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Form-finding of Tensegrity Structures Utilizing a Nonlinear
Fletcher-Reeves Conjugate Gradient Method*

Liming Zhao1, Keping Liu1, Chunxu Li2, Long Jin3, Zhongbo Sun1

Abstract— In the domain of soft tensegrity robot, the self-
equilibrium tensegrity structure is vital for the further anal-
ysis of robot’s locomotion. Furthermore, form-finding is an
important step for finding a self-equilibrium tensegrity struc-
ture. In this paper, a conjugate gradient form-finding (CGFF)
algorithm is developed and investigated for the form-finding
problems of tensegrity systems. Besides, a Fletcher-Reeves
conjugate gradient method is employed to solve the nonlinear
unconstrained optimization problems which transformed from
the form-finding problems. Moreover, the initial conditions
of the tensegrity structure such as the axial stiffness and
rest lengths of the element have been utilized to explore the
configuration details of the self-equilibrium tensegrity system.
Eventually, several numerical simulations are provided to verify
the accuracy and high-efficiency of the CGFF form-finding
algorithm.

I. INTRODUCTION

The name of tensegrity is presented by architect Fuller,

because of its unique features it has been full developed in

many fields such as the soft tensegrity robot and body bionics

fields [1].

In the process of designing a tesegrity structure, the tech-

nique to find a self-equilibrium tensegrity structure which

called form-finding is a crucial step in designing tensegrity

structures. In the field of form-finding methods, the force

destiny approach has been regarded as a valid approach

for forming-finding process of a tensegrity structure. An

algorithm which based on numerical analysis to find a self-

equilibrium structure has been first presented, it can be

regarded as the foundation of force destiny approach [2].

In order to find a group of force density coefficients which

fit the rank deficiency conditions, an algorithm that utilized

eigenvalue analysis and spectral decomposition has been

developed in [3]. In [4], a form-finding method which uti-

lized form-finding eigenvalue decomposition method (FDM)
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to dispose the form-finding problems has been presented.

Moreover, in order to deal with complex tensegrity structures,

the Monte Carlo iteration has been utilized to design large

scale tensegrity structures with random initial configurations

[5]. Besides, a numerical approach by calculating feasible

force density vector of the structure has been proposed

in [6]. Moreover, several approaches have been developed

which utilizing genetic algorithm and two-time singular

value decomposition (SVD) method have been proposed

to solve the problems of force density coefficients [7]–

[10]. Moreover, in [11]–[16], the form-finding problem is

regarded as an optimization problem. Though these form-

finding methods utilized few initial conditions, thus simpli-

fying the form-finding process. However these form-finding

algorithms don’t involve configuration details of tensegrity

systems. In general, the force destiny approach is not relate to

configuration details of the tensegrity structure. Therefore, it

is worth discussing the configuration details of the tensegrity

structures in further research.

Conjugate gradient algorithm has advantages of fast con-

vergence and simple algorithm structure. In [17]–[20], the

authors have developed a series of modified conjugate gra-

dient approaches, which show global convergence on deal-

ing nonlinear optimization problems. In [21], a modified

projective Dai-Yuan conjugate gradient approach has been

proposed to solve the nonlinear optimization problem which

converted robust control problem into nonlinear optimization

problem by online solving exponential stabilizing robust

controller. Besides, the authors also developed a zeroing

neural network to solve the time varying nonlinear opti-

mization problems [22]. Therefore, in this paper, a classical

conjugate gradient algorithm has been utilized to establish

a CGFF method. The CGFF approach has been utilized

to solve the nonlinear unconstrained optimization problem

which converted from the force destiny linear equilibrium

equations. Not only that, the physical informations which

include cross sectional area, Young’s moduli and rest length

are considered to explore the configuration details of the

tensegrity system. This paper is organized as follows: In

Section II, the nonlinear equilibrium equations modeling

process is presented. Besides, the nonlinear unconstrained

optimization problem which transformed from the form-

finding problem is solved by CGFF method in section III.

Furthermore, in section IV, numerical simulations which in-

clude two two-dimensional tensegrity structures and a three-

dimensional tensegrity structure are provided to verify the

accuracy of CGFF algorithm. Eventually, Section V describes

the conclusion and prospects the future works.
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II. PROBLEM FORMATIONS

A. Equation Form of Force Density

As for a tensegrity structure, it has v elements and n free

points, respectively. A topological matrix ρρρ could represent

the topological structure of the presented tensegrity system.

