
Relational-Model Based Change Management for 
Non-Functional Requirements: Approach and 

Experiment 

M. Kassab, O. Ormandjieva 
Department of Software Engineering and Computer Science 

Concordia University 
Montreal, Canada 

{moh_ kass , ormandj}@cs.concordia.ca 

Abstract - In software industry, many organizations either focus 
their traceability efforts on Functional Requirements (FRs) or else 
fail entirely to implement an effective traceability process. Non
Functional Requirements (NFRs) such as security, safety, 
performance, and reliability are treated in a rather ad hoc fashion 
and are rarely traced. This is mainly because of the unique nature 
of NFRs. They are subjective, relative and they tend to become 
scattered among multiple modules when they are mapped from the 
requirements domain to the solution space. Furthermore, NFRs 
can often interact, in the sense that attempts to achieve one NFR 
can help or hinder the achievement of other NFRs at particular 
software functionality. Such an interaction creates an extensive 
network of interdependencies and tradeoffs among NFRs which is 
not easy to trace. In a previous work, we proposed a 
conceptualization of NFRs through the NFRs Ontology. In this 
paper, we extend the previous work by proposing a change 
management mechanism for tracing the impact of NFRs on the 
other constructs in the ontology such as FR or NFR 
operationalization and vice versa, and providing a traceability 
mechanism using Datalog expressions to implement queries on a 
relational model-based representation for the ontology. The 
proposed traceability queries are then evaluated through a multi
project variation quasi-experiment on regression testing conducted 
in the industry. 

I. INTRODUCTION 

Software systems are characterized both by their functional 
behavior (what the system does) and by their nonfunctional 
behavior (how the system behaves with respect to some 
observable attributes like reliability, reusability, 
maintainability). In the software market place, in which 
functionally-equivalent products compete for the same 
customer, Non Functional Requirements (NFRs) become more 
important in distinguishing between the competing products. 
However, in practice, NFRs receive little attention relative to 
Functional Requirements (FRs) [1]. This is mainly because of 
the nature of these requirements which poses a challenge when 
taking the choice of treating them at an early stage of the 
development process. NFRs are subjective, relative and they 
tend to become scattered among multiple modules when they 
are mapped from the requirements domain to the solution 
space. Furthermore, NFRs can often interact, in the sense that 
attempts to achieve one NFR can help or hinder the 
achievement of other NFRs at particular software functionality. 
Such an interaction creates an extensive network of 
interdependencies and tradeoffs among NFRs which is not easy 
to trace or estimate [2]. 

M. Daneva 
Department of Information Systems 

University of Twente 
Enschede, the Netherlands 

m.daneva@utwente.nl 

In a previously published work [3], we proposed a formal 
model for NFRs and their relations. The model was captured 
though a Common Foundation for NFRs which was realized by 
developing the NFRs Ontology. A knowledge-based 
representation such as the one we presented in [3], is necessary 
to support the traceability of NFRs within a system and to 
provide practitioners and researchers with a valuable 
alternative to current requirements engineering techniques. 

The research presented in this paper reports on our fIrst 
usage of the NFRs Ontology as a vehicle towards supporting 
those requirements engineering (RE) activities that pertain to 
NFRs. In particular, the purpose of this work is to propose a 
mechanism to improve the NFRs traceability practice. In 
software industry, many organizations either focus their 
traceability efforts on FRs [1] or else fail entirely to implement 
an effective traceability process [4]. NFRs such as security, 
safety, performance, and reliability are treated in a rather ad 
hoc fashion and are rarely traced. Furthermore, the tendency 
for NFRs to have a global impact upon the software system 
necessitates the need to create and maintain an overwhelming 
number of traceability links. On the other hand, the appropriate 
support for NFRs traceability proposed in this paper can return 
signifIcant benefIts to an organization through helping analysts 
understand the impact of a proposed change upon critical 
system qualities and enabling them to maintain these qualities 
throughout the lifetime of a software system. 

The research questions we address in this work are: What 
are the critical areas requiring traceability attention when 
dealing with change management of NFRs? How are these 
areas mapped to the concepts and relationships dermed in the 
NFRs Ontology? 

In this paper, we present a formal implementation of the 
answers derived from the above questions. The formal 
implementation was realized through Datalog queries [5] on a 
relational model-based representation for the NFRs ontology 
[3]. The proposed traceability for NFRs was further evaluated 
through a multi-project variation quasi-experiment on 
improving the quality of the regression testing conducted at 
NOKIA office in Montreal. 

