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Abstract— As the scene information, including objectness and
scene type, are important for people with visual impairment, in
this work we present a multi-task efficient perception system
for the scene parsing and recognition tasks. Building on the
compact ResNet backbone, our designed network architecture
has two paths with shared parameters. In the structure, the
semantic segmentation path integrates fast attention, with the
aim of harvesting long-range contextual information in an
efficient manner. Simultaneously, the scene recognition path
attains the scene type inference by passing the semantic features
into semantic-driven attention networks and combining the
semantic extracted representations with the RGB extracted
representations through a gated attention module. In the exper-
iments, we have verified the systems’ accuracy and efficiency
on both public datasets and real-world scenes. This system runs
on a wearable belt with an Intel RealSense LiDAR camera and
an Nvidia Jetson AGX Xavier processor, which can accompany
visually impaired people and provide assistive scene information
in their navigation tasks.

I. INTRODUCTION

According to the World Health Organization, globally, the
number of people with visual impairment is estimated to
be 285 million, of whom 39 million are blind [1]. Low
vision or blindness makes people with visual impairment
suffer on the daily basis, let alone in unfamiliar situations.
When visually impaired individuals are in an unknown
environment, one of the most vital information for them
is their surrounding information. Visually impaired people
desire to confirm whether they are in the correct place,
knowing the specific scene where they are, for example, in a
canteen or on the street. At the same time, they are concerned
about the objects that are ahead of them. Within this context,
this work aims to integrate scene recognition and semantic
segmentation in a single perception system to help visually
impaired people gain more environmental information with
a real-time inference speed for fast responses.

Many research efforts pay attention to efficient semantic
segmentation for real-time scenarios. In the former deep
learning methods, architectures such as FCN [2] and Seg-
Net [3] learn strong features based on various combinations
of CNN methods. The early architectures of semantic seg-
mentation generally use slow and complicated VGG [4] as
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the basic structure, making the real-time application on wear-
able devices less likely. Differing from conventional meth-
ods, pieces of research works [5][6][7] proposed lightweight
networks to decrease floating-point operations. However,
with the finite obstacles that frequently appear in various
scenes, visually impaired people cannot accurately grasp
the specific scene type. A second branch or works [8][9]
achieved the scene recognition task through concerning ob-
jects the scene include or the localization information.

The above works perform well on either semantic seg-
mentation task or scene recognition task. This work, instead,
aims to construct a multi-task system applicable with real-
time operating speed, which provide the surrounding objects
and the scene information, simultaneously. Our work is
concerned about the lightweight network to process scenarios
captured by sensors for more efficient computing and pro-
cessing capabilities. The model is deployed on a wearable
system composed of a Realsense L515 and an Nvidia Jetson
AGX Xavier processor so that the wearable system is able
to accompany visually impaired people and assist them
with acoustic feedback, e.g., by combining the system with
bone-conduction earphones on the wearable glasses [10]. A
comprehensive set of experiments on both public datasets
and real-world scenes captured by our wearable system,
demonstrates the effectiveness of the presented universal
perception framework.

II. RELATED WORK
A. Visual Assistive System

Assistive technology is introduced to help visually im-
paired people in their daily lives. Various wearable devices
are equipped with sensors to capture the surrounding scene,
such as RGB cameras, supporting color sensing and image
processing. User interfaces in the visual assistant system
are always given through audio feedbacks [11] and sonified
information [12]. Until now, vision-based assistive systems
have been employing deep learning architecture to improve
perception tasks [13]. The assistive system proposed by [14]
learns from RGBD data and predicts semantic maps to
support the obstacle avoidance task. [15] integrated sensor-
based, computer vision-based, and fuzzy logic techniques
to detect objects for collision avoidance. A CNN-based
framework DEEP-SEE [16], integrated into a novel assistive
device, was designed to recognize objects in the outdoor en-
vironment. In [17], a kinetic real-time CNN was customized
for the recognition of road barriers to support navigation
assistance for the visually impaired, which are usually set at
the gate of a residential area or working area. The wearable
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Fig. 1. RealSense Camera L515 is integrated on the belt and connected with
the processor NVIDIA Jetson AGX. As a multi-sensor system, Surlmage
Stereo Camera complements the RealSense in various conditions.

system [10] with a pair of smart glasses informs the visually
impaired people based on semantic segmentation and 3D
reconstruction. Differently, our work puts the focus on the
multi-task model and satisfying the real-time requirement
simultaneously. Our deep learning system produces the exact
and flexible assistive information described with the sur-
rounding object information and the scene type.