The v element, which connect point i and point j, can be

defined by dii =

√
(xi − xi)

2 +(yi − yi)
2 +(zi − zi)

2

ρρρ=

⎧⎨
⎩

1 p = i
−1 p = j
0 otherwise,

(1)

supposing i and j represent the beginning and end nodal

points of the element v, fi, j and li, j mean the internal force

and present length of element v. Hence, the force destiny

coefficient of element v could be defined as follows:

qi, j =
fi, j

li, j
=

li, j − l0
i, j

li, j
×Ei, j ×Ai, j . (2)

Here, A, E and l0 denote cross sectional area, Young’s

moduli and rest length, respectively. Assuming that there

is a three-dimensional (d = 3) tensegrity structure, x, y, z
represent nodal coordinates along three directions and q is

the force destiny vector. Therefore, the linear equilibrium

equations along three directions can be defined by

Uq =

⎡
⎣ ρρρTdiag(ρρρx)

ρρρTdiag(ρρρy)
ρρρTdiag(ρρρz)

⎤
⎦q =

⎡
⎣ Fx

Fy
Fz

⎤
⎦ , (3)

which U is the equilibrium matrix represents the connection

between the nodal coordinates and force destiny coefficient

matrix. F is the external force vector.

B. Requirement on Rank Deficiency Conditions

As for a self-equilibrium tensegrity structure, the force

destiny matrix D can be defined by

D = ρρρTdiag(q)ρρρ, (4)

where ρρρ is topological matrix. So, the null space of D is

defined by

nD = n− rD, (5)

where rD is the rank of matrix D, the minimum value of rD
is lager than d. Meanwhile, the nU means the null space of

matrix U, which defined as

nU = v− rU, (6)

the minimum value of nU is nU ≥ 1 .

C. Nonlinear Equilibrium Equations

In this subsection, the cross sectional area, Young’s mod-

uli, rest length and nodal coordinates are substituted into the

linear equilibrium equations and transformed the linear equi-

librium equations into nonlinear form which the coordinates

vector x, y and z are the variables.

The connection between the element length and nodal

coordinates through topological matrix ρρρ can be expressed

as follow:

l =
√

(ρρρx)2 +(ρρρy)2 +(ρρρz)2. (7)

Substituted (2), (7) into linear equilibrium equations (3),

such that the linear equilibrium equations (3) has been

transformed into following form:

U

(√
(ρρρx)2+(ρρρy)2+(ρρρz)2 − l0

)
EA

√
(ρρρx)2+(ρρρy)2+(ρρρz)2

=

⎡
⎣ Fx

Fy
Fz

⎤
⎦ . (8)

In the general form-finding process, the tensegrity structure

is always in a self-equilibrium situation, which means that

there is no external force acting on the tensegrity system.

Therefore, in the modeling process, external force vector is

equal to zero. Thereby, nonlinear equilibrium equations with

external force (8) could be transformed into following form:

−U

(√
(ρρρx)2+(ρρρy)2+(ρρρz)2 − l0

)
EA

√
(ρρρx)2+(ρρρy)2+(ρρρz)2

= ηηη (X) , (9)

where ηηη (X)∈R
3n represents the external force minus inter-

nal force which is the residual force form of the nonlinear

equilibrium equations, and X = [x,y,z]T ∈ R
3n denotes

the nodal coordinates vector. Thus, a relationship which

connected the force destiny method and nonlinear equations

has been build.

The nonlinear equilibrium equations (9) which trans-

formed from the equilibrium matrix U and force vector q
could be seen as a nonlinear unconstrained optimization

problem. In next section, the Fletcher-Reeves conjugate

gradient method is utilized to solve the proposed nonlinear

unconstrained optimization problem.

