
STAR CENTER

Sh
an

gh
aiT

ec
h A

ut
om

ati
on

 an
d R

obotics Center • 上海科技大

学
自
动
化
与
机
器
人
中
心

MARS LAB

Incrementally Building Topology Graphs via Distance Maps

Yijun Yuan and Sören Schwertfeger

Accepted for:

IEEE International Conference on Real-time Computing and
Robotics(RCAR) 2019

Citation:

Yijun Yuan and Sören Schwertfeger, ”Incrementally Building Topology Graphs via Distance Maps”, IEEE International
Conference on Real-time Computing and Robotics(RCAR) 2019: IEEE Press, 2019.

This is a publication from the Mobile Autonomous Robotic Systems Lab (MARS Lab), School of Information Science
and Technology (SIST) of ShanghaiTech University. For this and other publications from the MARS Lab please visit:
https://robotics.shanghaitech.edu.cn/publications

c© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

ar
X

iv
:1

81
1.

01
54

7v
3

 [
cs

.R
O

]
 6

 J
un

 2
01

9

https://robotics.shanghaitech.edu.cn/publications

Incrementally Building Topology Graphs via Distance Maps

Yijun Yuan1 and Sören Schwertfeger1

Abstract— Mapping is an essential task for mobile robots
and topological representation often works as a basis for the
various applications. In this paper, a novel framework that
can build topological maps incrementally is proposed. The
algorithm is using a distance map, and in our framework the
topological map can grow as we append more sensor data to
the map. To demonstrate our algorithm, we show the result of
the distance map based method on several popular maps and
run the incremental framework with raw sensor data to have
a growing topological map, as an example of a robot exploring
the environment.

I. INTRODUCTION

Occupancy Grid Maps and Topological Maps are two
major representations for 2D mapping. Certainly, the grid
map can provide more specific descriptions of the surround-
ings, but when it comes to the large-scale environments, the
computation cost of applications, planning as an example,
will make grid maps inefficient. Topological maps are much
smaller and thus faster to compute on representations.

Topological map generation algorithms that build on top
of the Voronoi diagram are mostly widely seen.

From our survey, the approaches of topology map con-
struction can mainly be classified into three categories: (1)
Use Voronoi diagram vertexes as nodes of topology graph.
[1] keeps the landmark such as intersection, corners, and
dead-end in corridors as a node, and the Voronoi path
between adjacent nodes as edges, to represent a topological
map. To make it more presentable, it appends more properties
like cross shape intersection into nodes. [2] proposes a
method to derive a route graph from the generalized Voronoi
diagram. A route graph is a special kind of topology map
with the vertex as navigational decision points and edges
as route segment to those points. This algorithm is able to
incrementally construct the route graph. (2) Split map on the
gateway of Voronoi points that is too close to the obstacle.
[3] concentrates on the large-scale environment. Here a trade-
off will exist between representation efficiency and cost with
grid-based maps and topological maps. The author proposes
an approach to integrating grid-based maps and topological
maps. By cutting on the gateway of a grid map from the
Voronoi diagram, the space can be partitioned into disjoint
regions. Then, by mapping them into an isomorphic graph,
each vertex will be able to denote one region. [4] aims to
do robot exploration with segmentation of the environment.
Also, with the partition on the critical points, space can be
separated into regions. This graph also uses regions as nodes.

1Both authors are with the School of Information Science
and Technology, ShanghaiTech University, China. [yuanwj,
soerensch]@shanghaitech.edu.cn

(a) Grid map (b) Distance Map (c) After edge process

(d) Binary map (e) Skeleton (f) Topological map

Fig. 1: Topological map generation via Distance map. Fig. 1a
is the input grid map. Fig. 1b-1e are sequentially produced
as in Section. II. Fig. 1f is the result topological map.

(3) Voronoi random fields (VRF): Integrating the features
from grid maps and Voronoi graphs, [5] converts the Voronoi
graph into a conditional random field (CRF). They solve
CRF to segment the environment into regions that might
be rooms, junctions, and doorways. Instead of manually
tuning the parameters, they learn the model from human-
labeled training data. Cell Decomposition [6] is another way
to generate topological structures. But it is very specific to
the task of coverage path planning and does segment the
space against the human intuition and is also not rotation
independent.