The remainder of this paper is organized as follows: Section 
II provides a brief overview of related work. Section III 
summarizes the NFRs Ontology, Section IV presents the 



relational model and implementation of tracing queries using 
Datalog expressions. Section V provides a discussion and 
evaluation of applicability of the proposed traceability 
approach to improving the effectiveness and efficiency of 
regression testing. Section VI concludes the paper and outlines 
the directions of the future work. 

II. RELATED WORK 

Although prior work on tracing NFRs has been rather 
limited, a number of traceability approaches have in fact been 
developed to support related activities while incorporating 
NFRs in software engineering processes. 

In [6], the authors adopt the NFR Framework [2] to show 
how a historical record of the treatment of NFRs during the 
development process can also serve to systematically support 
evolution of the software system. The authors treat changes in 
terms of (i) adding or modifYing NFRs, or changing their 
relative importance, and (ii) changing design decisions or 
design rationale. While this study has provided some support 
for extensions to the NFR Framework, particularly in 
representing changes to goal achievement strengths, the impact 
of changes to functional models on non-functional models, and 
vice-versa, has yet to be discussed. 

In [4] and [7], the authors propose an approach named Goal 
Centric Traceability, a holistic traceability environment which 
provides systems analysts with the means to manage the impact 
of functional change on NFRs. Nevertheless, the impact of 
changes to an NFR on other NFRs and the functional model is 
not solved with this solution. 

Many other initial approaches have been introduced by 
researchers active in the RE, product line engineering, and 
aspect oriented software engineering communities to address 
the traceability of NFRs [8], [9], [10], [11], [12], [13], [14], 
[15], [16], [17], [18], [19] and [20]. In our review of these 
approaches, we observed that they have three important 
limitations. First, tracing is tackled within a specific phase or 
phases, and does not cover the entire life cycle. Second, the 
traceability model that is applied is usually focused on specific 
programming paradigm elements. Third, these approaches use 
coarse-grained entities for tracing purposes, which is risky 
from the point of view of the precision of change impact 
analysis, which in turn results in imprecise estimates of the cost 
and time involved in implementing a requirement change. The 
specific challenges faced in state-of-the art traceability practice 
are described in more detail in [17]. 

This paper implements and evaluates a solution to the 
limitations discussed in this section. The solution rests on the 
NFRs Ontology proposed in [3] that is well suited for defming 
and analyzing numerous NFRs, the impact of changes in a NFR 
upon other NFRs, NFRs impact on the FRs and vice versa 
traceable over the entire life cycle. The NFRs Ontology is 
presented in the next section. 

III. NFRs ONTOLOGY 

The NFRs Ontology [3] defmes (shared) meaning of a set 
of concepts for the NFRs domain. This can be used to improve 
communication and interaction among people, or even among 
systems. The ontology has an important core about NFRs 

model, but also addresses areas such as requirements and 
software architectures. 

The NFRs Ontology contains many concepts. In order to 
cope with the complexity of the model we use views of the 
model. A view is a model which is completely derived from 
another model (the base model). Three views of the NFRs 
Ontology were identified in [3]: The first view concerns the 
NFRs relation with the other entities of the software system 
being developed (intermodel dependency). The second view 
contains the classes and properties intended to structure NFRs 
in terms of mutually dependent entities on other NFRs and 
refmements (intramodel dependency). The third view 
represents the measurement process and contains the concepts 
used to produce measures to measurable NFRs. In this paper, 
we limit the focus to the frrst two views due to their relevance 
to the NFRs traceability problem. 

A. Intermodel Dependency View 

Figure 1 illustrates the structure of the NFRs intermodel 
dependency view by means of a simplified UML class 
diagram. The core of this structure relies on the fact that NFRs 
are not stand-alone goals, as their existence is always 
dependent on other concepts in the project context. If a 
requirement is a member of the class 
NonFunctionalRequirement, it is necessary for it to be a 
member of the class requirement and it is necessary for it to be 
a member of the anonymous class of things that are linked to at 
least one member of the class AssociationPoint through the 
hasAssociationPoint property. On the other hand, 
isAssociatingNfrTo links the AssociationPoint to a range of: 
FunctionalRequirement union Element union Process union 
Product union Resource. 