III. NONLINEAR UNCONSTRAINED

OPTIMIZATION PROBLEM

A. Nonlinear Optimization Problem

The nonlinear equilibrium equation can not be directly

solved by utilizing traditional algorithm because of its highly

nonlinear. Moreover, it exists the solution of the equation

may cause zero lengths which may lead the whole tensegrity

system to instability. Hence, the nonlinear equilibrium equa-

tions have been transformed into least-square form. With this

approach, the conjugate gradient method has been utilized

to solve the nonlinear unconstrained optimization problems

which transformed from nonlinear equilibrium equations. In

addition, after the nonlinear equilibrium equations are trans-

formed into a nonlinear unconstrained optimization problem

through the least square method, the objective function must

be a convex function. Hence, the nonlinear equilibrium

equations (9) are converted to following form:

min f(X) =
1

2

3n

∑
i=1

(ηηη2
i (X)). (10)

Here, f(X) is equal to 1
2
‖ηηη(X)‖2

2 . The Jacobian matrix of

ηηη can be exploited to express the derivative of f(X). The
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Jacobian matrix of ηηη could be represented through a first-

order derivative of H(X) which is defined as follows:

H(X) =

[∂ηηη j

∂Xi

]
i= j=1...3n

. (11)

Defining H(X) as ∇ηηη (X j), then

∇f(X) = H(X)T ηηη (X) =
3n

∑
j=1

∇ηηη j (X)ηηη (X) . (12)

It’s worth noting that ∇f(X) is gradient of f(X), the conju-

gate gradient method doesn’t need to calculate the Hessian

matrix. Thereby, it is a more simpler approach for form-

finding of tensegrity structure which could reduce the com-

plexity of calculation.

B. Conjugate Gradient Method

The traditional way for conjugate gradient method is to

update the nodal coordinates as follows:

Xk+1 = Xk +αdk, (13)

where α denotes the search step length and dk means

search direction. In general, conjugate gradient method is an

optimization algorithm that to generate conjugate direction of

Hessian matrix about the minimum point of convex quadratic

function by utilizing descent direction at the current point for

each iteration step. Besides, evaluating whether the gradient

of the objective function ∇f(Xk) is less than the setting error.

Yet different from the traditional way, this algorithm works

by estimating dk which is set equal to αdk whether or not

fulfill the setting error. From that, the step length can be

updated at any moment during the iterative process. In CGFF

algorithm, how to adjust search step α is an important step

for the optimization algorithm. If α is too small, the iteration

process may cost too much time. On the contrary, if α is too

large, the current dk may not the correct descent direction

and may miss the optimal solution. In this paper, a Fletcher-

Reeves conjugate gradient form-finding approach has been

utilized to solve the nonlinear unconstrained optimization

problem which transformed from form-finding problems.

Afterwards, calculating the Jacobian matrix H(X) and

∇f(X) which can be regarded as the gradient of f(X). Then,

dk has been utilized to update the nodal coordinate X and the

2-norm of dk is the cut-off condition of the CGFF method.

The current nodal coordinates X could been seen as the

suitable nodal coordinates when the 2-norm of dk is less

than setting error. Otherwise, updating the f(dk) by utilizing

current nodal coordinates X when the 2-norm of dk is greater

than setting error. Ulteriorly, if f(Xk+1) is less than f(Xk),
set α = α/β and k = k+1, the opposite of this circumstance

is when f(Xk+1) is greater than f(Xk), then setting α = α ·β .

Via this approach, the search direction dk could be adjusted.

The algorithm details are shown in Table I and the flowchart

of the CGFF approach is shown in Fig. 1.

Input initial parameters

Output

Calculate 

Yes

No

Yes

No

Yes

No

� � �� �

/� � ��
1k k� �
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( )kf X

( )kf X�
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1( ) ( )k kf X f X� 	

k kd d�� �Set
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End

Start

and

0�k

( )
 kX

( )
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0�k

1� � �k k kX X d

�

Fig. 1. Flowchart of the CGFF method

IV. NUMERICAL EXPERIMENT

In this section, the accuracy and high-efficiency of CGFF

approach has been proved through three examples includ-

ing two two-dimensional polygons and a three-dimensional

prism.

A. Two-dimensional Tensegrity Structures

Firstly, a two-dimensional two-strut tensegrity structure

which is consisted of 4 cables and 2 struts has been

selected to find the self-equilibrium configuration in this

subsection. Fig.2 shows the obtained topological structure

of self-equilibrium tensegrity structure. The obtained nodes

in Fig.3 show the different iteration speed under different

setting error. As shown in Fig.3, with the improvement of

the design error accuracy, the iteration steps are increased.

