2WL,1 with WL,1 representing Step
2, WL,2 representing Step 3, WL,3 representing Step 4 and
WL,4 representing Step 5.
Step 1 - S1. We compute a matrix WR which multiplied by
dq replaces fi with pAi = fi−IAi ai. As usual we define WR

by its blocks WR
q1,q2 with q1, q2 ∈ D. We have:

WR
fi,ai = IAi , WR

q,q = 1 ∀q ∈ D, (28)

and WR
q1,q2 = 0 otherwise.

Remark 6: Given two permutations p and q of the ele-
ments in C and D, if Dp,q represents (3), Dp,qW

R
q,q represents

(24). Therefore, in the following {c(3ai), c(3τi), c(3fi), }
NB
i=1 can

be read as {c(24ai), c(24τi), c(24fi)}
NB
i=1.

https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/SIE
https://github.com/iron76/bnt_time_varying/tree/master/experiments/computationalComplexity/SIE

Step 2 - S2. We define WL,1 which left multiplies Dp,qW
R
q,q

to substitute (24ai) in (24τi). The exceptions to WL,1
p1,p2 = 0

are:

WL,1
c(3τi),c(3ai)

= S>i I
A
i , WL,1

p,p = 1 ∀p ∈ Cfd, (29)

Step 3 - S3. We define WL,2 which left multiplies
WL,1
p,p Dp,qW

R
q,q to multiply (25) by the inverse of S>j I

A
j Sj .

The exceptions to WL,2
p1,p2 = 0 are:

WL,2
c(3τi),c(3τi)

=
(
S>j I

A
j Sj

)−1
, WL,2

p,p = 1 ∀p ∈ Cfd, q 6= τi
(30)

Step 4 - S4. We define WL,3 which left multiplies
WL,2
p,p W

L,1
p,p Dp,qW

R
q,q to replace the occurrences of q̈j in

(24ai) with their expression obtained in the previous step.
The exceptions to WL,3

p1,p2 = 0 are:

WL,3
c(3ai),c(3τi)

= −Si, WL,3
p,p = 1 ∀p ∈ Cfd. (31)

Step 5 - S5. We define WL,4 which left multiplies
WL,3
p,p W

L,2
p,p W

L,1
p,p Dp,qW

R
q,q to replace the occurrences of aj

in (24fi) with their expression obtained in the previous step.
The exceptions to WL,4

p1,p2 = 0 are:

WL,4
c(3fi),c(3aj)

= iX∗j I
A
j , WL,4

p,p = 1 ∀p ∈ Cfd. (32)

We are left with the definition of the permutations. Let’s
first consider the q permutation of the elements in D. We
choose:

q =
[
fx1 , τ1, . . . , f

x
NB , τNB , fNB , . . . , f1,

a1, . . . , aNB , q̈1, . . . , q̈NB] . (33)

Let’s also choose a permutation pfd of the elements in Cfd
:

pfd =
[
c(7fx1), c(3τNB) . . . c(7fxNB), c(3τ1), c(3fNB) . . . c(3f1),

c(3a1), . . . , c(3aNB), c(14q̈1), . . . , c(14q̈NB)

]
. (34)

REFERENCES

[1] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[2] C. Balafoutis and R. Patel, Dynamic Analysis of Robot Manipulators:

A Cartesian Tensor Approach, ser. The Springer International Series
in Engineering and Computer Science. Springer US, 1991. [Online].
Available: https://books.google.it/books?id=7BcpyUjmLpUC

[3] D. Orin and M. Walker, “Efficient dynamic computer simulation of
robotic mechanisms,” ASME Journal of Dynamic Systems, Measure-
ment and Control, 1982.