The AssociationPoint can be thought of as an interface from 
the perspective of the association to the individuals from the 
above range. Thus, an individual of AssociationPoint class will 
always associate one or more NFRs to the same one individual 
from the above range. More specifically: 

If an individual is a member of the AssociationPoint class, 
it is necessary for it to be linked to one and only one individual 
from: the (FunctionalRequirement class through the 
isAssociatingNfrTo property) OR (Element through 
isAssociatingNfrTo property) OR (Process through 
isAssociatingNfrTo property) OR (Product through 
isAssociatingNfrTo property) OR (Resource though the 
isAssociatingN frTo property). 

An individual from AssociationPoint class can be linked to 
many individuals from the NonFunctionalRequirement class 
through hasAssociationPoint property. 

B. Intramodel dependency view 

The intramodel dependency view is concerned with the 
refmement of NFRs into one or more offspring; through either 
decomposition or operationalization and the correlation among 
the concepts of the NFRs model. This view is depicted in the 
simplified UML class diagram in Figure 2. 



-element! 

-FRisMap edlnto 

sRefinedlnto I 
-I Element 

I 
I 1 .. * 

1 

I Artifact I * 

'V � I Requirement I 
I Process I I Product 

I I 
,-----

-isAssociatingNFRTo 

NonFunctlonalRequlrement 

I FuntionalRequlrement � 
1 

1.. * -hasAssocia ionPoint 
� 

1 .. * 

-isAssociatingNFRTo 

AssoclatlonPolnt � 
1 +, -;sAssodaHngNFRTo 

-isAssociatingNFRTo � I Model I 
-i AssociatingNFRTo 

I Resource I 

� 
1 

-belongsToDevelopmentPhase -
I Phase I 

I Wrapping I I Overriding I I Overlapping I 

Figure 1. NFRs Intennodel Dependency View. 

-NFR!soecomposefTo 
Designlmplementation I 

I 
-isl nteractingWith 

NonFunctionalRequirement I 
I j<J-I 

-hasOperationalization 

I I 
I I 
I EconmicConstraint I 

I 
I I 

I OperatingConstraint I 
I 

I I 

I 

I 

W operationalization : 
I PoliticalCulturalConstraint l 

-OpDecomposedTo I I I 
q,. I I 

I QualityRequirement I 
I 

I I 

I OperationOp I I ArchitectureDesignDecisionop l I DataOp I I FunctionOp I 
I I I I I I I I 
I I I I I I I I 

Figure 2 . NFRs Intramodel Dependency View. 



Decomposition refers to the NfrIsDecomposedTo property 
that decomposes a high-level NFR into more specific sub
NFRs. In each decomposition, the offspring NFRs can 
contribute partially or fully towards satisficing the parent. 
NfrIsDecomposedTo is a transitive property. The 
decomposition can be "ANed" (all NFR offspring are required 
to achieve the parent NFR goal) or "ORed" (it is sufficient that 
one of the offspring be achieved instead, the choice of 
offspring being guided by the stakeholders) [2]. 

Operationalizations refers to the hasOperationalization 
property that refmes the NFR into solutions in the target system 
that will satisfice the NFR [2]. An operationalization 
corresponds to solutions that provide operations, functions 
(FunctionOp), data representations and architecture design 
decisions (e.g. design pattern) in the target system to meet the 
needs stated in the NFRs. Similar to decomposition, 
operationalization can be ANed or ORed. 

On other hand, an individual NFR may partIcIpate in 
isInteractingWith property which links it to another NFR. This 
refers to the fact that the achievement of one NFR; 
InfluencerNFR, at a certain association point can hinder 
(through isNegativelylnteractingWith property) or help 
(through isPositivelyInteractingWith property) the achievement 
of other NFR; InfluencedNFR, at the same association point, 
e.g. security and performance at read an email message 
functionality. isInteractingWith is not a symmetric property. If 
NFR1 participates in the relation isNegativelyInteractingWith 
with NFR2, then we say that there is a conflict between NFR 1 
and NFR2. A conflict among two or more NFRs occurs when 
the achievement of one NFR obstructs the achievement of 
another. 

IV. RELATIONAL DATA MODEL FOR TRACING 

REQUIREMENTS 

While the meta models describing the ontology in Figures 
1, and 2 are useful ways to understand the abstract structure of 
the NFRs-related concepts, they are not considered a suitable 
basis for retrieving data on the objects that are instantiated from 
this model. Thus, the model has to be transformed into another 
model which facilitates querying the information. The 
relational model is extremely useful as a mapping vehicle, 
because it is based on a single data modeling concept, namely 
the relation. For the purposes of this work, we decided to use 
Datalog expressions [5] to operate on one or more relations to 
yield another relation which would present the desired results. 
Datalog (a subset of Prolog) is a language of facts and rules, as 
well as a logic-based query language for the relational model. 
Query evaluation with Datalog is sound and complete. In 
addition, Datalog supports Recursive Closure Operations which 
makes it possible to trace through multiple levels of 
refmements within the software development process. 

