
Using Configuration Management and Product 
Line Software Paradigms to Support the 

Experimentation Process in Software Engineering 
Edison Gonzalo Espinosa Gallardo 

Departamento de Lenguajes y Sistemas Informdticos e Ingenieria del Software, Universidad Politecnica de Madrid 

Madrid, Espana 

egespinosal (2jespe.edu.ee 

Abstract—There is no empirical evidence whatsoever to support 
most of the beliefs on which software construction is based. We 
do not yet know the adequacy, limits, qualities, costs and risks of 
the technologies used to develop software. Experimentation helps 
to check and convert beliefs and opinions into facts. 

This research is concerned with the replication 
area. Replication is a key component for gathering empirical 
evidence on software development that can be used in industry to 
build better software more efficiently. Replication has not been 
an easy thing to do in software engineering (SE) because the 
experimental paradigm applied to software development is still 
immature. Nowadays, a replication is executed mostly using a 
traditional replication package. But traditional replication 
packages do not appear, for some reason, to have been as 
effective as expected for transferring information among 
researchers in SE experimentation. The trouble spot appears to 
be the replication setup, caused by version management 
problems with materials, instruments, documents, etc. This has 
proved to be an obstacle to obtaining enough details about the 
experiment to be able to reproduce it as exactly as possible. 

We address the problem of information exchange among 
experimenters by developing a schema to characterize 
replications. We will adapt configuration management and 
product line ideas to support the experimentation process. This 
will enable researchers to make systematic decisions based on 
explicit knowledge rather than assumptions about replications. 
This research will output a replication support web environment. 
This environment will not only archive but also manage 
experimental materials flexibly enough to allow both similar and 
differentiated replications with massive experimental data 
storage. The platform should be accessible to several research 
groups working together on the same families of experiments. 

I. INTRODUCTION 

Albert Einstein said that insanity was doing the same 
thing over and over again and expecting different results. 

Software Engineering (SE) aims to assure that software 
developers deliver reliable, quality products that satisfy user 

requirements. On this ground, it should be supported by a 
process enabling the construction of software systems on time 
and on budget through the effective and efficient use of human 
and material resources. 

The results of applying a particular software development 
technology1 are, today, unpredictable [1]. There is no evidence 
whatsoever to support most of the beliefs on which software 
systems construction is based [2]. Nowadays, knowledge of 
the adequacy, limits, qualities, costs and risks of the 
technologies used to develop software is missing [3]. 
Experimentation helps us to verify beliefs and opinions and 
convert them into facts. 

For decades, SE researchers have been running 
experiments to gather evidence about software development. 
Outcomes or observations require verification to assure their 
validity and reliability. It is not possible to draw conclusions 
from a single experiment. Multiple runs of an experiment are 
needed to consolidate results, and validate and build the body 
of knowledge to be disseminated and used in the software 
industry [4]. 

According to [5], replication is a key mechanism of the 
experimental paradigm. Through replication it is possible to 
verify the results observed in earlier experiments. Campbell 
and Stanley [6] explain the role of replication as "The 
experiments we do today, if successful, will need replication 
and cross-validation at other times under other conditions 
before they can become an established part of science, before 
they can be theoretically interpreted with confidence". Judd 
gives a comprehensible definition of replication [7]: 
replication means that other researchers try to reproduce the 
original experiment as closely as possible in other contexts 
and using different samples. If the results of the replication are 
consistent with the original research, this raises confidence in 
the hypothesis supported by the original study. 

According to [8] and [9], replication plays a major role in 
empirical software engineering (ESE), enabling the research 
community to build knowledge about the outcomes or 
observations under set conditions. 

1 We use the term technology to refer to software development 
methods, techniques, methodologies and tools. 

http://2jespe.edu.ee


Replication has not been an easy thing to do in SE because 
the experimental paradigm applied to software development is 
still immature. The main reason for the shortage of 
replications in ESE is that it is hard to describe an experiment 
in enough detail for another researcher to be able to replicate it 
accurately [10]. The context of an SE experiment is extremely 
complex because the phenomenon under study has very many 
variables, and software development (and, therefore, SE 
experiments) involves human beings. 