B. Efficient Semantic Segmentation

In recent years, many research efforts of real-time seman-
tic segmentation have been devoted to designing compact
architectures, aiming to reduce the computational load. Most
approaches take into account both efficiency and accuracy.
According to the analysis, the image resolution affects the
speed of computation. Most approaches are down-sampling
the input, down-sampling the features, or performing model
compression to accelerate their models. ICNet [18] takes
advantage of the efficient processing and high inference
quality by fusing the low- and high-resolution pictures.
Group convolution in AlexNet [19] and ResNeXt [20] im-
prove the effectiveness and reduce the computational cost.
ShuffleNet [21] makes use of channel shuffle to solve the
problem of information passing across convolutional groups.
MobileNet [22] introduces the decomposable depthwise sep-
arable convolution and reduces parameters. BiSeNet [23]
makes full use of lightweight models and global average
pooling to provide a large receptive field. ResNet [24]
employs the residual learning and efficient bottleneck design,
whose feature map is reduced by half and the number of
feature maps doubles. SwiftNet [25] utilizes a lightweight
encoder based on ResNet and MobileNet, and designs the
lateral connection architecture to reuse features from vari-
ous stages, which achieves an excellent trade-off between
accuracy and speed.

C. Scene Recognition

The contributions of recent research works in the scene
recognition area [8][9][26] suggest that finding potential
correlations of objects in the individual scene is beneficial
to classify scenes. As the common objects in the scene
may lead to misclassification, many methods [27][28][29]
incorporate context and explore the objects’ distributions.
LG-CNN [27] enhances fine-grained recognition by detecting
local candidates and constructing a CNN architecture with

Fig. 2. Top: examples of L515 color stream; Bottom: corresponding
examples of L515 depth stream. The resolution of depth image is 640x480,
while the resolution of captured RGB image is 1280x720. In practice, we
align the depth image with the color image.

local parts and global discrimination. DisNet [28] utilizes a
discriminative map to select scale-aware discriminative loca-
tions for multi-scale feature extraction. In [29], an extension
of the DeepLab network is constructed by leveraging SVM
classifiers and object histograms for scene categorization.
VASD [9] designs a semantic descriptor with objectness
to discriminate objects and the authors observe correlations
between objects among different scene classes. However,
this method, which is dependent on object information,
lacks information on spatial interrelations between instances.
Scene recognition is also a topic of assistive technology for
the visually impaired. For example, the unified system [30]
simultaneously achieves scene recognition and visual local-
ization for people with visual impairment.

III. HARDWARE SYSTEM

The unified perception framework is deployed on a
portable system to support navigation assistance for the
visually impaired, as it is shown in Fig. [T} It consists of a Re-
alSense LiDAR Camera 1515 and a Surlmage stereo sensor
mounted on a wearable belt, and an NVIDIA Jetson AGX
Xavier processor that can be easily carried in the pocket or in
a light-weight backpack. The RealSense camera uses a solid-
state LiDAR depth technology, which enables power-efficient
(Iess than 3.5W) and high-quality 3D information streaming.
The Surlmage sensor uses three RGB-IR cameras to form
multi-baseline depth estimation and enables naturally-aligned
RGB-IR-Depth information, where the stereo matching is
running on its embedded FPGA processor. In this work,
we mainly use the RGB and depth images captured by the
RealSense camera. Yet, as a multi-sensor system, the infrared
and long-range depth information obtained by the SurImage
camera can support perception in various conditions.

Fig. (] displays the examples of the color stream and the
depth stream of Intel RealSense L515. The RGB images
are given to the inference part of the multi-task model. The
maximum distance of objects’ depth information is 9 meters.
Our system intends to tell users the fronting object and
scene information acoustically, where only the inferences of
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Our architecture based on SASceneNet [31] consists of two paths: semantic segmentation path and scene recognition path. The scene recognition

path composes of the upper branch responsible for extracting semantic features and the backbone with ResNet-18 for obtaining feature representations
from the RGB input image. The lower path containing the backbone and upsamples is accountable for the semantic segmentation task.

semantic segmentation task within 2 meters are accounted as
actually nearly-fronting object for feedback.