Inspired by the paper [7], that utilizes distance transform
on grid maps to further employ room segmentation, we
consider it should also be possible to extract topological
maps from the distance map, because there already exist
methods to extract skeletons from distance maps, such as [8].
The skeleton then represents the paths we need to generate
a Topology Graph.

In this paper, we first generate the topological map from
the distance map. Then we move one step further to explore
the incremental topological map building from raw sensor
data. Simultaneous Localization and Mapping (SLAM) is
widely used in robotics today. This paper deals with the
mapping part of SLAM and assumes that the localization
part is solved within the SLAM framework already.

Unlike [9], [10], that build topological maps using the
Voronoi diagram algorithm, we use the distance map to

Fig. 2: The pipeline of the distance map based method we
implemented to generate a topology graph from a grid map.
The yellow ellipse is the data while the green window is the
process.

achieve the skeleton that has a similar shape as the figures
in [9]. We then use the skeleton to extract the topological
map.

The important process for the above task is to extract a
skeleton that is 1 pixel wide. In the study of skeletonization,
much brilliant works has been proposed. [11] provide good
examples of how skeletonizing works. Iteratively removing
pixels on the object border, [12] obtained the skeleton when
no more pixel can be removed. [13] collects candidates to be
removed and has a double check to preserve the connectivity
in each iteration. The medial axis method is on top of
distance transform to provide the ridges as a skeleton. [14]
is the method we utilized in our framework, which holds the
good property that it can preserve the endpoints of medial
curves while avoiding the deletion of pixels in the middle
of medial curves. This is a property that we want for our
algorithm.

From the distance map, it should be possible to obtain the
skeleton directly with the medial axis method. However, in
our incremental skeleton updating, a small layer of skeleton
pixel around the new frame should be able to help keep the
connectivity. Thus, we prefer to extracting the skeleton from
a binary image like reported in [14], which does meet our
needs.

In our framework, all of the distance map, skeleton and
topological map will be incrementally updated.

Actually, [15] has proposed a method that allows for an
incremental Voronoi diagram algorithm. However, when it
comes to updating the old map with a new scan, Voronoi
based methods become complicated, because the obstacle
point around in the old map should also be considered. This
is expensive, especially for grid maps with too many obstacle
points. In contrast, our distance map based method does
not have this problem. Using distance maps to represent the
spatial information of obstacles, there is no need to retrieve
the old observation: We just combine the distance map from
the new scan with the old global distance map.

Though not using the incremental Voronoi diagram algo-
rithm, [16] proposed one incremental framework based on
Voronoi diagrams. With a similar strategy to update global
topological map, [17] proposed a framework based on a
thinning algorithm. Those two methods keep vertexes in the
global map and in the local map, in order to merge the
corresponding vertexes upon update.

Our incremental framework has two advantages. First,
the position of vertexes in the room region are almost
the same as we were directly using the global occupancy
map. Additionally, we can achieve high update frequencies,
because the frequency does not affect the computation cost
of distance map updating in each iteration.

In our framework, the skeleton is from a distance map,
and the topological map is from the skeleton, which means,
each part won’t be affected by its following steps. Thus, it is
convenient to set different updating rates for those three. For
example, we can update the distance map with every scan
(frame), the skeleton every 100 frames, and the topological
map every 200 frames. We consider this reasonable, because
it is not necessary to renew the topological map every frame.
We could grow the topological map in each frame, but
generally, we expect the topological map will not be used
with a very high frequency, while we still want to represent
all sensor data in the map.

In the following we first describe the distance map based
method we implemented in Section II. After that, the incre-
mental framework will be introduced in Section III. Then,
Section IV shows experiments to demonstrate our work. In
the end, we conclude this paper in Section V and emphasize
our contribution.

II. TOPOLOGY GRAPH GENERATION USING A DISTANCE
MAP

The pipeline of the graph generation can be found in
Fig. 2. It can be simply divided into three steps: building
the distance map, extracting the skeleton and generating the
topological map.

A. Distance Map

Firstly we describe how to convert grid occupancy map
to a distance map. Generally, the distance map is generated
by taking the Euclidean distance to its closest obstacle as its
pixel value. The chosen distance metric to obtain the distance
map does not have to be Euclidean distance. It could be
Manhattan distance, for example. In our work we choose to

Fig. 3: Pipeline of the incremental framework to build a topology graph from raw sensor data. The blue transparent window
is for the distance map update loop, the red window is for the skeleton update loop and the green window is for the
Topological Map update loop.

utilize the Gaussian function by putting the Gaussian kernel
on obstacle points to achieve the distance map.