Figure 3 presents the schemas [5] for the relations 
corresponding to the subset of concepts shown in Figures 1 and 
2. The relations are intended to hold information collected by 
stakeholders at different stages of the development cycle. 

We will illustrate the traceability model through examples 
from the NOKlA mobile email application. The application 
brings the email experience from recognizable and branded 

email portals (e.g. Yahoo, MSN, etc.) to the mobile device; and 
it mirrors the familiar 'look and feel' of the PC, generating 
instant consumer adoption and virtually eliminating the 
learning curve. 

In this section, we will limit the discussion to two pieces of 
functionality: (1) the user asks to read an email message; and 
(2) the user composes and sends a new email. Figure 4 presents 
a partial view of these two main pieces of functionality 
decomposed into elements (see Figure 1) of scenarios, 
messages, and methods. The decomposition of FRs into these 
elements is for illustrative purposes. Our traceability approach 
would also support mapping FRs into other refmement 
elements (e.g. elements of the static view of the system such as 
classes and relations). Three NFRs are also presented: security, 
performance, and scalability. 

/ /Schema refers to NonFunctionalRequirement concept 
NFR (ID, NAME, DESCRIPTION, SATISFACTION, TYPE); 
/ /Schema refers to FunctionalRequirement concept 
FR (ID, NAME, DESCRIPTION); 
/ /Schema refers to operationalization concept 
OP (OP_ID, NAME, DESCRIPTION); 
/ /Scheme refers to nfrIsDecomposedTo relation 
NFR_DECOMPOSITION (DEC_ID, PARENT_NFR_ID, SUB_NFR_ID, 
TYPE_OF_DECOMPOSITION); 
/* scheme refers to hasOperationalization relation 
(from the NFR to the design solutions) * / 

NFR_OP (NFR_ID, OP_ID); 
/ /Schema refers to OpDecomposedTo relation 
OP_DECOMPOSITION (OP_DEC_ID, PARENT_OP_ID, SUB_OP_ID, 
TYPE OF DECOMPOSITION); 
/ /Schema refers to isInteractingWith relation 
NFR_INTERACTION (INTERACTION_ID, 
INTERACTING_ASSOCIATION_ID, AFFECTED_ASSOCIATION_ID, 
TYPE_OF_INTERACTION); 
/ /Schema refers to hasAssociationPoint relation 
NFR_ASSOCIATION (ASSOCIATION_ID, NFR_ID, 
ASSOCIATION_POINT_ID, Type); 
/ /Schema refers to FRisMappedInto relation 
FR ELEMENT (FR ID, ELEMENT ID); 
/ /Schema refers to elementlsDecomposedInto relation 
ELEMENT_DECOMPOSITION (PARENT_ELEMENT_ID, 
CHILD ELEMENT ID); 

Figure 3. Schematic representation of some concepts and relations presented 
in Figures I and 2. 

While populating the relations, it is hard to ensure the 
completeness of the information, as the majority of the 
instances of the relations are not directly stated by stakeholders, 
but they hold as valid relations by induction. For example, 
security could be known as being participating in 
hasAssociationPoint relation with individual from 
AssociationPoint class which in its turn participates in 
isAssociatingNfrTo relation with the individual "read an email 
message" instantiated from FunctionaiRequirement class. 
Confidentiality, which is derived from security by "ANed" 
decomposition (through NfrIsDecomposedTo relation), also 
participates in hasAssociationPoint relation with the same 
individual from AssociationPoint class which participates in its 
tum in isAssociatingNfrTo relation with "read an email 
message". This information on confidentiality association 
could be missed when populating the NFR_ASSOCIATION 
relation, yet this relation has to be traced on possible related 
requested changes in requirements. Our tracing mechanism 
considers this situation, and is implemented so that it provides 



the suitable solution. We identify four critical areas in which 
NFRs require traceability support. These areas are discussed in 
the following subsections. 

