
Modelling and Developing Distributed

User Interfaces based on Distribution Graph

Jérémie Melchior
1
, Jean Vanderdonckt

1
 and Peter Van Roy

2

1
Louvain Interaction Laboratory, Louvain School of Management, Place des Doyens, 1

2
Dept. of Computing Science and Engineering, Ecole Polytechnique de Louvain, Place Sainte-Barbe, 2

Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium

{jeremie.melchior, jean.vanderdonckt, peter.vanroy}@uclouvain.be

Abstract—This paper introduces, motivates, defines, and exempli-

fies the concept of distribution graph as a way for modelling and

developing Distributed User Interfaces of interactive systems. A

distribution graph consists of a state chart model enriched as fol-

lows: states represent individual states of entities involved in the

distribution as well as a collective representation of their syn-

chronization; transitions are represented by event-condition-

actions where the action part consists of a distribution script. A

distribution script expresses the distribution behaviour based on

distribution primitives. These primitives are basic operations that

manipulate parts or wholes of user interface for distribution at

run-time. These primitives are themselves implemented on top of

an environment for distributed computing that is implemented

for four major computing platforms (i.e., Microsoft Windows,

Mac OS X, Linux, and Mobile Linux). Thanks to the capabilities

provided by this environment, the user interfaces belonging to

these distributed systems can be run indifferently on any of these

computing platforms. This paper defines the new concepts intro-

duced for this purpose, i.e., distribution primitive, distribution

script, and distribution graph, and demonstrates how they can ef-

fectively support distributed user interfaces.

Keywords-Distributed User Interface, Human-Computer Inter-

action (HCI) modelling, Ubiquitous computing

I. INTRODUCTION

Significant progress has been made in the area of multi-
device User Interfaces (UIs), where UIs are produced for sev-
eral devices simultaneously, or in migration of UIs, where UIs
are migrated from one device to another while maintaining task
continuity. However, less work has been devoted towards di-
viding a UI across devices, displays, or platforms, where they
are used by the same user or shared by different users [1]. A
Distributed User Interface (DUI) is hereby defined as any ap-
plication User Interface (UI) whose components can be distrib-
uted across different displays of different computing platforms
that are used by different users, whether they are working at the
same place (co-located) or not (remote collaboration). Conse-
quently, DUIs allow for the UI to be spread out over a set of
displays/devices/platforms taking advantage of each dis-
play/device/platform’s unique properties instead of residing on
a single display/device/platform with the interaction capabili-
ties that are constrained on this display/device/platform [2].

DUIs have been subject to several studies that investigate
further their specific characteristics that may lead to design im-
plications. This includes use of multiple monitors on a same
computing platform by a single user [3], use of multiple plat-
forms by a single user with data synchronization between the

platforms enabling continuity of tasks [4], exchange of infor-
mation between platforms belonging to different users (e.g., by
the Pick & Drop interaction techniques [5]), moving infor-
mation between displays on a single platforms (e.g. [5]), parti-
tion of tasks across displays for a single user [6], sharing com-
mon information private on some platforms, Beale and Ed-
mondson conducted user surveys in order to determine the user
behaviour induced by using a DUI: they identified the im-
portance of having multiple carets and the complexity of multi-
tasking and they suggest design implications for using DUIs in
order to support distributed tasks. In particular, they stressed
the importance of a multi-tasking model that is partially built at
the local level of a single user and at the global level across us-
ers when collaboration exists. The global scenario should be al-
so dissolved into local scenario in order to preserve the con-
sistency between common tasks and individual tasks. This ob-
servation is fundamental for the work conducted here. Tan &
Czewinsky found that physical discontinuities had no effect on
performance, but found a detrimental effect form separating in-
formation within the visual field, when also separated by depth.

There is a high need of some visualization of the distribu-
tion. None of the cited works have provided a way to visualize
what was distributed on each platform. The reason comes from
the pre-programmed disposition and static environment provid-
ed in their examples. The dynamic of the platforms are not
considered, such as platforms joining and living at run-time.

Due to the multiplicity of interaction techniques in DUIs,
Nacenta et al. conducted a study to compare the efficiency of
six techniques for moving objects from a platform (e.g., a tab-
let) to another one (e.g., a table top) in four different distance
ranges and with three movement directions. Their study sug-
gests that spatial manipulation of data was faster than pressure-
based techniques.