The chosen error is ε = 1×10−8 which corresponding to the

eighth point and form-finding procedure converges in ten

iterations. The obtained nodal coordinates which utilizing

CGFF method lying in Table II are as consistent as the

obtained nodal coordinates by using FDM approach. The

comparison between two series of coordinates can prove the

accuracy of the CGFF algorithm. Secondly, in order to verify

the CGFF approach still valid in the two-dimensional space, a
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TABLE I

CGFF APPROACH PROCESS

Steps CGFF approach details.
1. Input initial conditions, set k=0.

Calculate ηηη (Xk), f(Xk), ∇ηηη (Xk), ∇f(Xk).
2. If k is equal to 0

Calculate dk , Xk+1 and 2−norm(dk).
While ‖dk‖2 > ε , calculate f(Xk+1),
otherwise output X.
If f(Xk+1)< f(Xk) , set α = α/β
and k=k+1.
Back to calculate ηηη (Xk), f(Xk), ∇ηηη (Xk)
and ∇f(Xk).
Else set α = α ·β then back to calculate

dk , Xk+1.
End if
End while
End if

3. If k is not equal to 0
Calculate β , dk , Xk+1 and 2−norm(dk).
While ‖dk‖2 > ε , calculate f(Xk+1),
otherwise output X.
If f(Xk+1)< f(Xk), set α = α/β
and k=k+1.
Back to calculate ηηη (Xk), f(Xk), ∇ηηη (Xk)
and ∇f(Xk).
Else set α = α ·β then back to calculate
dk , Xk+1.
End if
End while
End if

4. Output the nodal coordinates X

Fig. 2. The obtained geometry of the two-dimensional two-strut tensegrity
structure

more complicated self-equilibrium structure is found through

the CGFF method for a hexagon tensegrity structure which

is formed by three struts and six cables. The self-equilibrium

configuration of this tensegrity structure are obtained in

Fig.4. The CGFF algorithm converges in ten iterations, and

design error is ε = 1×10−8 which corresponding to eighth

point in Fig.5. The nodal coordinates of hexagon tensegrity

structure have shown in Table III. Analogously, the nodal

coordinates which obtained by CGFF method are compared

with the coordinates obtained by FDM approach, the results

are very similar which could also prove the accuracy of

CGFF algorithm.

B. Three-dimensional Triangular Prism Tensegrity Structure

To prove CGFF method is still effective in three-

dimensional space, a three-dimensional triangular prism

Fig. 3. The convergence of CGFF method for two-dimensional two-strut
tensegrity structure

TABLE II

SELF-EQUILIBRIUM NODAL COORDINATES

Form-finding method Nodal coordinates

CGFF method
x: 0.5345 -0.2941 -0.0842 0.7737
y: 0.5355 0.8044 0.1856 -0.0635

FDM method
x: 0.5366 -0.2974 -0.0821 0.7716
y: 0.5499 0.8094 0.1959 -0.0636

tensegrity structure is presented in this subsection. A trian-

gular prism tensegrity structure is consisted of 3 struts and

9 cables. The self-equilibrium geometry of triangular prism

tensegrity structure is shown in Fig.6. The form-finding

approach converges in twelve iterations and the design error

is ε = 1× 10−8 which is the eighth point in Fig.7. The

nodal coordinates of self equilibrium for triangular prism

tensegrity structure have shown in Table IV. Besides, the

obtained coordinates by utilizing CGFF algorithm are largely

consistent with the nodal coordinates which is obtained by

the FDM method. These nodal coordinates which obtained

by utilizing two different form-finding methods can prove

the accuracy of the CGFF approach in three dimension.