A. Impact of Changes to Functional Models on NFRs 

When a change is initiated in an FR, the set of NFRs 
potentially affected needs to be identified and retrieved. This is 
accomplished by first retrieving all the directly associated 
NFRs from the relation NFR ASSOCIATION. In order to 
ensure the completeness of the trace and the consistency among 
requirements, it is important that all NFRs associated with all 
elements derived from the affected FR against the requested 
change be analyzed as well. This should be done in a recursive 
manner to cover all possible derived elements. The following 
Datalog expressions implement this query: 

/ / R _TEMP refers to a temporary relation. 
/* FR CHANGED and NFR CHANGED refer to the ID of the - -

FR and the NFR, the 'request changes' from which the need for 
traceability was triggered. * / 
/* RESULT refers to the desired relation that holds the data 
result. */ 
RI_TEMP(Y) � FR_ELEMENT(X,Y) X 
"FR CHANGED" 
R2 _TEMP (Q, W) � ELEMENT_DECOMPOSITION (Q, 
W), RI_ TEMP (Y), Q = Y 
R2_TEMP (Q, W) � ELEMENT_DECOMPOSITION (Q, Z) 
, R2 _TEMP (Z, W) 
RESULT (B) � NFR_ASSOCIATION (A, B, C, D) , C = 
"FR CHANGED" 
RESULT(B) � NFR_ASSOCIATION (A, B, C, D), 
R2_TEMP (Q, W), C= Q 
RESULT(B) � NFR_ASSOCIATION (A, B, C, D), 

R2 _TEMP (Q, W), C= W 

It is important to note that the decomposition of NFRs will 
never have a circular dependency. This is a necessary condition 
for the termination of R2_TEMP. In the case study of the 
mobile email system (see Figure 4), if a change is requested to 
the read an email message functionality, then the above query 
expressions will retrieve security, performance, and scalability 
as potentially impacted NFRs. 

B. Impact afChanges to Nonfunctional Models on Functional 
Models 

To ensure a complete inter-model traceability, we should 
consider the impact of changes to NFRs on the functional 
model to complement the query in Subsection A which 
considered the impact of changes of functional models to 
NFRs. When a change is initiated in an NFR, then the set of all 
association points of the FR type or of the element type should 
be retrieved and analyzed against the potential change. The 
following Datalog expressions implement this query: 

RESULT(B) � NFR_ASSOCIATION (A, B, C, D), D 
"FR", B = "NFR_CHANGED". 

RESULT(B) � NFR_ASSOCIATION (A, B, C, D), D 
"ELEMENT", B = "NFR_CHANGED". 

In the mobile email system (see Figure 4), security could 
be known as being participating in hasAssociationPoint 
relation with individual from AssociatianPoint class which in 
its turn participates in isAssociatingNfrTo relation with the 
individual "read an email message" instantiated from 
FunctionalRequirement class. If a change is requested to a 
security requirement, then the above query expression will 
retrieve the read an email message functionality, all derived 
success and alternate scenarios, and the corresponding elements 
such as select a message and open the selected message, as well 
as the methods mI, m2, m3 and m4. 

C. Impact of Changes to NFRs on Lower-IHigher-Level NFRs 

The change to one NFR can migrate down to offspring 
NFRs or up to parent NFRs in a recursive manner through the 
decomposition links. This type of traceability enables the 
analyst to understand the impact of lower-Ievel change on high
level goals, and vice versa. The following Datalog expression 
implements this query: 

TEMP _1 (B,C) � NFR _DECOMPOSITION (A, B, C, D), B = 
(NFR_CHANGED) 
TEMP _1 (B,C) � NFR _DECOMPOSITION (A, B, C, D), C = 
(NFR_CHANGED) 
TEMP_I (B, C) � NFR_DECOMPOSITION (A, B, C, D), 
TEMP _1 (X, B) 
RESULT (X) = TEMP _I(X, V), X <> (NFR_CHANGED) 
RESULT(y) = TEMP _I(X,Y), Y <> (NFR_CHANGED) 

In the mobile email system (see Figure 4), if a change is 
requested to a space requirement, then the above query 
expression will retrieve the primary space, secondary space, 
and performance requirements. 

D. Impact of Changes on Interacting Associations 

To complete intra-model traceability, it is necessary to 
establish traces between interacting NFRs at certain association 
points (interacting associations). The following Datalog 
expression implements this query: 

RESULT(y) � NFR_INTERACTION (X,Y,Z,W), Z 
"CHANGED NFR". 
RESULT(Z) � NFR_INTERACTION (X,Y,Z,W) 
Y= "CHANGED NFR". 