On the one hand, more user studies are available on specific
DUI setups that provide us with more knowledge on design
implications for such DUIs. Yet, in order to allow for the user
to get the best potential of interaction capabilities offered by
the various devices/displays/platforms for the current task to be
carried out, we should enable designers as well as developers to
provide users with the best DUI possible for a given set of de-
vices/displays/platforms by describing them in a formal way
[4]. This will allow both designers and developers to enable the
underlying system to decide where different DUI portions
should be placed in locations that are significant and usable for
a distributed task to take place. For instance, the game of Pic-
tionary is a typical example of a distributed task: one player se-

lects a word from a dictionary, a second player draws this word
on a surface shared by other players who have to guess what
this word is as quick as possible, but below a certain time
threshold. The team to which the winning player belongs to re-
ceives points.

A. Related Work

Wincuts [7] augment window managers by letting users ac-
quire and interact with alternative views of arbitrary regions of
existing windows. The Frisbee6 is a widget that acts as a tele-
scope to a remote area on the display. Users manipulate remote
items by interacting with their proxies within the Frisbee’s
main area and reposition items on the main display by moving
them through specified transfer channels. Speakeasy [8] con-
sists of a computing framework that is designed to support use
of resources such as displays/devices/platforms that ap-
pear/disappear opportunistically, called recombinant compu-
ting [9]. In most circumstances, distributing parts or whole of a
Graphical User Interface (GUI) is primarily driven by the sys-
tem itself or by a predefined procedure that is rarely flexible.
When there is some procedure in order to distribute some parts
of a GUI, operations required to conduct this distribution are
often at a high level –which is appropriate– but rarely subject
to parameterization.

B. Conceptual modelling

A user working with an interactive system is represented by
the context of his work. A user may often change the context in
which he is while using an application. Thus, developers try to
improve applications by taking into account the possible con-
texts of use.

There already exist lots of researches about context-aware
applications [12, 13] but there is no adaptation when context
switches. The adaptation proposed to context switches are ei-
ther for specific or pre-programmed for applications. Thus
there is no big need for visualization of the distribution state.
Most of the time, platforms are co-located which enables them
to see directly the result of a distribution operation on the tar-
get. DUIs are not limited to co-located platforms which lead to
higher needs for feedback and visualization.

In this paper, we present concepts to improve the way ap-
plications react to a context switch. We first define the im-
portant notions as the context of use and the distribution state.
Then, we introduce the concept of distribution primitives
which represents the operations that can be applied to UIs. Fi-
nally, we introduce the concepts of distribution scenario and
graph.

A distribution scenario is a sequence of operations on UIs.
A distribution graph is a state diagram where states are distrib-
uted and transitions are events that trigger a new distribution of
the UIs.

Thanks to these concepts, we believe that applications will
be able to dynamically and automatically adapt to context
switches while staying under the control of the users.

As a proof of concept, we describe an application in two
variants using these concepts. A simplified and a complex Pic-
tionary self-adapt the distribution of the UIs when role assign-
ments change.

II. CONCEPTS

A. Assumption

As it is physically impossible for a user to be at the same
place at the same time, a user is only able to directly use plat-
forms located in the same location. If two platforms are at dif-
ferent places, the user is only able to use at most one of them.

B. Context

A user is a concept of a human person with some charac-
teristics describing the level of use that he is able to accom-
plish. The set Users is a collection of users with at least one
distinct attribute. Here are the different characteristics:

 Task experience: low / average / high

 System experience : low / average / high

 Motivation : low / average / high

 Complex device experience: low / average / high

The platform on which the user interacts with the tasks is
mostly represented by the device. If the user is switching from
one computer to another or change the number of devices he
uses, there is a change of platform.

Depending where and when the user is accomplishing the
tasks, he is evolving in an environment. For example, he can be
at work, at home or traveling. Even the easiest tasks can be-
come difficult if the environment is not appropriate for it. A
change of environment happens if the user moves to some-
where else, if the environment becomes quieter or louder, and
so on.

Each user has its own context of use describing the envi-
ronment and the material in which he is. A context of use C is
composed by a platform P, a user U and an environment E.

C  (P,U,E) (1)

A context of use is bound to only one platform, one user
and one environment but it does not mean that the interactive
system is only one user in a single environment using a single
platform. The platform/display is the tool used by to interact
with the system. The context according to this definition is dis-
played in Figure 1. A simple context with only one plat-
form/display, one user and in one environment.

Figure 1. A simple context with only one platform/display, one user

and in one environment.