For an occupied pixel on position pi, with i ∈
{1, 2, 3 · · ·N}, where N is the number of occupied points,
we represent it as a delta function δ(x − pi). The function
to generate a distance map of each point i as a convolution
of δ(x− pi) and a Gaussian kernel Gσ is:

Hi(x) = δ(x− pi) ∗Gσ(x). (1)

Then we compute the maximum as the final distance map
value. The final distance map function is:

H(x) =
N

max
i=1

Hi(x) (2)

Here, pixels on the distance map are affected by the
Gaussian kernel utilized on each obstacle points, and will
be given the maximum value. Thus, each pixel value is
dominated by the nearest obstacle point and the function H
is selected to achieve our distance map.

For the distance map we created with Gaussian kernel, the
closer the pixel is to the obstacle, the larger the value would
be. Intuitively, if we consider the pixel value as the third
axis, from Fig. 1b, the distance map with Gaussian function
will make the space around the obstacle look like a ”valley”.
And the ”rivulet” between the ”valley” is the paths we want
to extract.

B. Distance Map To Skeleton

To extract the ”rivulet” from the distance map, some filter
to extract edges can be used. Here we select the Laplacian
filter as the solution. The Laplacian filter is a very useful
filter that can be utilized to find the fast changing area. To
make it easy to utilize on images, an approximate discrete

convolution kernel is utilized. With the process of filtering,
we achieve the ”rivulet” that is shown in Fig. 1c.

However, this is not exactly what we need, since only
having the ”rivulet” can not directly provide the topological
map. So suppression is necessary to help achieve a very thin
path. [18] provides several thinning algorithms to skeletonize
the binary image. Before that thinning process, we have to
binarize the above ”rivulet” with a certain threshold, and
obtain Fig. 1d.

Next, the thinning algorithm is applied on the binarized
”rivulet”, to generate a skeleton. From Fig. 1e we can see
that the skeleton only has a one-pixel width.

It should be noted that a T shape skeleton in an arbitrary
3×3 window will cause a redundant edge in following step.
So in our implementation, we also remove the cross pixel of
the T shape skeleton in that 3× 3 window.

C. Building the Topology Graph

Since the skeleton has been obtained, a topological map
can be created by assuming a connection between neighbor-
ing pixels.

First, we represent each skeleton pixel as a vertex. The
vertex will have an edge to each of its up to 8 occupied
neighbors. For each skeleton pixel as the center of a 3 × 3
window, other skeleton points covered with such a window
can be considered as its neighbors. However, the L shape
skeleton in 2 × 2 window will cause an additional edge on
the diagonal, so we will not add these edges.

Then, we delete all of the degree 2 vertexes by combining
its two edges.

One result graph can be found in Fig. 1f.

III. INCREMENTALLY BUILDING THE TOPOLOGICAL
MAP WITH SENSOR DATA

In the above section, we can build a topological map using
a distance map. This is an excellent basis for incrementally
building the topological map. As we make the robot move,
the topological map can be created with the sensor data as
input. Fig. 3 illustrates the pipeline for this framework. It
consists of three parts: (1) distance map update loop, (2)
skeleton update loop and (3) topological map update loop.

To make it easy to demonstrate, we use ”local” and
”global” to name the map for newly observed data and the
preserved map that is growing as robot moves and scans,
respectively.

A. Distance Map Update Loop

In the distance map update loop, for each frame t, with
the odometry and laser data, we can compute the locations
of the obstacle points. Then the local distance map for this
frame can be generated with the method described in Section
II-A.

By combining the global distance map function Ht−1 and
local distance map function Ĥt, we achieve the new global
distance map with the updated function

Ht(x) = max(Ht−1(x), Ĥt(x− ct)) (3)

, where ct is the shift (offset) from the local map coordinate
to the global map coordinate.

Actually, during the implementation, we just take the
maximum between global and local distance map
in each pixel for new global distance map. Thus the
distance map can be obtained incrementally.

B. Skeleton Update Loop

In our framework, the loop to update the skeleton is shown
in the red window of Fig. 3. We keep one mask to indicate the
area of the global distance map that has been updated since
the last skeleton update. Using the masked region we obtain
the updated parts of the global distance map, which
then is our local distance map. The next step is to
extract the local skeleton. But it is not that straightforward
to apply the method in Section II-B on the updated local
distance map.

