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Abstract— With the deepening of research on the SLAM
system, the possibility of cooperative SLAM with multi-robots
has been proposed. This paper presents a map matching and
localization approach considering the cooperative SLAM of an
aerial-ground system. The proposed approach aims to help
precisely matching the map constructed by two independent
systems who have large scale variance of view points of the
same route and eventually enables the ground mobile robot to
localize itself in the global map given by the drone. It contains
dense mapping with Elevation Map and software “Metashape”,
map matching with a proposed template matching algorithm,
weighted normalized cross correlation (WNCC) and localization
with particle filter. The approach enables map matching for
cooperative SLAM with a feasibility of multiple scene sensors,
varies from stereo cameras to lidars, and is insensitive to
the synchronization of the two systems. We demonstrate the
accuracy, robustness, and the speed of the approach under
experiments of the Aero-Ground Dataset[1].

I. INTRODUCTION AND REVIEW

With wider applications of mobile robots, the SLAM
system has been a heated topic and has been used in a
vast variety of applications in the past few years. The ability
of localizing the robot and mapping its sensed environment
under the vacancy of global positioning systems has been
treated as one of the key features of the SLAM system.
With the increasing demand for mobile robots, the working
environment of robots has become more and more diverse.
Some places that are lack of global positions have relatively
level grounds and simple feasible regions could be easy
for robots to pass through, such as indoors. However, there
will inevitably be some non-position places to explore that
are human-unreachable, obstructive, and even dangerous for
robot to pass through.

In the mean time, with the rising of the micro-aerial
vehicles (MAVs), the feasible region of one SLAM system
has been greatly extended. Unknown places like obstructive
caves could be roughly explored by light-weight MAVs
and then detailed inspected by heavy-loaded ground mobile
robots with multiple equipments following the map given by
the MAV, as shown in Fig. 1 . To ensure the collaboration
of the two systems, an assisting mapping and localization is
required.

Most of the aerial-ground collaboration focuses on the
perception of a single robot and guides another one to
achieve a particular goal. For example, a MAV can use the
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Fig. 1: Demonstration of collaborative SLAM carried by a
ground mobile robot and a MAV with a stereo camera on
both of them.

QR code[2] and other visual features to identify and track
the ground mobile robot. There are also scholars using the
camera mounted on the ground mobile robot to track the
LED light of the MAV[3].

In addition, the aerial-ground collaboration framework
proposed in [4] uses the visual features in the common
perspective of an aerial-ground system to complete the aerial-
ground map matching and localization. The disadvantage
of this framework is that the visual features used for map
matching such as points and lines will gradually become
non-uniform as the viewing angle difference between the
two perspective gradually becomes larger. For example, a
line feature in the ground perspective is likely to become a
point from its bird’s-eye view. Therefore, this framework is
limited by the scale of variance of the perspective.

The aerial-ground collaboration method proposed by
Michael et al. [5] uses the rough relative position between
the robots as an initial guess, and match the two maps
within a range from the initial guess using iterative closest
point algorithm (ICP). The result shows that it will give a
precise match of the two map but with a large cost of MAV
carrying a heavy-loaded lidar to complete the the mapping.
The endurance of an MAV under heavy-loaded conditions
has become a major obstacle to the success of this method.

Käslin et al. [6] proposed an aerial-ground collaboration
method based on Elevation Map [7]. It uses depth informa-
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tion to establish Elevation Maps from both robots and com-
pletes aerial-ground matching by comparing the similarities
of obstacles’ heights within them by template matching. By
using accurate depth information, this method can accurately
and swiftly complete map matching and robot localization.
However, without lidar equipped, depth information becomes
obscure when the whole system works outside or when
the MAV flies higher. Therefore, the application of this
framework is limited by the working environment.

With the inspiration of the work [6], template match-
ing is adopted in our work. Traditional template match-
ing approaches such Sum of Square Difference(SSD)[8],
Sum of Absolute Difference(SAD)[9], and Normalized Cross
Correlation(NCC)[10] share the same thought of sliding
window with their own pros and cons.

The map matching and robot localizing system proposed in
this paper aims at ensuring the collaboration with overcom-
ing the poor depth conditions that an outdoor environment
provide. The presented method constructs a colorized local
Elevation Map for the ground mobile robot by endowing
RGB data of every pixel acquired from the stereo camera
to the 2.5D Elevation Map proposed by [12] and eventually
forms the identical colorized orthomosaic map of every local
frame. With colorized orthomosaic maps constructed for both
the ground mobile robot’s local map and the MAV’s global
map, the system is able to match both maps and gives the
local map’s real-time relative location to the global one by
applying a particle filter.