There are many contexts of use to describe a multi-user in-
teractive system. This definition is limited to a single platform,
user and environment. Here we introduce the concept of a dis-
tributed context in Equation 2.

Cd  (Pd,Ud,Ed) (2)

We use this notion when a system has the ability to distrib-
ute one of the components. Pd is the vector P1, P2, …, Pm repre-
senting m platforms on which the system may be run. Ud is U1,
U2, ..., Un where n users may use the system whenever and
wherever they want. Finally, Ed is E1, E2, ..., Ep where p envi-
ronments are possible environments for the users to be in. A
non-distributed context has m = n = p = 1 while a distributed
context has m > 1, n > 1 or p > 1.

A distributed platform Pd means that the system is running
across several platforms. The most common are desktop, laptop
and netbook computers as well as mobile phones. If the system
runs on top of two devices with the same platform, it is also a
distributed platform. Example of context with multiple plat-
forms can be found in Figure 2.

Figure 2. Example of multi-platform contexts.

These three examples can be expressed with the notation
defined in this section. For the first example, there are one user,
two tasks and two displays, the context is then defined as:

Cd1  ({D1,D2}, {U1}, {E}) (3)

The concept of task is not part of the context. It only de-
scribes the complexity of the goal of the system. The context of
the second example is defined as:

Cd2  ({D1,D2}, {U1,U2}, {E}) (4)

As for the first example, there is only one environment be-
cause we find it already a good challenge without the need to
change the environment which would make readability much
more difficult. The last example is thus defined as:

Cd3  ({D1}, {U1,U2}, {E}) (5)

The system may also be distributed through different users.
It may be a distribution in space, with users located in different
countries or regions. Also in time, people may use the system
at different periods of time. As several users may be involved,
the system may be used in different environments. From the
user point of view, the context may also be a distributed con-
text. Nevertheless, it is possible that some users have a non-
distributed context. It means that m = n = p = 1.

It is important to notice that some platforms, some users
and some environments may not be attached to any context of
use at a certain moment of time. For example, two users in the
same room with their own platforms are in Environment E1:

 {

 (6)

Now, U2 leaves environment E1 to environment E2. In the
room E1, he was using a projector which is not available any-
more. Thus, after U2 has left the room, the platform P3 is not
currently attached

{
 {

 {
 (7)

As there may have many instances of each component, we
are interested in studying the relationships between each com-
ponent.

C. Distribution state

The first concept we needed to introduce in order to visual-
ize the actual distribution is a state for the system. Each plat-
form needs to give information about what it is currently dis-
playing. The state of the whole system is called a distribution
state. A distribution state is a snapshot of a system at a certain
moment of time in which the system is stable. It means that a
state represents the context of use of the whole system.

Each user has a different context of use which is an indi-
vidual distribution state. The distribution state for the user is
the distribution of his UI across several platforms available to
him. There are two kinds of platforms, the individual platforms
which are not distributed and shared platforms which are dis-
tributed with other users. An example of a shared platform is a
large screen display in a room.

The distribution shared state is the sum of all individual
states taking into account the different inter-state relations. For
example, Adrien is working in his room with his desktop com-
puter. The context for this situation can be:

 (8)

Here we have a distribution state for Adrien. We call this
the distribution individual state of Adrien. The representation
of this state is:

 { } (9)

At the same time, his friend named Bastien is playing with
him on a distributed application. The distribution individual
state for Bastien may be:

 { } (10)

Thus, the system is composed by two individual states. For
the example, the distribution shared state is:

 { } (11)

Both types of state are distributed. Bastien in context C1b
has distributed the application on his two platforms.

D. Distribution primitives

The modifications that could happen in applications after a

context change may follow some well-formed rules. To adapt

the UIs, the application may apply several distribution primi-

tives. The simplest statements are the Display and Undisplay.

The first allows one or several graphical elements to be dis-

played on the screen while the second hide them. For example,

the Display statement is defined by:

display(object:UI, site:Site)
Pre: The site has already a window ready to display the
object.
Post: The object is display.

Then we have the Move and Copy. It allows to move and copy

one or more elements from a platform to another. The defini-

tion for the copy is:

copy(object:UI, source:Site, target:Site)
Pre: The target site has already a window ready to get the ob-
ject.
Post: The object is copy and inserted in the target.