From the previous global skeleton, some parts of the
skeleton outside of the masked space may stretch into the
masked space. So directly applying the algorithm in Section
II-B will cause the deletion of pixels in branches which
should be preserved.

We combine the local binary map with a small layer
of the global skeleton map around it. Now we need
to ensure, that the local skeleton map that we create
is connected with the old global skeleton layer that we added.
To solve this problem, we append a small layer of global
skeleton map. Then we use the thinning algorithm pre-
sented in [14], that can preserve the endpoints of medial
curves while keeping the connectivity of the line. In this step
the skeleton will be updated from the combined binary
map by applying the thinning algorithm on it and renewing

(a) (b)

(c) (d)

Fig. 4: Keep the connectivity with the skeleton layer. Fig.
4a, 4b / Fig. 4c, 4d are without / with appended outer layer.
The problematic pixel is marked with a red, dashed frame.
Fig. 4a, 4c / Fig. 4b, 4d are the input binary map / output
skeleton. Yellow pixel are binary true. Blue / Light blue space
is masked local space / appended layer.

the global skeleton in the masked space. Comparing
Fig. 4b with Fig. 4d, we can see that the appended layer
helps keeping the pixel in red dashed frame to preserve the
connectivity.

C. Topological Map Update Loop

To update the topological map, another mask (local skele-
ton mask) is utilized to indicate the space that has been up-
dated since the last topological map update. The topological
update loop can be found in the green window of Fig. 3. It
can be divided into five sequential steps at the t-th update:

1. Build the local topological graph Ĝt using
the skeleton in the local masked space, by applying the
algorithm from Section II-C. Here, the local skeleton mask
is the region that the updates of skeleton covered since the
last time the topological map Gt−1 was updated.

2. Trim edges of the global graph Gt−1 that have
paths in the local skeleton mask. If an edge is totally covered
by the mask, it will be removed. If part of the edge is in
the mask, it will be trimmed into several smaller edges that
are outside of the mask. So we achieve the outer mask
global graph Gt−1

outer.
3. Insert edges into the local graph Ĝt that go from the

boundary vertexes to the outer mask global graph
vertexes. In the local graph, keep edges that are not on the
boundary of the mask. Then establish the connection between
the local graph and the outer mask global graph by
connecting the edges with boundary vertexes to the outer

mask global graph vertexes near the boundary. We call
the new expanded local graph Ĝtexp.

4. Create the union of the expanded local graph
Ĝtexp and the outer mask global graph Gtouter to
update the global topological graph.

5. Post processes to achieve the new global topology
graph Gt by removing the degree 2 vertexes on the
boundary of mask.

IV. EXPERIMENTS

A. Setting

We realize our framework with python. During the imple-
mentation, Scikit-image[11], OpenCV and ROS have been
utilized. We provide the source on Github 1.

It is important to mention some detail of our implementa-
tion. The distance map has been generated with a Gaussian
kernel, and its pixel hold quite small values. Thus, before
passing the Laplacian filter, we scale it with 255. To obtain
the binary grid map, we utilized a threshold, 10, and set
bigger values True, and False otherwise. To extract the

1https://github.com/STAR-Center/IncrementalTopo

Fig. 5: Topological maps annotated with path information.
The left column is from the implementation of [9] and the
right column is the from our implementation of distance map
based method.

TABLE I: Vertex errors for maps in Fig. 5.

Ave Dist Outlier / Total % (≤1)
intel (763× 708) 2.17 15 / 258 72.4%
office (1234× 727) 1.35 4 / 305 49.5%
a scan (824× 708) 0.88 6 / 344 84.9%

skeleton, we apply the thin function from Scikit-image to
the binary image.

The map utilized in the experiment of Section IV-C is
generated with a simulated Hokuyo laser scanner in STDR
simulator (simple two dimensional robot simulator) under
ROS. In STDR, accurate odometry can be extracted and its
laser scan data has a Gaussian noise with mean 0.5 and
standard deviation 0.05. The ROS-bag we recorded contains
3061 frames in total. For our incremental algorithm, from
the beginning, we update the distance map every frame, the
skeleton every 20 frames and the topological map every 80
frames. 3040 frames are used in total.