Due to the different approaches used by the aerial-ground
mobile robots for mapping, the quality and style of the
local and global orthomosaic maps varies greatly from each
other. Therefore, the simple application of template matching
based on sum differences is unsuitable. To deal with this, a
new template matching, Weighted Normalized Cross Corre-
lation(WNCC), is proposed.

This method does not require any expensive or heavy
equipment from the short-lasting MAV and is insensitive to
the depth information given by the MAV. Therefore, the MAV
is able to form a more valuable global map with this method
by flying further and higher.

The remainder of paper is organized as follows. The
system constructs orthomosaic maps for the two robots with
different approaches introduced in Section II. Every local
orthomosaic map is matched with the global one with the
WNCC algorithm introduced in Section III. In Section IV,
with the matching transformation given of every local frame,
the ground mobile robot localizes itself in the global map by
applying a particle filter. The evaluation of our approach is
shown in Section V and We conclude the paper and discuss
future works in Section VI.

II. MAPPING

With wide vision and outstanding mobility, the MAV is
able to construct a dense global map, and provide it as a
proiri map for the ground mobile robot. Considering the
inaccuracy of the online estimated depth when the MAV is
flying up high outdoor, our method uses the 3D modeling

software “Metashape”[11] to construct the aerial orthomo-
saic map online with a reasonable time of delay for data
transferring.

Ground mobile robots can carry lasers, stereo cameras,
etc. in outdoor scenes to build local maps. In view of
the navigation planning requirements of mobile robots, our
method uses a real-time 2.5D Elevation Map with texture
information[12] to construct a local map of the ground,
and generates an orthomosaic map based on the 2.5D map
rendering, which can be matched with the orthomosaic global
map constructed by the MAV in the air for localization.

A. Construction of Global Orthomosaic Map

Our approach uses the commercial software “Metashape”
(30-day free trial) to construct an aerial orthographic map.
The MAV takes photos of the target area through the bird’s-
eye camera to obtain a photo sequence with timestamp
stamped. By combining the timestamped-photos sequence
of the bird’s-eye camera with its intrinsic and extrinsic
parameters, the software is able to estimate the camera pose
and reconstruct a three-dimensional model of the contents
in the photos. After rendering an orthomosaic map of the
target area, which is the global map in this work, estimating
the corresponding scaling information, we finally generate
an orthomosaic global map with an absolute scale of 10
Centimeters corresponds to 1 pixel, shown in Fig. 2.

Fig. 2: Global orthomosaic map constructed by MAV with
detailed and accurate texture.

B. Construction of Local Orthomosaic Map

Considering the real-time performance, the computational
cost, and the sparse 3D information required by the ground
mobile robot, our approach adopted and upgraded the 2.5D
Elevation with RGB data stored in every grid to build
local orthomosaic maps. Moreover, Elevation Map’s map
representation is very suitable for mobile robot’s navigation
due to its characteristic of storing the height information of
the corresponding area.

The ground mobile robot calculates the depth with only a
stereo camera and feed the depth information to the Elevation
Map to build a 2.5D map. In the mean time, by feeding the
RGB data and texture information to every grid of the map,
we are able to construct a colorized intuitive local 2.5D map,
abbreviated as local grid map. The local grid map also has
absolute scale, and the size of each grid can be specified
manually. Finally, as shown in Fig. 3, the approach renders



Fig. 3: Local orthomosaic map constructed by ground mobile
robot with noisy background.

the local grid map to the ground plane to generate a local
orthomosaic map with an absolute scale of 10 cm for 1 pixel.

III. MAP MATCHING

Due to the different mapping approaches used for
constructing global and local orthomosaic map, where
“Metashape” for global(Fig. 2) and Y. Pan’s Elevation Map
for local(Fig. 3), the map accuracy, map style and even
features shown in both maps suffer drastic deviation. The
global map constructed by “Metashape” has good details and
low error controlled within ±0.1 meters when the local map
constructed with a inaccurate calculated depth from a stereo
camera suffering from its own hollowing, noise and error
that can not be ignored.

The huge difference in the quality of two maps has brought
some difficulties to map matching. In order to achieve map
matching with difficulties mentioned above, we proposes a
weighted normalized product correlation algorithm, abbre-
viated as WNCC, through experiments, comparisons and
calculations.

A. Failure of SSD and SAD

Regardless of whether it is SSD or SAD, the idea of the
two is unified, that is, the sum of the difference between
each corresponding template pixel and the original pixel in
the sliding window W. Unfortunately, this kind of ”sum of
difference” algorithm is invalid for the problem discussed
in this question. To explain this intuitively, we reproduced
Fig. 3 into two segmented part shown in Fig. 4 where red
part represents invalid area such as noise and hollow and
green for valid. Obviously, the red parts are to neglect. It
is now clear that with drastic difference in appearance and
style of global(Fig. 2) and local(Fig. 3) maps, there will be
tremendous error using SSD or SAD template matching for
they will match as more hollow area of the two image as
possible for the least sum of differences.