The context of use associated with the source is C1  (P1,

U1, E1). The target one is C2  (P2, U2, E2). There is at least

one of the elements in C2 that is distinct from C1. There are al-

so two other basic operations: Insert and Switch. While the

first inserts an element in a container, the second switch two

elements. Complex operations such as merging and splitting

apart UIs are also statements.

E. Distribution scenario

With the distribution primitives, it is possible to adapt the

UI. The power of these statements is the ability to be automat-

ically triggered when some events happen on the system. For

example, when a new user connects to the application, he may

wish to collaborate and thus receive a copy of some parts of

the UI. Several statements may be triggered to allow the user

to take part of the application. In this section, we introduce the

notion of distribution scenario. It consists of automation in or-

der to simulate events in the application. Concretely, the dis-

tribution scenario is a sequence of distribution primitives lead-

ing to the whole execution of the application.

Let us define Scenario 1 which will start and exit an appli-

cation with a single window and button:

Scenario 1:

 button(text:”Button1” name:B1)

 display(object:B1 site:A)

 wait(5)

 undisplay(object:B1 site:A)

This simple example has two distributions primitives and

two commands. It first creates a button with the command but-

ton(text:"Button 1" name:B1). Then, the statement display put

this button in an already created window. The wait command

will wait 5 seconds before executing the next statement. The

statement undisplay hides the button which lead to the end of

the scenario.

F. Distribution graph

A state diagrams as used in [11] is a combination of states

and transitions into the same diagram. The state represents the

system at a certain period of time. The system evolves from a

state to another by using transition links. Each transition rep-

resents an event. A distribution graph is the same notion as a

state diagram. The difference comes from the definition of

state and transition. A distribution graph is a state diagram

where states are distribution state as defined in 2.3 and transi-

tions are sequence of distribution primitives.

Figure 3: Example of distribution graph for Adrien and Bastien con-

texts.

In Figure 3, we see an example of distribution graph. It

starts in S1 defined in Definition 8. Then Adrien decides to

switch from his desktop to his laptop, this leads to Adrien be-

ing in a new context. The effect of this change is that the UI

displayed on the desktop is now moved to the laptop. We are

now in state S2. Lastly, Bastien turns off his laptop entering a

new context for state S3. The UI displayed on the laptop is

now undisplayed.

III. CATALOG OF DISTRIBUTION OPERATIONS

This section introduces a summary of the catalog for the
distribution operations. For complete descriptions, please refer
to www.usixml.org.

Name Effect

Display Display an item in one or more UIs

Undisplay Hide an item from one to many UIs

Move Move an item from a UI to another one

Copy Copy an item of an UI to another one

Insert Insert an item in a container of a UI

Switch Exchange two components in the same or dif-
ferent UIs

Merge Merge two UIs together

Separate Explode a UI in two or more separated UIs

Table 1: Catalog of distribution operations.

IV. CASE STUDY

In this section, the different notions previously introduced
are instantiated in a simple example. The case study presented
here is a Pictionary game with different variants. The first one

is a small example of the different concepts while the other one
is a complete and more complex case study. A more complex
case study is also presented; it is a board game like the Game
of the Goose and Snake and Ladders.

A. Pictionary

Pictionary is a game where players have to guess words
helped by drawings. We have chosen this case study because it
is easy to create some variants, is an easy to use and easy to
understand game and brings fun to players. The game may be
played with and without teams depending on the number of
players. Security aspects are not handled here as we consider
this game as familial and friendly. The way the game is distrib-
uted is to prevent players cheating easily but no guarantee is
provided against cheaters. There are several roles in the Pic-
tionary: the drawer, the guesser and observers. Each role is as-
sociated to a UI to enable the task allowed with the role. For
example, the drawer has to be able to draw things, the guesser
to see what is the current drawing and observers should be able
to verify that the game is going right. The distribution of the UI
will be automatically rearranged when roles change. The min-
imal information is the remaining time and the game status.
Each UI has this information in common plus other specific in-
formation. Compared to collaboration games, where each plat-
form would run its own separate client of the game, a game
based on DUIs does only need to be part of the system. Thus, it
allows the system to start on a single platform and to extend
with platforms arriving into the system.

Figure 4: User Interface of the drawer.

Here are the key roles and their Graphical User Interfaces
(GUI):

 Drawer: a person that helps finding the word to guess by
drawings. The minimum UI needed for this role as in Fig-
ure 4 is the drawing tools and information about the game.
The user sees the word he has to draw about and has the
tool to draw on the shared area.