[4] G. Golub and C. Van Loan, “Matrix computations 4th ed,” 2013.
[5] G. Fertin, I. Rusu, and S. Vialette, “Obtaining a Triangular

Matrix by Independent Row-Column Permutations,” in 26th
International Symposium on Algorithms and Computation, Nagoya,
France, Dec. 2015. [Online]. Available: https://hal.archives-ouvertes.
fr/hal-01189621

[6] M. Yannakakis, “Computing the minimum fill-in is np-complete,”
SIAM Journal on Algebraic Discrete Methods, vol. 2, no. 1, pp. 77–79,
1981.

[7] J. Dongarra, V. Eijkhout, and P. Luszczek, “Recursive approach in
sparse matrix lu factorization,” Sci. Program., vol. 9, no. 1, pp. 51–60,
Jan. 2001. [Online]. Available: http://dx.doi.org/10.1155/2001/569670

[8] L. Grigori, E. G. Boman, S. Donfack, and T. A. Davis,
“Hypergraph-based unsymmetric nested dissection ordering for sparse
lu factorization,” SIAM J. Sci. Comput., vol. 32, no. 6, pp. 3426–3446,
Nov. 2010. [Online]. Available: http://dx.doi.org/10.1137/080720395

[9] T. A. Davis, “Algorithm 832: Umfpack v4.3—an unsymmetric-pattern
multifrontal method,” ACM Trans. Math. Softw., vol. 30, no. 2, pp.
196–199, June 2004. [Online]. Available: http://doi.acm.org/10.1145/
992200.992206

[10] H. Brandl, R. Johanni, and M. Otter, “A very efficient algorithm for the
simulation of robots and similar multibody systems without inversion
of the mass matrix.” in IFAC/IFIP/IMACS Symposium on Theory of
Robots, 1986, pp. 95–100.

[11] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier, “Mechatronic design of
nao humanoid,” in 2009 IEEE International Conference on Robotics
and Automation, May 2009, pp. 769–774.

[12] T. Ishida, “Development of a small biped entertainment robot qrio,” in
Micro-Nanomechatronics and Human Science, 2004 and The Fourth
Symposium Micro-Nanomechatronics for Information-Based Society,
2004., Oct 2004, pp. 23–28.

[13] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai,
F. Permenter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-
based locomotion planning, estimation, and control design for
the atlas humanoid robot,” Autonomous Robots, vol. 40, no. 3,
pp. 429–455, 2016. [Online]. Available: http://dx.doi.org/10.1007/
s10514-015-9479-3

[14] S. Traversaro, D. Pucci, and F. Nori, “A unified view of the equations
of motion used for control design of humanoid robots,” Submitted
to Multibody System Dynamics - Springer, 2017. [Online]. Available:

https://traversaro.github.io/preprints/changebase.pdf

https://books.google.it/books?id=7BcpyUjmLpUC
https://hal.archives-ouvertes.fr/hal-01189621
https://hal.archives-ouvertes.fr/hal-01189621
http://dx.doi.org/10.1155/2001/569670
http://dx.doi.org/10.1137/080720395
http://doi.acm.org/10.1145/992200.992206
http://doi.acm.org/10.1145/992200.992206
http://dx.doi.org/10.1007/s10514-015-9479-3
http://dx.doi.org/10.1007/s10514-015-9479-3
https://traversaro.github.io/preprints/changebase.pdf

	I Previous works
	II Notation
	III Dynamic constraints
	III-A Dynamic constraints in matrix form

	IV Inverse dynamics
	IV-A Inverse dynamics solved with RNEA
	IV-B Inverse dynamics solved with matrix inversion
	IV-C Inverse dynamics solved with forward substitution
	IV-D Inverse dynamics solved with LU factorization

	V Forward dynamics
	V-A Forward dynamics solved with the ABA
	V-B Forward dynamics solved with matrix inversion
	V-C Forward dynamics solved with forward substitution
	V-D Forward dynamics solved with LU factorization

	VI Dynamic equations and LU-factorization
	Appendix
	A The articulated body equation of motion
	B Proof of Property 2

	References