IV. PROPOSED ARCHITECTURE
A. Approach Overview

We conduct a multi-task joint model composed of a
semantic segmentation path and a scene classification path.
They share the parameters of the backbone (we use ResNet-
18 [24] as illustrated in Fig. [3). This recognition encoder
consists of four encoder blocks corresponding to ResNet-18,
and each block possesses two convolutional layers.

B. Semantic Segmentation Path

For the semantic segmentation task, we use the single-
scale architecture of SwiftNet which is an effective solu-
tion for the real-time operation on embedded devices. The
backbone ResNetl8 encodes the input image and extracts
the features through four convolutional groups. The first
block in the encoder produces feature maps at the H/4 xW/4
resolution. The following blocks downsample features by a
factor of 2. At the end of the encoder, features with resolution
H/32xW/32 are forwarded to a simplified SPP block [25]
that aims to enlarge the receptive field with varying detail
levels. The upsampling decoder receives intermediate rep-
resentations from the recognition encoder and passes it to
upsample blocks through bilinear interpolation. Moreover,
the output of the element-wise sum within the last residual
block at subsampling levels is fused to the corresponding
upsampling levels in the decoder, as illustrated in Fig. [3]
We integrated a Fast Attention Module [32] in the lateral
connection to enhance contextual information rather than
directly using skip connection. These lateral features from
each stage are then aggregated and blended to the upsampling
layers.

1) Fast Attention Module: To increase the effectiveness of
the model and avoid high computational complexity, we opt
for an efficient fast attention module. It is able to capture
the contextual information across the full-resolution image
by summing up the weighted features. Similar to the self-
attention mechanism, the fast attention module calculates a
Value map containing semantic information for each pixel.
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Fig. 4. The message passing chart of Scene Recognition Path. Y,
indicates the logits from the semantic segmentation path, while F; and
FT indicate the features produced by the 3-layer semantic extractor and the
features from the backbone ResNet-18. They are then gated by the attention
module at the end of the scene recognition path. The generated feature F 4
is used to give inference of the scene posterior probabilities.

Meanwhile, it has an Affinity computation for a Query
map and a Key map to focus on the relations between
pixel locations. Unlike the original self-attention mechanism
utilizing the Softmax function, the fast attention module
applies a normalized cosine similarity.

The fast attention mechanism is achieved as follows:

1

- - AHAKT.
 height x weigth (K"-V), M

where K and Q denote L2-normalized Key and Query, and
K is first multiplied with Value V. The height x weight
refers to the spatial size of corresponding feature map. As
its complexity is quadric with respect to the channel size
instead of the spatial size, the fast attention module largely
reduces the computation.

C. Scene Recognition Path

The logits output from the semantic segmentation path is
transferred as One-hoe Encoding for representing the mean-
ingful objects and their spatial relationships. The message
passing flow is presented in Fig. [

The scene classification path consists of the shared back-
bone and our proposed semantic extractor, which is con-
structed by three convolutional layers with channel attention
modules [33], so as to extract the representative features
from the semantic segmentation score map. The channel
attention modules reinforce the feature channels for each
pixel independently based on the per-channel attention maps.
Each channel attention map is used to weight the input
feature maps by Hadamard product.
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Fig. 5. Each of the paths is followed by two convolutional layers. Fr
indicates the semantic representation produced by the semantic extracting
branch. F indicates the RGB representation produced by the backbone
ResNet-18. The semantic extracting branch has an additional sigmoid layer
and generates F; 4 which is mapped to the RGB feature Fj 4 by
Hadamard multiplication to gate the RGB feature. Finally, we obtain the
feature F'4, with which the fully connected layer classifies the scene type.

1) Channel Attention Module: The integrated channel
attention concerns the channel-wise weights over each pixel
independently, which is beneficial for capturing the relevant
semantic information in each pixel based on corresponding
probability of the semantic class. Distinct from the fast
attention module that involves contextual information over
the spatial domain, the channel attention module enhances
the relevant features along the channel dimension.