 Guesser: a person that has to guess the word. If there are
teams, guessers are in the same team as the drawer. The
drawer may not be a guesser and his associated UI is in
Figure 5.

 Observer: a person that is not currently trying to guess the
word. This role is for opponents to the playing team. When
there are only two players, the drawer will also have the ob-
server UI. For observers, the UI is mainly the ability to start
and end a game as in Figure 6.

Figure 5: User Interface of the guessers.

Figure 6: User Interface of the observers.

Depending on the role associated to a player, he will get the
appropriate GUI for his role. When roles change, the distribu-
tion of the UIs is reprocessed to keep a coherent state.

B. Simplified Pictionary

The first case study is a simplified variant of the Pictionary,

where there is no team. Observers are players waiting for next

game to begin. Each person is a single player as the drawer or

a guesser. There is only one drawer at the same time but there

may be several guessers. The game starts with an initial state

where the application is not started, the current state is empty.

When the first user starts the application, he needs to create a

room for the game. Other players will then join this room to

play. The UI for this first player allows him to create a new

game as in Figure 7. The pseudo-code to create this UI is re-

produced in Figure 8.

Figure 7: Creation of a game when no game is already started.

{Display
 td(name:p1
 button(name:b_c glue:e text:"Create:")
)
}

{Display
 entry(name:e_c glue:w bg:white
 init:"Own game"
 handle:HEntry return:R)
#p1}
{Display lr(name:create_game b_c e_c)#p1}
{Display
 td(name:p1
 create_game
 td(name:join)
 label(name:status glue:swe
 text:"Waiting for a game"
 bg:white)
)
}
for I in {DiscoverGames} do
 {Display
 button(name:b#I glue:nswe
 text:"Join "#I}
#join}
end

Figure 8: Pseudo-code for creating initial UI.

The first steps create and display a button and an entry in a
new window. These two widgets will then be associated in a
new widget arranging them from left to right. The last step is
the creation of the window with all widgets arranged in the de-
sired order. The td widget created by the main Display contains
the widgets create_game, status and zero to several buttons.
The name used when we create widgets is the key to use the
widget later. As we can see, the button named bc appears in the
creation of the lr widget. As there is currently only one player,
the game cannot be started. The application still needs a player
before being able to start. The next state is the connection of a
second player. Two players are now connected as Observers
waiting for the game to begin. Figure 9 shows the current state
of the application for the different roles. To create the UI of
Player 2, it only needs to copy Player 1 UI with code in Figure
10.

Figure 9: Second state. Player 1 and 2 are connected

{Copy p1 td(name:p2)}

Figure 10: Pseudo-code for updating UI after game creation.

As the game is created, both players got an update with

their UI looking like in Figure 11.

Figure 11: Creation of a game when no game is already started.

The code to update the UI is presented in Figure 12. Now,

both players are waiting for the game to begin. Their UI is the

same until one of the players chooses to start the game. As the

minimum number of players is reached, the game can start and

each player will now be assigned to a role. In Figure 13 Player

1 becomes the drawer and Player 2 a guesser. When Player 1

becomes the drawer, the UI has to be redistributed to this new

role assignment. The result of this redistribution appears in

Figure 14. This UI slightly differs from Player 2 because Play-

er 1 has to stay an observer. As Player 2 is the guesser, he is

not allowed to have the ‘Start’ and ‘Found!’ buttons. This role

should be assigned to observers, if there were any. The only

solution is to assign this role to the drawer itself.

Thanks to the UI he is already playing with, the adaptation

of the UI is only a small piece of code. In three statements, the

UI is adapted. The code can be found in Figure 15. The UI of

the second player also has to be adapted to the new role as-

signment. He now has the guesser UI as in Figure 16. The

code for this adaptation can be found in Figure 17. Here, the

transition triggered by the connection of a new player can be a

loop from the current state. The only modification happening

when a new player connects is an update in the observer list. It

is exactly the same if Player 1 leaves the game.

{Undisplay create_game#p1}
{Update status "Running game: "#Name}
{Display
 td(name:observer
 lr(name:enter_word glue:nwe bg:white
 label(bg:white text:"Enter word: ")
 entry(glue:w bg:white
 init:"House"
 handle:HEW)

)
 lr(name:start_found bg:white glue:nwe
 button(glue:e text:"Start")
 button(glue:w text:"Found !")
)
 lr(name:remaining_time bg:white glue:swe
 label(glue:e bg:white
 text:"Remaining time: ")
 label(glue:w bg:white text:"02:00")
)
)
#p1}
{Display td(name:p1 create_game observer status)}

Figure 12: Pseudo-code for updating UI after game creation.