In the mobile email system (see Figure 4), if a change is 
requested to a space requirement at read email message 
functionality, then the above query expression will retrieve the 
security requirement at that functionality. 



r----------------------------, 
I ,-----A 1------. N 1(---------1 I « 

� I I 

Compose a message 

Send the composed 
message 

Select a message 

Open a message 

Method: m1 

Method: m2 

Method: m3 

Method: m4 

Figure 4: Illustration of FR and NFR Relations through the Mobile Email System. 

E. Guidelines for populating the traceability realtional model 

Below, we restate the applicability of the traceability 
approach with steps towards deploying the approach in 
practice. 

1- Transfonn manually the NFRs Ontology into corresponding 
relational-model based representation. 
2- Upon a change request, identity the potentially impacted 
areas along with their specifications and refinements. 
3- Execute the corresponding query. 
4- Once the retrieval algorithm has returned a set of potentially 
impacted requirements / elements, filter the retrieved 
requirements/elements to remove any non-relevant ones. 
5- A decision on any accepted change in any of the retrieved 
data should be recorded in the corresponding relations. 

V. IMPROVING REGRESSION TESTING WITH THE 

TRACEABILITY MECHANISM 

Testing represents a major effort within the software 
development cycle. The Guide to the Software Engineering 
Body of Knowledge (SWEBOK) [21] provides an overview of 
the basic and generally accepted notions underlying the 
software testing knowledge area .. Testing implies a trade-off 
between limited resources and schedules, and inherently 
unlimited test requirements. As a result, one needs a fmite test 
set with which enough testing is conducted to obtain reasonable 
assurance of acceptable behavior and quality. 

We note that test-cases generation is out of the scope of this 
paper; instead, we aim at improving the quality of regression 
testing by applying our traceability approach. Regression 
testing means rerurming test-cases from existing test suites to 
build confidence that software changes have no unintended 
side-effects [22]. The "ideal" process would be to create an 

extensive test suite and run it after each and every change. For 
many projects this is nearly impossible because test suites are 
too large or because changes come in too fast [22]. Researchers 
have tried to make regression testing more effective and 
efficient by developing regression test selection techniques, but 
many problems remain, such as limited resources or testing 
time. These and other issues have not been adequately 
considered in current research, yet they strongly affect the 
applicability of proposed regression testing processes. 
Moreover, regression testing in the industry is mostly based on 
experience and not on systematic approaches [23]. We believe 
that the traceability mechanism proposed in this paper can be 
exploited to dramatically improve the costs and benefits of the 
regression testing in the industrial context. Because Regression 
testing seeks to uncover new errors, or regressions, in existing 
functionality after changes have been made to the software, this 
type of testing is concerned with changes to existing features 
rather than the new introduced features and thus it was selected 
as a fit to illustrate the proposed change management approach. 

A. Research Hypothesis 

To meet the need for high-quality regression testing, we 
propose to integrate the traceability mechanism within the 
regression testing activity. Our research hypothesis states the 
following: "Applying the traceability mechanism proposed in 
this paper into the regression testing will improve the 
effectiveness and efficiency of the regression testing suite; that 
is, for a lower number of test-cases to be executed within a 
given amount of time, a higher number of defects will be 
detected". 

B. Applying the traceability mechanism to test-cases selection 

For the purpose of the evaluation of the traceability 
approach, we used the settings from the NOKIA Mobile Email 



Application System to run a multi project variation quasi
experiment [24]. 

The NOKIA mobile email application is deployed on 
hundreds of branded cell phones. Change requests are received 
from the email providers, operators or upon a defect discovery. 
As a testing practice in NOKIA, upon triggered changes in the 
requirements, the fix procedure starts and it involves a sanity 
testing activity. Sanity test is a brief run-through of the 
functionality of the software system to assure that the system 
works as expected. The activity is carried on by an execution of 
a fixed set of regression test-cases (25 test-cases out of more 
than 10,000 implemented test-cases) to check that the 
implemented changes didn't break other features. Of course, 
the small number of test-cases (25) is due to limitation of time 
and available human-resources. The fixed set of sanity test
cases are pre-selected manually by the QA manager and they 
cover a set of functionalities which are deemed to have the 
highest priority for the client. 

In this quasi-experiment, fIrst, we link the requirements and 
the design solutions with their corresponding test-cases in the 
test management software. That is, each identified test-case has 
to be linked to at least one requirement or design solution. 
Second, upon a change request classified manually as one of 
the identified critical areas (see Section IV of this paper), the 
potentially affected requirements and design solutions have to 
be retrieved by executing the recommended queries. Third, the 
corresponding test-cases which are linked to the retrieved 
requirements and design solutions will be selected from the 
test-cases database. This is of course in addition to the test
cases which are directly linked to the requirement which is 
referred to by the requested change. 