Utilizing the fact that using SSD and SAD algorithms can
not effectively solve the map matching problem, we need

Fig. 4: An segmented representation of Fig.3’s local ortho-
mosaic map, with red as the invalid area and dark green as
the valid one.

to apply a higher order cross correlation template matching
algorithm.

Unlike SSD and SAD, NCC adopts the sum of dot product
correlation operation on the pixels of both template and
source image in the sliding window, and normalizes the NCC
value with the modulus length as the denominator. Such a
correlation method has obtained relatively reliable results for
matching two images with huge differences in picture quality
but similar characteristics.

B. Weighted Normalized Cross Correlation Algorithm

Due to the massive contamination of noise and hollows
at the edges of each local orthomosaic map constructed by
the ground mobile robot, the useless or even harmful cross
correlation value calculated there should be weaken at a
proper level. On the contrary, information near the center
of every local map such as road line or well covers is much
more valuable and should be strengthen as key features of the
matching. Therefore, the strategy is to increase the weight
of the the inner pixels and decrease those outer ones.

Assuming there is a template local map P with the size of
M ∗N, its pixel value at Point(s, t) is P(s, t). Let the global
map with the size of W ∗H be R and the sliding window
Wu,v of each iteration represented by its upper-left pixel
(u,v). Therefore, with every pixel in sliding window Wu,v,for
example Wu,v(s, t), its corresponding global map pixel should
be R(u+ s,v+ t). Consequently, the searching range for one
template should be:

S = (W −M) · (H−N) (1).

With P and R(u,v) be the mean value of template local
map and the mean value of the corresponding global map of
the sliding window Wu,v respectively, their declarations are
as follows:

P =
1

M ·N

M

∑
s=1

N

∑
t=1

P(s, t) (2)



R(u,v) =
1

M ·N

M

∑
s=1

N

∑
t=1

R(u+ s,v+ t) (3).

For the design of weights, this approach adopts the method
of calculating the second-order fitting weights with a peak
value of 1 and distributed in the second-order interval (0,1).
The smaller the Euclidean distance of a pixel is to the center
(M

2 ,
M
2 ), the greater weight the pixel has. The elaboration of

the weighted equation is as follows:

weights,t =
∣∣∣∣2− ∣∣∣∣M2 − s

∣∣∣∣ · ∣∣∣∣N2 − t
∣∣∣∣∣∣∣∣ (4).

Finally, the equation of the weighted cross correla-
tion(WNCC) is shown as follows:

M
∑

s=1

N
∑

t=1

∣∣2− ∣∣M
2 − s

∣∣ · ∣∣N
2 − t

∣∣∣∣ · ∣∣R(u+ s,v+ t)−R(u,v)
∣∣ · |p(s, t)− p|√

M
∑

s=1

N
∑

t=1

∣∣R(u+ s,v+ t)−R(u,v)
∣∣2 · M

∑
s=1

N
∑

t=1

∣∣P(s, t)−P
∣∣2

(5).

In order to realize the real-time matching and localization,
GPU based acceleration is implemented, and the result of the
acceleration is shown in Section V.

IV. PARTICLE FILTER

WNCC’s precise matching requires traversing all pixels in
the image area and calculating cross-correlation values. For
robot localization systems with high real-time requirements,
its practical application is very limited. Luckily ground
mobile robot is able to estimate its localization roughly either
by vision odometer or sensors such as IMU. With a rough
localization given as a prior location, the searching area
for the WNCC could considerably decreased. Therefore, the
approach proposed combines particle filter with WNCC to
achieve the real-time localization.

As the workflow shown in Fig. 5, the particle filter
localization in this paper integrates the local orthomosaic
map as a robot observation into the traditional Monte Carlo
localization method[13], and use the motion of the ground
mobile robot to converge to its correct location. The particle
swarm U = {p1, p2, p3, ...pN} represents the confidence of
the location and direction of the ground mobile robot in the
global orthomosaic map. Considering the prior information
about the initial location of the robot, the particles are
randomly initialized in a square area near the initial location.
The movement of the ground mobile robot is obtained by the
odometer while the robot moves according to the odometer
information superimposed with the error. After moving to the
next location, it makes an observation of the current location
to generate a local orthomosaic map. All the particles in
the particle swarm are brought into the robot’s motion
equation one by one to get the next position of the particle
swarm. With every particle swarm generated, it is now able
to calculate the similarity of the current local orthomosaic
map and the sub-global orthomosaic corresponding to each
pixel with the proposed approach of WNCC. The resulting

Fig. 5: The work flow of the particle filter

similarity of each pixel is then set as the confidence of it.
Finally, we proceed an normalization.