Every time the word to guess is found, the winner becomes

the drawer while the drawer becomes a guesser. If the word is

not found in the time let for the game, the current drawer wins

and stays the drawer. The game needs at least two players.

In the state where Player 1 is the drawer, two transitions can

be triggered. If P1 wins, the system stays in the same state.

Otherwise, the system has to redistribute the UIs. In Figure 18,

the winner is Player 2. As he won, he becomes the new drawer

and Player 1 becomes a guesser. The merging of the two first

states is represented by a dashed red loop. The last step re-

maining is the redistribution of the UI when role are ex-

changed. This means that we want to switch the upper part of

Player 1's UI to Player 2's UI. This can be done with the code

in Figure 19. Here we introduce the ability to choose the posi-

tion of the widget. The drawing_tool widget will be placed

first in widget p2.

Figure 13: State diagram of the current system.

Figure 14: Player 1 becomes the drawer and stays observer.

{Undisplay enter_word#observer}
{Display
 td(name:drawing_tool
 label(name:word bg:white
 text:"Word: House")
 {Record.adjoin CD lr(name:colors
 glue:n
 relief:sunken
 bg:white)}

)
#p1}
{Display
 td(name:p1
 drawing_tool
 observer
 canvas(name:drawing area
 bg:white glue:nswe)
 status
)
}
Figure 15: Pseudo-code for updating UI from Observer to Observer-

Drawer.

Figure 16: Player 2 becomes the guesser.

{Undisplay enter_word#p2}
{Undisplay start_found#p2}
{Display canvas(name:drawing_area
 bg:white glue:nswe)#p2}

Figure 17: Pseudo-code for updating UI for Player 2 becoming a

guesser.

Figure 18: Complete diagram of the whole system.

{Move drawing_tool p2 pos:first}
Figure 19. Pseudo-code for switching player's role.

C. Extended Pictionary

In this section, we introduce a dynamically extended ver-

sion of the Pictionary as a real case study. As the number of

player increases, the simplified version may be extended to

support teams. The minimum required for this variant is four

players separated in two teams with two players.

A team is composed by at least two players. The team that

is currently drawing needs a drawer and at least one guesser.

The members of the other teams are observers. The distribu-

tion graph for two teams is presented in Figure 23 based on

the one in Figure 18.

If a guesser finds the word within the guessing time, he

becomes the drawer and the team stays playing. If the guess-

ing time is passed and no guesser found the word, another

team is given the ability to play the same word. If the team

finds the word, this team becomes the new team playing. If

not, another team takes the turn until every team has played

with the word. Every time a word is found, it increases the

points of the team currently playing.

D. Game of the Goose / Snakes and Ladders

Another kind of game we introduce as a case study for this

modelling with distribution graph is inspired from the game of

the goose and snakes and ladders games. In both games, you

have a board filled with squares. Each square is a different

step with some action associated to it. The game we created

has a virtual board with squares associated to games. As each

game has its own UI, the user is providing with a different UI

at each step during the game. The distribution appears at each

step, because the game will distribute the right UI to the in-

volved users. Here are three different games:

 Single-player: Minesweeper is a game in solo where the

user has to clear the board without detonating a mine.

 Two-player: chess is a game where two players are oppo-

nents; one is in white and the other in black. The goal of

the game is to checkmate the opponent’s king.

 Multi-player: the Pictionary as introduced in the previous

sections is a game where each player has his own role.

There is always someone who has to guess what another

one is drawing.

This game is even more complex than the Pictionary vari-

ants introduced in the previous sections. The game has to pro-

vide a UI to each player for the main game, but also to each

player for the current action.

For a single-player game, the other players may have no

UI at all or be observers. For a two-player game, two players

need to get a UI which allow them to see what they can do and

to partially see what he can from the other player.

The players that are not opponents in the game may join

the game as observers.

In a multi-player game, each player will have his own role

and the UI must be distributed in a way that enable all the

players to have access to their role functionalities but without

giving them information that they should not have.

The distribution scenario for this game is much more com-

plex than for the Pictionary. An addition to this case study is

the ability to add new games on the fly, or change the associa-

tion between squares and games. This game is thus a dynami-

cally evolving environment with several users with several

platforms. At least one platform is used for the system, but to

allow hiding information, it is recommended to have at least

one platform by user/player.