Our experiment is run on a PC with Intel Core i7− 7700
3.6GHz with Ubuntu 16.04.

B. Experiment on Building Topological Maps

We consider it necessary to compare the quality of the
global approach from Section II with a common Voronoi
diagram based method.

We apply both our code and the Voronoi diagram based
method implemented in [9] to three maps. The topological
maps are annotated with path information (from Voronoi

Fig. 6: Comparing the full map results with incremental
algorithm results. The first column are the results with final
occupancy input and second column is from our incremental
framework. The three rows are for distance map, skeleton
and topological map, respectively.

https://github.com/STAR-Center/IncrementalTopo

Fig. 7: Ten sequential updates of the incrementally build topological map of Fig. 6. The deep green region is the masked
local region described in Section III-C. The selected maps are with frame ID 400 to 1120 with a step of 80. See the
accompanying video for all skeleton and topological maps for this experiment.

diagram or skeleton), because it keeps the vital information
that can describe how the paths look.

From Fig. 5 we can find, that our implementation achieved
a similar result as the Voronoi based method. The structure is
the same and, more importantly, the positions of the skeleton
pixels are very close to the common Voronoi diagram based
method. As in Fig. 5, for each vertex of topological graph
in the right column map, we find its closest vertex in the
left column map to compute its error, which is the euclidean
distance. Note, that we consider vertexes where the closest
distance is larger than 20 pixel as outliers. The average
distance of non-outlier vertexes, number of outlier and total
vertexes, percentage of vertexes with distance smaller or
equal than 1 can be found in Table I. It shows a very low
average distance. For the intel map, the average distance
is 2.17, larger than the other two maps, but 72.4% of
the vertexes are within one pixel. For the office map, the
percentage is only 49.5%. However, it’s average is only 1.35
pixel. ascan has a very low error of 0.88 with 84.9% of
vertexes within one pixel.

This shows that the distance map based approach is a good
basis for our incremental framework.

C. Experiments with the Incremental Framework

Computing time evaluations are essential for real-time
algorithms in robotics. We record the update cost (without
drawing the map) in our framework and illustrate this point
in Fig. 8. As described in Section IV-A, the distance map,
skeleton and topological map are updated every 1, 20 and 80
frames, respectively. For those three update loops, the later
loop is based on its former loop. However, the former loop
does not depend on the later one, which make it not necessary
to sequentially update every time. What’s more, they could
even be in different threads for the implementation. Thus, we
consider the time to update the distance map should be the
most important. Generally, the range sensor provides 10Hz

0 500 1000 1500 2000 2500 3000
Frame ID

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Ti

m
e

co
st

 (s
)

Distance map update loop
Skeleton update loop
Topological map update loop

Fig. 8: Time cost of each step for our incremental algorithm.

scans. From Fig. 8, the distance map update takes no more
than 0.1s per frame, which meets our needs.

For the incremental topological map generation, our goal
in this experiment is to compare the quality with the algo-
rithm in Section II.

Fig. 6 shows the result. We can find that the inside parts of
the room are almost the same. The major difference between
those two maps are in the outside areas of the room. Those
outside areas are not important for the applications using the
topological maps later, because they are outside the scope of
the mapped area.

Actually, as in [9], some algorithms like alpha shape can
be utilized to delete the edges outside the room. The effect
of the additional outer edges could be cleared in this way
without problem.

We also compute the vertex distance (error) between the
non-incremental and incremental graphs in Fig. 6, as we did
in Section IV-B. Only considering the inside room region

that is from pixel 300 to 600 on both axises, the average
distance of the vertexes is 2.28 pixel with 5 outliers from
251 vertexes and 63.0% vertexes within one pixel which is
invisibly small for incremental topology graph and thus is
better than match and merge based method.

We also show ten images of sequential updates of the
topological map in the middle of incremental map building
in Fig. 7, to demonstrate the incremental update of the
topological map. In these figures, we can see that the newly
updated region does not affect the non-touched region. One
advantage we can find is, that the updating region is with the
current global distance map, which is the most acceptable
topology graph at this moment.