C. Evaluation and demonstration of regression testing 
improvement due to traceability queries 

The objective of the quasi-experiment was to evaluate the 
research hypothesis stated above. The set of dynamically 
generated test-cases from applying the traceability mechanism 
was executed in addition and in isolation of the fixed set of 
sanity test-cases. The results were then compared. This quasi
experiment was carried out by the same team of client testers at 
NOKIA-Montreal office on 40 mobile email projects for a 
period of nine months from July 2008 till March 2009. The 
number of the dynamically generated test-cases to be executed 
varied in each run depending on the triggered change. 

To understand the improvements, which the use of 
traceability queries brings to the testing practice, we compare 
the practice of using the fixed set of sanity test-cases against 
the practice of using dynamically generated test-cases with the 
help of our traceability queries. Each failed test-case prompts 
the tester to create a defect. 

The average number of defects being discovered per sanity
test execution using the dynamically generated test-cases 
method over the 40 executions we performed is 1.825, while it 
is 0.775 using the fixed set of sanity test-cases (see Figure 6). 
This is an increase of 235%. In addition, the average number of 
dynamically generated test-cases being executed was 19.25 
over the 40 executions. That is less by 33% from the fixed set 
of 25 test-cases (see Figure 5). These results demonstrate 

empirically that the stated hypothesis that the traceability 
queries were useful in improving the effectiveness and 
efficiency of the regression testing practice. 

VI. CONCLUSION AND FUTURE WORK 

The tendency for NFRs to have a wide-ranging impact on a 
software system, and the strong interdependencies and 
tradeoffs that exist between NFRs and the software 
architecture, leave typical existing traceability methods 
incapable of tracing them. In this paper, we use the NFRs 
Ontology specification for requirement relations in a real life 
industrial setting. We proposed and deployed a traceability 
mechanism under the umbrella of the relational model and the 
Data log expressions to track the allocation of requirements to 
system components, and control changes to the system. 

One of the advantages of our approach is that it forces 
system analysts to think about and capture the hierarchical 
relations within NFRs, the hierarchical relations within FRs, 
and the relations between NFR and FR hierarchies. 

Our approach helps systems analysts understand the 
relationships that exist within and across NFRs in the various 
phases of development. A major limitation of the proposed 
approach is related to stakeholders and their ability to identify 
all relevant relations. The paper proposes a method for tracing 
a change applied to an NFR in the traceability model, which 
results in a "slice" of the model containing all model entities 
immediately reachable from that NFR within the hierarchy. 
The approach has been evaluated and demonstrated its 
applicability through a multi project variation quasi-experiment 
performed against the Mobile Email application in NOKIA
Montreal. The replicated quasi-experiment presented in section 
V is an initial evaluation to the proposed traceability 
mechanism for NFRs. 

We believe that benefits which arise by blending our 
research results with existing industry practice can further 
make an enhancement of their experience about requirements 
traceability. For example a valid traceability approach will 
allow the industry to improve the synergies among their RE, 
architectural design, implementation and testing processes 

To collect more evidence about the merits of our approach 
and better judge its validity, we plan further evaluation studies 
on the traceability mechanism that include extending its 
applicability beyond the testing activities (e.g. requirements 
review activities, project's extension.) This will be done by 
applying empirical research methods, specifically case studies 
and experiments [25]. 



40 

35 

30 

25 

20 

15 

10 

5 

o 

-- Dynamically 
Generated Test 
Cases 

-- Fixed Set of Sanity 

Figure 5: Number of Executed Test-Cases: Dynamically Generated Test-Cases vs. Fixed Set of Sanity. 

6 

5 

4 

3 

2 

1 

o 

Fixed Set of Sanity Test 
Cases 

- Dynamically Generated 
Test Cases 

Figure 6: Number of Defects: Dynamically Generated Test-Cases vs. Fixed Set of Sanity. 

REFERENCES 

[1) M. Weber and 1. Wesbrot, "Requirements Engineering in Automotive 
Development: Experiences and Challenges", IEEE Software, vol. 20 (I), pp.I6-
24,2003. 

[2) L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos, Nonfunctional 
Requirements in Software Engineering, Kluwer Academic Publishing, 2000. 

[3) M. Kassab, O. Ormandjieva, and M. Daneva, "An Ontology Based 
Approach to Non-Functional Requirements Conceptualization", Proceedings of 
the Fourth International Conference on Software Engineering Advances 
(ICSEA 2009), Porto, Portugal, pp. 299-308, 2009. 