From aforementioned three tensegrity systems form-

finding examples, through comparing the nodal coordinates

between the CGFF method and FDM approach, the efficient

of the CGFF method could be proved. Although the error

between two methods is existed, however, the error can

be reduced through adjusting α and β . The current error

ε = 1×10−8 could satisfy the need of form-finding process

for tensegrity structures. If calibrating the parameters α and

β further, the design error can not change drastically and it

Fig. 4. The obtained geometry of the two-dimensional hexagon tensegrity
structure
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TABLE III

SELF-EQUILIBRIUM NODAL COORDINATES

Form-finding method Nodal coordinates

CGFF method
x: -0.4916 -0.610 -0.1886 0.3527 0.4719 0.0497
y: -0.0270 0.3463 0.6659 0.6111 0.2378 -0.0812

FDM method
x: -0.5189 -0.6673 -0.1955 0.381 0.5281 0.0622
y: -0.0705 0.3670 0.7086 0.6582 0.2046 -0.1288

TABLE IV

SELF-EQUILIBRIUM NODAL COORDINATES

Form-finding method Nodal coordinates

CGFF method
x: 1.7321 -0.866 -0.866 -1.5 0 1.5
y: 0 1.5 -1.5 0.866 -1.7321 0.866
z: 0 0 0 6.1485 6.1485 6.1485

FDM method
x: 1.6327 -0.855 -0.789 -1.399 -0.031 1.437
y: 0.038 1.3994 -1.437 0.8558 -1.6358 0.789
z: 0.095 0.095 0.095 6.0548 6.0548 6.0548

Fig. 5. The convergence of CGFF method for two-dimensional hexagon
tensegrity structure

Fig. 6. The obtained geometry of three-dimensional triangular prism
tensegrity structure

may cause the non-convergence of form-finding process.

Eventually, as an important index to test the efficiency of

the CGFF algorithm, the comparison of computation time be-

tween different methods is taken into account. By comparing

the computation time of finding the self-equilibrium config-

uration of two-dimensional hexagon tensegrity structure, the

efficiency of the CGFF algorithm could be verified. Utilizing

the CGFF approach and the built-in function “fsolve” of

MATLAB which could be utilized to solve the nonlinear

optimization problems for comparison. The form-finding

process of hexagon tensegrity structure which using CGFF

method takes 49.76 seconds to find the self-equilibrium

structure with the design error ε = 1×10−8. In contrast, the

built-in function “fsolve” takes 255.08 seconds to find the

Fig. 7. The convergence of CGFF method for three-dimensional triangular
prism tensegrity structure

self-equilibrium configuration of the tensegrity system with

the same design error. By means of these results, the high-

efficiency of the proposed CGFF method could be proved.

V. CONCLUSIONS

In this paper, from an optimization algorithm viewpoint,

a CGFF approach has been proposed to be utilized during

the form-finding process of tensegrity systems. By involving

the physical informations of the structure in the nonlinear

equilibrium equations, the configuration details of the tenseg-

rity structure could be obtained. Utilizing conjugate gradient

approach to solve the nonlinear unconstrained optimization

problem which transformed from the linear equilibrium

equations. Numerical results have ascertained the accuracy

and high-efficiency of the presented CGFF approach for

tensegrity structure form-finding solving. Future work will

consider the application of neural network algorithms for

the form-finding problems of tensegrity structures.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

and the Technical Editor for their valuable comments and

suggestions on revising this paper.

REFERENCES

[1] K. Kim, A. K. Agogino and A. M. Agogino, Rolling locomotion of
cable-driven soft spherical tensegrity robots, Soft Robotics, vol. 7, no.
3, pp. 346–361, Jun. 2020.

736

Authorized licensed use limited to: Plymouth University. Downloaded on September 03,2021 at 10:46:28 UTC from IEEE Xplore.  Restrictions apply. 



[2] H. J. Schek, The force density method for form finding and compu-
tation of general networks, Computer Methods in Applied Mechanics
and Engineering, vol. 3, no. 1, pp. 115–134, Jan. 1974.

[3] J. Y. Zhang and M. Ohsaki, Adaptive force density method for form-
finding problem of tensegrity structures, International Journal of Solids
and Structures, vol. 43, no. 18, pp. 5658–5673, Sep. 2006.

[4] G. G. Estrada, H. J. Bungartz and C. Mohrdieck, Numerical form-
finding of tensegrity structures, International Journal of Solids and
Structures, vol. 43, no. 22, pp. 6855–6868, Nov. 2006.

[5] Y. Li, X. Q. Feng, Y. P. Cao and H. J. Gao, A Monte Carlo form-finding
method for large scale regular and irregular tensegrity structures,
International Journal of Solids and Structures, vol. 47, no. 14, pp.
1888–1898, Jul. 2010.