V. CONCLUSIONS

In this work, we presented the distance map based method
to generate topological maps and, on top of it, further
proposed a framework that can work well with on-going
sensor scanning to build the topological map incrementally.
Our experiments show the performance of the presented
approach. We found, that our extracted maps are similar
to those of the commonly used Vorinoi Diagram based
method. We embed the distance map based approach into
our incremental framework and found that the update speed
is fast and the resulting topological maps are almost the same
when compared with the non-incremental version. We thus
showed that it is possible to incrementally build and update
a topological maps while incorporating sensor data in real
time.

REFERENCES

[1] V. Setalaphruk, A. Ueno, I. Kume, Y. Kono, and M. Kidode, “Robot
navigation in corridor environments using a sketch floor map,” in
Computational Intelligence in Robotics and Automation, 2003. Pro-
ceedings. 2003 IEEE International Symposium on, vol. 2. IEEE,
2003, pp. 552–557.

[2] J. O. Wallgrün, “Hierarchical voronoi-based route graph representa-
tions for planning, spatial reasoning, and communication,” in Proceed-
ings of the 4th International Cognitive Robotics Workshop (CogRob-
2004), 2004, pp. 64–69.

[3] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[4] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordinated multi-robot
exploration using a segmentation of the environment,” in Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on. IEEE, 2008, pp. 1160–1165.

[5] S. Friedman, H. Pasula, and D. Fox, “Voronoi random fields: Extract-
ing topological structure of indoor environments via place labeling.”
in IJCAI, vol. 7, 2007, pp. 2109–2114.

[6] E. U. Acar and H. Choset, “Sensor-based coverage of unknown
environments: Incremental construction of morse decompositions,”
The International Journal of Robotics Research, vol. 21, no. 4, pp.
345–366, 2002.

[7] A. Diosi, G. Taylor, and L. Kleeman, “Interactive slam using laser
and advanced sonar,” in Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Conference on. IEEE,
2005, pp. 1103–1108.

[8] S. Chang, “Extracting skeletons from distance maps,” International
Journal of Computer Science and Network Security, vol. 7, no. 7, pp.
213–219, 2007.

[9] S. Schwertfeger and A. Birk, “Map evaluation using matched topology
graphs,” Autonomous Robots, vol. 40, no. 5, pp. 761–787, 2016.

[10] ——, “Evaluation of map quality by matching and scoring high-level,
topological map structures,” in 2013 IEEE international conference on
robotics and automation. IEEE, 2013, pp. 2221–2226.

[11] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image
processing in python,” PeerJ, vol. 2, p. e453, 2014.

[12] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,” Communications of the ACM, vol. 27, no. 3, pp. 236–239,
1984.

[13] T.-C. Lee, R. L. Kashyap, and C.-N. Chu, “Building skeleton models
via 3-d medial surface axis thinning algorithms,” CVGIP: Graphical
Models and Image Processing, vol. 56, no. 6, pp. 462–478, 1994.

[14] Z. Guo and R. W. Hall, “Parallel thinning with two-subiteration
algorithms,” Communications of the ACM, vol. 32, no. 3, pp. 359–
373, 1989.

[15] S. R. Allen, L. Barba, J. Iacono, and S. Langerman, “Incremental
voronoi diagrams,” Discrete & Computational Geometry, vol. 58,
no. 4, pp. 822–848, 2017.

[16] D. Van Zwynsvoorde, T. Siméon, and R. Alami, “Incremental topolog-
ical modeling using local voronoi-like graphs,” in Intelligent Robots
and Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ Inter-
national Conference on, vol. 2. IEEE, 2000, pp. 897–902.

[17] T.-B. Kwon and J.-B. Song, “Real-time building of a thinning-based
topological map,” Intelligent Service Robotics, vol. 1, no. 3, pp. 211–
220, 2008.

[18] “Skeletonize – skimage v0.15.dev0 docs,” http://scikit-image.org/docs/
dev/auto examples/edges/plot skeleton.html, accessed: 2018-09-06.

http://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html
http://scikit-image.org/docs/dev/auto_examples/edges/plot_skeleton.html

	I INTRODUCTION
	II Topology Graph Generation Using a Distance Map
	II-A Distance Map
	II-B Distance Map To Skeleton
	II-C Building the Topology Graph

	III Incrementally Building the Topological Map with Sensor Data
	III-A Distance Map Update Loop
	III-B Skeleton Update Loop
	III-C Topological Map Update Loop

	IV Experiments
	IV-A Setting
	IV-B Experiment on Building Topological Maps
	IV-C Experiments with the Incremental Framework

	V Conclusions
	References