2) Gated Attention Module: Regarding texture and colour
information, an attention module is adopted at the end of
the scene classification path, so that it combines the RGB
representation from the backbone and semantic represen-
tation from our semantic extractor. This attention module
is shown in Fig. 5] where the RGB representation and
semantic representation are individually forwarded to two
convolutional layers. After a sigmoid activation function,
the semantic path obtains the normalized attention map
which is multiplied to the representation from the RGB path.
This attention module ultimately leads to semantic-weighted
features which are finally fed to a linear classifier. The scene
posterior probabilities are calculated by the softmax function:

y = log ( exp(fi) )
>orexp(fr) /)’
where feature vector f is in the range of RX, y; denotes the
probability for class ¢ given f;.
In that way, computation of gated combination is achieved
over the same numerical range, to avoid spatial information
loss while scaling features in the non-gated combination.

2

D. Joint Training and Loss

In order to perform a joint training of multi-task model
containing two different representations and to avoid the
different rates of convergence, we optimize the model with
a sum weighted loss.

The Negative Log-Likelihood (NLL) loss is applied for
the semantic segmentation task as shown in the following
equation:

b= () =3+ (St
K

where y,fj and ftij are the probability and feature of the ij-th
pixel for class ¢. The NLL loss function of the scene clas-
sification task is formulated similar to that for the semantic

segmentation task:

Ly = —log (y:) = — f¢ + log (Z exp(fk)) 4)
K

The final joint loss function combined by previous two
losses with various weights.

N N
1 o1
arg min N § Lyina = arg min N § (MLy + A2Lg),

i=1 i=1
4)
where \; and A, refer to weights for the semantic segmen-
tation task and the scene recognition task. We minimize the
final loss on the N training samples of a given batch to find
optimal parameters w of the joint model.

V. EXPERIMENTS AND RESULTS

A. Datasets

We trained this model on ADE20k dataset [34] that
contains 20,210 training images fully annotated with object
labels and scene labels, and 2,000 validation images. There
are 150 object categories and 1,055 scene categories in the
dataset. The original images are augmented with transfor-
mation functions including random flipping, random square
crop and scale, gaussian blur, and contrast augmentation, so
as to increase the generalization performance.

B. Implementation Details

The experiments are conducted with PyTorch. Each train-
ing image is cropped to 384 x384. We set the initial learning
rate as 1.0 x 10™* and weight decay as 2.5 x 107°. The
learning rate is scheduled by Cosine Annealing. We update
the weights of the network using the Adam Optimizer as the
stochastic gradient descent function.

C. Evaluation Metrics

1) Metrics for Semantic Segmentation Task: To find the
ratio of pixels properly classified, we employ pixel accuracy
for evaluating the segmentation model. We also compare
the performance of segmentation algorithms by the standard
widely-used approach, i.e. mean Intersection over Union
(mloU).

2) Metrics for Scene Recognition Task: We apply Top@Fk
accuracy metric to assess the performance of the scene
classification task. The Top@k reflects the proportion of
validation images whose ground-truth label are contained in
the k top-scored classes. The commonly used assessments
are Top@k, k = {1,2,5}. As classes with lower probabilities
are less considered in this metric, Mean Class Accuracy
(MCA) is chosen to evaluate the performance on this task,
which reveals the mean of Top@1 metrics of all scene
classes.



TABLE I
THE PERFORMANCE ON SEMANTIC SEGMENTATION TASK AND SCENE RECOGNITION TASK.