In order to prevent degradation during the movement, this
article follows the classic roulette method resampling, sam-
pling M times from the particle swarm U to generate a new
particle swarm, and the probability of sampling each particle
is determined by its weight. By doing this, the particle swarm
called the posterior particle swarm will gradually gather to a
location with higher similarity. The newly generated particle
swarm then moves based on the ground mobile robot’s
odometer, calculates similarity, and resamples. With this
reciprocation, the particles finally converge to the position
of the robot with the highest confidence.

To elaborate upon the resampling, some normally dis-
tributed position noise σpos = 0.1m and rotation noise σrot =
2◦ will be superimposed on the state of particles during
resampling to increase the robustness of the system.

V. RESULT

In this paper, the proposed WNCC and localization ap-
proach combined with particle filter have been verified under
experiments of the Aero-Ground Dataset.

A. WNCC

A typical example of the Aero-Ground Dataset is used to
illustrate the problems when applying SSD, SAD, and the ef-
fects of NCC and WNCC are compared on this experimental
data.

As stated in Section III, simple template matching such as
SSD or SAD that uses sum of difference method will match
as more hollow area of the two image as possible for the
least sum of differences, as shown in Fig. 7.

The heat map on each of the image respectively shows
scores calculate for each location of the sliding window by
each method. The deeper the red is, the score of the location
is better. Based on the heat map shown from Fig. 7(a) and
7(b), the detected location of the matching unitedly chose
places that matched more noise and hollows.

When implementing algorithm NCC, the result becomes
better with reasonable location matched as shown in Fig.
7(a). It is clear that the problem with NCC is that it
mistakenly matched the curb in the local orthomosaic map



(a) Result of SSD (b) Result of SAD

Fig. 6: The result of implementing traditional template
matching method SSD and SAD where the red bounding
box stands for the regional searching area,blue bounding
box stands for the ground truth and the white one stands
for the detected matching location of by template matching
algorithm.

(a) Result of NCC (b) Result of WNCC

Fig. 7: The result of implementing NCC template matching
method and the proposed WNCC template matching method
which have the same bounding box as explained in Fig. 6.

with side line of road in the global map. With WNCC
implemented, the error is corrected as shown in Fig. 7(b).

By calculating the WNCC algorithm with CUDA, our
method is able to speed up the calculation by 500 times,
the comparison is shown in TABLE I.

TABLE I: The speed test of multiple algorithms tested under
the hardware of CPU: AMD RYZEN 3700X, GPU: NVIDIA
RTX 2060 Super, RAM: Kingston HyperX DDR4 16G

Algorithm SAD SSD NCC WNCC WNCC with CUDA
Time 812s 889s 2996s 3086s 6s

B. Particle Filter Localization

In the experiment for PF localization with Aero-Ground
Dataset, the initial particle swarm number of particle filter is
1000, the position noise σpos = 0.1m and the σrot = 2◦. Each
pixel on the map has an absolute scale of 10cm corresponds

Fig. 8: Result of the particle swarm distribution and gath-
ering. The blue dots represent particle swarm and red dots
represent location of each local map frame. It is proved that
with the ground mobile robot moving forward(shown as the
order of left to right), the particle swarm gather gradually.

to one pixel. The particle swarm distribution during particle
filter localization is shown in Fig. 8.

The final result of localizing the ground mobile robot
within the global map is shown in Fig. 9.

Fig. 9: The final result of the complete proposed approach
restoring the trajectory ground mobile robot within the global
map. The comparison with ground truth(yellow line), NCC
result(blue dots) and WNCC+PF(red dots) is shown above.

The Root Mean Square Error (RMSE) for the trajectory
reproduction of the proposed approach of WNCC+PF local-
ization and the comparison of NCC+PF is shown in TABLE
II. It is shown that the WNCC method gives an accurate
localization with an RMSE of 0.4256 meter and and the
comparison method of NCC outcome with an 1.2988 meter.

TABLE II: RMSE of the trajectories reproduced by different
approaches

Algorithm WNCC+PF NCC+PF
RMSE 0.4256m 1.2988m

VI. CONCLUSIONS

This paper proposes and validates an aerial-ground col-
laboration system based on orthomosaic map matching and
particle filter localization. Through this system, the ground
mobile robot can locate itself within the global map con-
structed by the MAV’s bird’s-eye view in real time. This
system is very lightweight and can complete high-precision
localization without the need for costly equipments such as
structured light and lidar.



This system has good time robustness and scalability.
When the lighting conditions permit, this system can rely
on the vision imaging system to complete the task. When
it is poor-lit, the system also supports Lidar together with a
texture-use only camera to complete the task. This system
also has good spatial robustness, which means that the
system does not limit the flying height, flight distance, and
flying place of the MAV. It supports both indoor and outdoor
aerial-ground collaboration with a fast response and accurate
localization.
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