Some researchers argue that having an experimental 
package provided support for their experiment replication 
process. A traditional experimental package is a package 
composed of a set of structured processes, documents, 
materials, etc., used by experimenters to replicate an 
experiment. A replication package is then the means of 
communication and coordination among the authors of the 
experiment and experimenters in replicating the experiment 
[11], [12]. A full replication package includes all the tasks, 
checklists, and procedure and problem-solving descriptions, 
etc., requested from the package authors [13]. Basili [12] 
suggests that, if there is a replication package, experimenters 
should use it and, if not, they should be build one. 

Despite the fact that there are several ESE replication 
packages, the truth is that there are still very few replications 
in this field. For some reason, experimenters are not finding 
replication packages as helpful as expected. This suggests that 
the solution offered so far to the SE replication problem is 
naive [14]. The crux of the matter is that there are many 
factors that can alter experimental results, and they are hard to 
predict beforehand [10]. 

Like SE, other experimental disciplines have similar 
trouble controlling the experimental context. To successfully 
replicate ESE experiments, it is necessary to move away from 
the concept of replication in the natural sciences [15], where 
experiments can be reproduced exactly. ESE researchers need 
to look at approaches in other less strict experimental 
disciplines that have not traditionally been a source of 
inspiration for ESE. These disciplines consider replication as 
the repetition of an experiment by other researchers in other 
environments with other samples in an attempt to reproduce 
research as closely as possible [7]. This implies accepting that 
replications are pretty accurate adaptations and not necessarily 
exact copies of the original experiment. 

Gomez [5] have found that the elements and structure of 
the experiment to be replicated tend to vary depending on how 
the replication is run. Between-replication variation is useful 
for different verification purposes. 

The approach that we propose to help to solve the 
replication problem is to analyse and understand the potential 
of non-exact (differentiated) replications in accordance with a 
concept of replication that is closer to ESE reality. This should 
be a dynamic process that supports the replication process. 
First, it should help to transfer information to experimenters so 
that they know how to correctly apply instruments and 
materials. Second, it should provide an infrastructure for 
storing information about components (materials, instruments, 
etc.) and identified replications in order to guarantee their 

integrity, reliability and traceability for reuse within the 
experimental research cycle. 

II. PROBLEM STATEMENT 

Replication has not been an easy thing to do in software 
engineering (SE) because the experimental paradigm applied 
to software development is still immature. 

ESE researchers have proposed several instruments for 
transferring information among experimenters to improve the 
performance of replications in SE. In early replications run in 
SE, publications reporting the experiment were the only 
documentation transferred about the original experiment. 
Some researchers proposed static replication packages 
(repository containing materials) including some documents 
required to replicate an experiment (documentation to be 
delivered to subjects, data collection forms, etc.) in an attempt 
to improve, ease and incentivize replications. More details are 
required than just a description of and the provision of the 
materials required to execute the experiment in order to 
replicate an ESE experiment. Other things added to the 
replication package were data collected during the experiment 
and materials required to train subjects, as well as experiment 
execution procedures (for example, a script with tasks to be 
performed by the experimenter during the experiment 
operation). 

Some examples of the many papers focusing on 
experimentation and replication in SE are (in chronological 
order): [11] and [16], creating a laboratory kit (i.e., a package 
containing all the experimental materials, data, and analysis) 
to facilitate replication; [17], referring to the creation of an 
experimental package to support external replications; [18], 
[12] and [19], suggesting that it can take many months to 
prepare an experiment that can be run in no time at all; [20], 
using the experimental package built by [21], [4], discussing 
tacit knowledge and replication packages; [22], [23], [24] and 
[25], which are studies mentioning or suggesting the creation 
and use of replication packages. 