[6] H. C. Tran and J. Lee, Form-finding of tensegrity structures with
multiple states of self-stress, Acta Mechanica, vol. 222, pp. 131–147,
Aug. 2011.

[7] S. Lee and J. Lee, Advanced automatic grouping for form-finding of
tensegrity structures, Structural and Multidisciplinary Optimization,
vol. 55, pp. 959–968, Aug. 2016.

[8] S. Lee, D. S. Gan and J. Lee, A fully automatic group selection for
form-finding process of truncated tetrahedral tensegrity structures via
a double-loop genetic algorithm, Composites Part B, vol. 106, pp.
308–315, Dec. 2016.

[9] S. Lee, J. Lee and J. W. Kang, Results of generalized equilibrium
path from form-finding of tensegrity structure, International Journal
of Steel Structures, vol. 17, pp. 1225–1231, Sep. 2017.

[10] H. C. Tran and J. Lee, Form-finding of tensegrity structures using
double singular value decomposition, Engineering with Computers,
vol. 29, pp. 71–86, Sep. 2011.

[11] J. G. Cai and J. Feng, Form-finding of tensegrity structures using an
optimization method, Engineering Structures, vol. 104, pp. 126–132,
Dec. 2015.

[12] X. F. Yuan, S. Ma and S. H. Jiang, Form-finding of tensegrity
structures based on the Levenberg-Marquardt method, Computers and
Structures, vol. 192, pp. 171–180, Nov. 2017.

[13] J. G. Cai, X. Y. Wang, X. W. Deng and J. Feng, Form-finding method
for multi-mode tensegrity structures using extended force density

method by grouping elements, Composite Structures, vol. 187, pp.
1–9, Mar. 2018.

[14] L. Y. Zhang, S. X. Zhu, S. X. Li and G. K. Xu, Analytical form-finding
of tensegrities using determinant of force-density matrix, Composite
Structures, vol.189, pp. 87–98, Jan. 2018.

[15] K. Koohestani, On the analytical form-finding of tensegrities, Com-
posite Structures, vol. 166, pp. 114–119, Apr. 2017.

[16] S. Ma, X. F. Yuan and S. D. Xie, A new genetic algorithm-based
topology optimization method of tensegrity tori, KSCE Journal of Civil
Engineering, vol. 23, pp. 2136–2147, Feb. 2019.

[17] Z. B. Sun, Y. T. Tian and H. Y. Li, Two modified three-term
type conjugate gradient methods and their global convergence for
unconstrained optimization, Mathematical Problems in Engineering,
vol. 2014, pp. 1–9, Nov. 2014.

[18] Z. B. Sun, H. Y. Li, J. Wang and Y. T. Tian, A gait optimization
smoothing penalty function method for bipedal robot via DMOC,
IFAC-Papers OnLine, vol. 48, no. 28, pp. 1148–1153, Dec. 2015.

[19] Z. B. Sun, Y. T. Tian and J. Wang, A novel projected Fletcher-Reeves
conjugate gradient approach for finite-time optimal robust controller of
linear constraints optimization problem: application to bipedal walking
robots, Optimal Control Applications and Methods, vol. 39, no. 1, pp.
130–159, Jul. 2017.

[20] Z. B. Sun, H. Y. Li, J. Wang and Y. T. Tian, Two modified spectral
conjugate gradient methods and their global convergence for uncon-
strained optimization, International Journal of Computer Mathematics,
vol. 95, no. 10, pp. 2082–2099, Aug. 2017.

[21] M. Wang, Z. B. Sun, B. C. Zhang, Z. X. Pang and D. W. Jiang, A
Dai-Yuan conjugate gradient algorithm of linear equation constrained
optimization approach for optimal robust controller of bipedal robots,
International Journal of Advanced Robotic Systems, pp. 1–12, Oct.
2019.

[22] Z. B. Sun, T. Shi, L. Wei, Y. Y. Sun, K. P. Liu and L. Jin, Noise-
suppressing zeroing neural network for online solving time-varying
nonlinear optimization problem: a control-based approach, Neural
Computing and Applications, vol. 32, pp. 11505–11520, 2020.

737

Authorized licensed use limited to: Plymouth University. Downloaded on September 03,2021 at 10:46:28 UTC from IEEE Xplore.  Restrictions apply. 