Config Pre-training  mloU  Pixel Acc Top@l Top@2 Top@5 MCA
Alternate Model ~ Swiftnet+SASceneNet (ResNet-18)  ImageNet 2826  68.70 49.80 59.60 69.70 15.33
Joint Model ResNet-18 Baseline ImageNet 27.53  68.00 53.65 64.90 75.00 18.38
ResNet-18 scratch 2494 66.78 53.65 64.60 74.60 18.42
ImageNet 27.80  68.45 56.85 67.70 76.25 21.07
+ Fast Attention ImageNet 28.60  69.20 56.20 67.75 77.15 21.14
+ Lambda Layer ImageNet 28.14  68.47 57.25 68.50 77.25 21.49
ResNet-101 scratch 27.04  68.03 54.85 65.50 75.65 21.24
ImageNet 2893  69.13 56.30 68.95 78.35 21.75
+ Fast Attention ImageNet 31.68  70.66 57.75 69.45 78.75 22.21
+ Lambda Layer ImageNet 28.16  68.28 55.68 65.75 75.55 22.59
TABLE II
COMPUTATION COMPLEXITY OF THE SYSTEM, MEASURED BY GFLOPS AND PARAMETERS.
Config Pre-training  GFLOPs  Params (M)
UperNet-50 [35] + SASceneNet (ResNet-18) [31]  scratch 230.6 142.0
ResNet-18 scratch 26.4 29.1
ImageNet 26.4 29.1
+ Fast Attention ImageNet 27.6 30.1
+ Lambda layer ImageNet 30.9 29.6
+ Fast Attention and Lambda Layer ImageNet 32.1 30.6
ResNet-101 scratch 45.1 67.9
ImageNet 45.1 67.9
+ Fast Attention ImageNet 65.3 83.8
+ Lambda layer ImageNet 49.7 68.4
+ Fast Attention and Lambda Layer ImageNet 69.9 84.3
D. Results fast enough to provide navigational perception with scene

We store the model whose sum of the mean IoU for
semantic segmentation and its mean Class Accuracy for
scene classification is the best.

Table [I] presents comparative results for the models with
various configurations in terms of: only backbone pre-trained
from ImageNet, only backbone trained from scratch, Fast
Attention Module, and Lambda Layers [36]. The latter two
constructed architecture based on ResNet-18 outperform on
the scene recognition task than the baseline that solely
employs the same backbone directly as the scene classifier,
which indicates the semantic extracting branch helps scene
recognition task. As the pre-training is carried out on the se-
mantic segmentation networks, incorporating the pre-trained
backbone brings an improvement on scene classification
metrics with respect to the models trained from scratch.
Moreover, Table [I] also suggests that the Fast Attention
Module integrated into the lateral connections increases
the semantic segmentation performance. For a comparison
experimentation, we replace the channel attention layers in
the semantic representation extracting branch with Lambda
Layers [36]. It can be seen that the semantic extracting
branch with lambda layers further brings slight, yet consis-
tent enhancements on the scene classification task.

Table [[I] presents computation complexities of systems
under the widely practised metric FLOPs and the number of
parameters. The accomplished model of SASceneNet [31]
encoding the semantic results from UperNet-50 [35] has
a drastic higher FLOPs. Our system overall runs at 11.49
FPS, when we integrated Fast Attention and Lambda Layer
configuration leveraging ResNet-18 as backbone, which is

recognizing and parsing predictions.

Some inferences of our system based on ResNet-101
(the last row’s configuration in Table |I) are presented in
Fig. [6] As the results of Top@1 presented in Fig. [6] our
system with Fast Attention + Lambda Layer configuration
with ResNet101 as the backbone achieves satisfactory per-
formance in real-world scenarios with a wide variety.

We apply the Class Activation Map (CAM) [37] to
visualize which region of the input image our network
focuses on for the scene recognition task. These CAMs in
Fig. [7] indicate that scene recognition highly depends on
semantic-based object learning. Thereby, both quantitative
and qualitative results demonstrate the effectiveness of our
unified perception framework.

VI. CONCLUSIONS

In this paper, we have designed a unified perception frame-
work for assisting visually impaired people. Specifically,
we have presented a multi-task architecture to build our
real-time wearable system, which is able to feedback the
object information and scene classes via speech signals. The
network architecture takes the feature sharing policy and the
joint learning strategy to simultaneously fulfill both tasks.
The experiments demonstrate the effectiveness of the multi-
task models with various attention modules, on both public
datasets and real-world scenes captured by our portable
system in indoor and outdoor environments. Moving forward,
we would like to explore the shallow architecture for more
efficient multi-task learning.
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Fig. 6. The first two rows show predictions of our system operated in real-
time scenarios; the next rows are predictions on the ADE20k dataset. Green
denotes the correct result of scene recognition; red denotes the incorrect
result of scene recognition.

Fig. 7.

(a)

(b) (© (d

Class Activation Maps for scene recognition results. (a) CAM is

obtained by our system on an example from ADE20k datasets. (b) to (d)
CAMs are obtained by our system in real scenarios.
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