[4) 1. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and S. 
Christina, "Goal Centric Traceability for Managing Non-Functional 
Requirements", Proceedings of the 27th international conference on Software 
engineering, pp. 362 - 371,2005. 

[5) 1. Ullman and J. Widom, Database Systems: The Complete Book, Prentice 
Hall, 2000 

[6) L. Chung, B.A. Nixon, and E. Yu, "Using Non-Functional Requirements 
to Systematically Support Change", Proceedings of the Second IEEE 
International Symposium on Requirements Engineering, York, U.K., pp. 132 
- 139,1995. 

[7) 1. Cleland-Huang, "Toward Improved Traceability of Non-Functional 
requirements", Proceedings of the 3m international workshop on Traceability 



in emerging forms of software engineering, Long Beach, California, pp. 14 -
19,2005. 

[8] A. Egyed and P. Grunbacher, "Identifying Requirements Conflicts and 
Cooperation: How Quality Attributes and Automated Traceability Can Help", 
IEEE Software, vol. 21(6), pp. 50- 58, 2004. 

[9] A. Finkelstein and W. Emmerich, The Future of Requirements 
Management Tools, In Information Systems in Public Administration and 
Law, G. Quirchmayr, R Wagner and M. Wimmer (Eds.): Oesterreichische 
Computer Gesellschaft, 2000. 

[10] A. M. Salem, "Improving Software Quality through Requirements 
Traceability Models", Proceedings of International Conference on Computer 
Systems and Applications, pp. 1159- 1162,2006. 

[11] B. Ramesh and M. Jarke, "Toward a Reference Model for Requirements 
Traceability", IEEE Transactions on Software Engineering, vol. 27(1), pp. 58-
93,2001. 

[12] C. Hofineister, RL. Nord, and D. Soni, "Global Analysis: moving from 
software requirements specification to structural views of the software 
architecture", lEE Proceedings Software, vol. 152(4), pp.187- 197, 2005. 

[13] D. Jacobs, "Requirements Engineering: so Things Don't Get Ugly", 
Companion to the Proceeding of 29th International Conference on Software 
Engineering, pp. 159- 160,2007. 

[14] E. Baniassad, P. C. Clements, 1. Araujo, A. Moreira, A. Rashid, and B. 
Tekinerdogan, "Discovering Early Aspects", IEEE Software, vol. 23(1), pp. 
61- 70, 2006. 

[15] L. Bass, P. Clements, and R Kazman, Software Architecture in Practice, 
Addison-Wesley, NY, 2003. 

[16] E. Niemela and A. Immonen, "Capturing Quality Requirements of 
Product Family Architecture, Information and Software Technology", vol. 
49(11- 12), pp. 1107-1120,2007. 

[17] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafui, 
"Model Traceability", IBM System Journal, vol. 45(3), pp. 515- 526, 2006. 

[18] O. Gotel and A. Finkelstein, "An Analysis of the Requirements 
Traceability Problem", Proceeding First International Conference 
Requirements Engineering, Colorado, U.S.A, pp. 94-101, 1994. 

[19] P. Letelier, "A Framework for Requirements Traceability in UML-Based 
Projects", Proceeding of the 1st International Workshop on Traceability in 
Emerging Forms of Software Engineering, Edinburgh, pp. 30-41,2002. 

[20] V. Winter, H. Siy, M. Zand, and P. Aryal, Early Aspects Workshop at 
AOSD'06, Bonn, Germany, 2006. 

[21] A. Bertolino, "Knowledge area description of software testing guide to 
the SWEBOK", Available at: http://www.swebok.org , 2004. 

[22] J. M. Kim, A. Porter and G. Rothermel, "An Empirical Study of 
Regression Test Application Frequency", The Journal of Software Testing, 
Verification & Reliability, vol. 15 (4), pp. 257-279, 2005. 

[23] E. EngstrOm and P. Runeson, "A Qualitative Survey of Regression 
Testing Practices", In Product-Focused Software Process Improvement, 
Lecture Notes in Computer Science, 6156, pp. 3-16, Springer Berlin / 
Heidelberg, 2010. 

[24] V. R. Basili, "The role of experimentation in software engineering: past, 
current, and future", Proceedings of the 18th international conference on 
Software engineering, Berlin, Germany, pp. 442- 449,1996. 

[25] C. Wohlin, Experimentation in Software Engineering, Springer, 2001. 