There exist three main states for this game as respectively

reproduced from Figure 20 to Figure 22.

Figure 20. Single-player game, one player (Px) only while other are

observers.

Figure 21. Two-player game, two players, Px is the first player and

Py is the opponent.

Figure 22. Multi-player game, player in ℙ will have a role but also

Observers may have on.

In the first case, we have games like the Minesweeper

which does only involve one player. Px will be the one play-

ing the game and is the current player of the main game. Other

examples of single-player games are a Rubik’s cube and Pin-

ball.

The two-player games will involve the two players (Px and

Py). The actual player (Px) will have to face the opponent

(Py). This can happen when two players are in the same

square. The player arriving in the square (actual player of the

main game) will have to defeat the one that was already there

(the opponent). Chess is a good example of a two-player

game.

The last case is multi-player games such as the Pictionary.

All the players may be part of the game. The one that are in

the same square will have the main roles (drawer and guesser

for the Pictionary) while the others will act as observers or

passive players.

Player: {Px}

Observers: All \ {Px}

Player: {Px, Py}

Observers: All \ {Px, Py}

Player: ℙ

Observers: All \ ℙ

V. IMPLEMENTATION

A. Distribution primitives

The distribution operations have been implemented in Mo-

zart framework in OZ language [14]. The advantages of this

framework are the support of the most used operating systems

(Microsoft Windows, Unix-based distributions such as Linux

and Mac OS X), the network layer allowing transparent migra-

tion. The work described in this paper goes further than a pro-

totype. The main goal is to develop a complete toolkit for cre-

ating DUI as simple as designing UIs with programming tools.

We use distribution operations to control the way the DUI are

distributed across several devices on various platforms. These

operations can be triggered manually by code, by command

line scripts or an interpreter, or by meta-GUI controlling the

whole distribution.

Figure 23: Complete diagram of the whole system.

B. Implementation of the primitives

The display operation is the first to use for creating DUI.

Because of space limitations, this section only describes the

implementation of this operation for the example 5:

{Display td(name:p1
 button(name:b_c glue:e text:"Create"))}

Figure 24: Simple example of a distribution operation.

Here, we need to display some elements arranged in a top-

down (td) panel. The widgets placed here is a simple button

with text Create. The procedure display receives a record de-

scribing the widgets to display as in Figure 24. Here the top-

level widget can only be a top-down or left-right widget. The

code of the Display function is in Figure 25.

proc {Display Param}
 case {Record.label Param}
 of td then {Dis td Param}
 [] lr then {Dis lr Param}
 end
end

Figure 25: Part of code of the procedure Display.

The Dis function of Figure 26 is called by the display pro-

cedure. As no window was created before, a new window is

created according to the widgets placed in the records. Each

widget is stored with his name to be managed later.

proc {Dis Wid Param_Old}
 Title Widget
 Param = {Record.subtract Param_Old name}
in
 Widget = {Process Param {Arity Param} Wid()}
 if {HasFeature Param title}
 then Title= Param.title
 else Title= "No name" end
 Win = {QTk.build
 {Adjoin Wid(title:Title)
 Widget}}
 if {HasFeature Param_Old name}
 then Names := {Append @Names
 [Param_Old.name#Win]}
 end
 {Win show}
end

Figure 26: Part of code of the procedure Dis.

The last important procedure is Process from Figure 27.

Each widget will be created in two parts. The first is the object

representing the widget and manage by its name. The second

is the value which is used for the GUI.

In Figure 8, we presented the scenario to create the UI dis-

played in Figure 7. No matter where the scenario is triggered,

it allows programming the action resulting to an event in a dis-

tribution graph. Each event is bound to an action. When an

event occurs, the action corresponding will be triggered. Sev-

eral distribution operations will then redistribute the system

across the different contexts of use.

fun {Process Param List Wid}
 fun {ProcessHelper Param List Wid}
 case List of nil then Wid
 [] I|R
 then NewWid Lab={Label Wid} in
 if {Value.type I} == int
 then
 Wid_I= Param.I Lab_I= {Label Wid_I}

 in
 NewWid = {Process Wid_I
 {Arity Wid_I}
 Lab_I()}
 else
 case I
 of glue then
 NewWid = Param.glue
 [] name
 then Names := {Append
 @Names
 [Param.name#NewWid]}
 [] text then NewWid = Param.text
 end
 end
 if {Value.isFree NewWid} then
 if I == name then
 {ProcessHelper
 Param
 R
 {Adjoin Wid Lab(handle:NewWid)}
 }
 else
 {ProcessHelper Param R Wid}
 end
 else
 {ProcessHelper
 Param
 R
 {Adjoin Wid Lab(I:NewWid)}
 }
 end
 else
 error
 end
 end
in
 {ProcessHelper Param List Wid}
end

Figure 27: Code of the Process function. Processing every widget one

by one.

VI. CONCLUSION AND FUTURE WORK

This paper introduced the notion of distribution graph in

order as a way for modelling and developing Distributed User

Interfaces. The graph is a state diagram where states represent

the current distribution of the system across the different con-

texts of use. It also describes the implementation of three case

studies, a simple and an extended Pictionary, and a complex

board game. This new methodology needs to be validated, i.e.

with these case studies applied as real game.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of the
ITEA2-Call3-2008026 USIXML (User Interface extensible
Markup Language) European project and its support by Région
Wallonne, Direction générale opérationnelle de l'Economie, de
l'Emploi et de la Recherche (DGO6).

REFERENCES

[1] J.T. Biehl, W.T. Baker, B.P. Bailey, D.S. Tan, K.M. Inkpenl, M.
Czerwinski, IMPROMPTU: A New Interaction Framework for
Supporting Collaboration in Multiple Display Environments and
Its Field Evaluation for Co-located Software Development Pro-
ceeding of the twenty-sixth annual SIGCHI conference on Hu-
man factors in computing systems , pp. 939-948; 2008

[2] E. Berglund, M. Bång. Requirements for distributed user inter-
face in ubiquitous computing networks. In Proc. of Conf. on
Mobile and Ubiquitous MultiMedia, 2002.

[3] D.S. Tan, M. Czerwinski. Effects of Visual Separation and
Physical Discontinuities when Distributing Information across
Multiple Displays. In Proc. of Interact’03, IOS Press, pp. 252-
260, 2003.

[4] R. Bandelloni, F. Paternò. Migratory user interfaces able to
adapt to various interaction platforms. Int. J. Human-Computer
Studies 60, 5-6, pp. 621-639, 2004.

[5] J.Rekimoto. Pick-and-Drop: A Direct Manipulation Technique
for Multiple Computer Environments Proceedings of UIST'97,
pp. 31-39, 1997.

[6] R. Beale, W. Edmonson. Multiple Carets, Multiple Screens and
Multi-Tasking: New Behaviours with Multiple Computers. In
Proc. of HCI'2007, Bristish Computer Society, pp. 55-64, 2007.

[7] D. Tan, B. Myers, M. Czerwinski. WinCuts: Manipulating Arbi-
trary Window Regions for More Effective Use of Screen Space.
In Proc. of CHI'2004, ACM Press, New York, pp. 1525-1528,
2004.

[8] EMCC : Econometric Modeling & Computing Corporation
http://www.speakeasy.com/

[9] M.W. Newman, S. Izadi, W.K. Edwards, J.Z. Sedivy, T.F.
Smith. User Interfaces When and Where They are Needed: An
Infrastructure for Recombinant Computing. In Proc. of
UIST'2002. ACM Press, new York, pp. 171-180, 2002.N.

[10] X.F. Qiu and N. Graham. Flexible and Efficient Platform Mod-
eling For Distributed Interactive Systems. Proceedings of the
ACM SIGCHI Symposium on Engineering Interactive Compu-
ting Systems, pp. 29-34, July 2009.

[11] C. Damas, B. Lambeau, P. Dupont and A. van Lamsweerde.
Generating Annotated Behavior Models From End-User Scenar-
ios IEEE Transactions on Software Engineering, Special Issue
on Interaction and State-based Modeling, Vol. 31, No. 12, pp.
1056-1073, 2005.

[12] S. Zaidenberg, O. Brdiczka, P. Reignier, J.L. Crowley. Learning
context models for the recognition of scenarios IFIP Internation-
al Federation for Information Processing of Artificial Intelli-
gence Applications and Innovations pp. 86-97, 2006.

[13] O. Brdiczka, J.L. Crowley, P. Reignier. Learning Situation
Models for Providing Context-Aware Services Lecture Notes in
Computer Science pp. 23-32, 2007.

[14] The Mozart Programming System. http://www.mozart-oz.org/