ESE researchers have tried to verify experimental findings 
by repeating experiments using a traditional replication 
package, which would appear, for some reason, not to have 
been overly helpful for running replications in this field. The 
cause would appear to be some of the package-related 
problems detailed below. 

• A traditional replication package is a static container 
(containing documentary information) that hosts 
different versions of materials modified and/or created 
as a result of variations of replications to be run or by 
adopting experimental paradigm processes in SE. This 
has increased the quantity of package materials, 
leading to two problems. The first concerns 
management to control the integrity and traceability of 
the different versions of the materials to be used to 
generate different replications. The second is that it is 
harder for experimenters to handle the materials. 

• Replications are difficult to configure and manage 
using the package (different versions of package 



materials are required in similar or differentiated 
replications to execute the experiment). 

• The costs of preparing multiple processes and 
materials (artefacts, components) contained in the 
package and used in the experimentation processes 
increase considerably. 

• Iterative improvement of materials content for use in 
replication of experiments. 

• There is limited access to pragmatic information on 
the success or failure of using the replication package, 
unless experimenters have used it before. Researchers 
do not share what they learn from using a package 
with others. Thus they miss out on the chance of 
learning from other people's experiences. 

The traditional packages used for replication play a key 
role in experimental research, but they have not solved the 
experimental replication process problem. There are still very 
few replications in SE. 

III. PROPOSED METHODOLOGY 

We will undertake this research by enacting generative 
cycles to build a preliminary contents structure by successive 
approximations, where each approximation accounts for a 
different viewpoint. The first approximation considers existing 
theoretical knowledge, and the next adds knowledge elicited 
from researchers experienced in experimentation. The 
preliminary structure then has to be inspected by experts. This 
will presumably lead to it being refined. Finally, the reviewed 
structure will undergo observation and later experimentation. 
The researcher will observe the structure and check aspects 
like feasibility (capability to represent replications) and/or 
flexibility (capability to represent all replication types). The 
experiments will be run with potential contents structure users. 
The input will be documents generated by a series of 
experiments executed by the GRISE research group in the 
testing field. These documents will be put together by 
applying elicitation techniques, like interviews, observation 
and case analysis, and by running experiments. 

This research is at the first stage. We have analyzed the 
documents generated from experiments and examined the 
software configuration management (SCM) process to find out 
whether this paradigm is applicable in experimentation. SCM 
is a discipline applying a set of procedures to control and 
maintain both the integrity and traceability of software 
development process products. Considering replication 
packages to be frequently changing products that we want to 
trace throughout the research cycle, we developed an analogy 
considering key SCM concepts and activities. The research 
results were: 

• Document called Adaptation of the SCM Process to 
the Experimental Research Cycle reporting the 
analysis of SCM concepts and activities for adaptation 
to the ER cycle. 

• Document called Experiment Configuration 
Management Plan (ECMP) containing a set of 

activities and processes to be used to manage 
experiments. 

• Instantiation of a case applying ECMP. 

We are now studying the software product line (SPL) 
paradigm to analyze the feasibility of applying it to the 
experimental replications configuration process. First, we 
applied feature-oriented domain analysis (FODA) to the 
gathered digital documents in order to abstract and establish 
common features and variants at the materials level (objects, 
instruments, documents, etc.), which we then used in different 
experiment runs. Second, we have built both a matrix and a 
hierarchical tree showing the identified common 
characteristics and variants, which are now under review. 

IV. PROGRESS / RESULTS 

Thus far, progress has been made concerning research into 
hitherto the following topics: 

• Study of the concept of what the social sciences call 
differentiated replications for application in and 
adaptation to ESE. 

Study of the feasibility of adapting the software 
configuration management (SCM) process to the 
experimental research cycle. In the context of 
ISO/IEC [26], the software life cycle is viewed as a 
reference framework containing the processes, 
activities and tasks involved in software product 
management, development, use and maintenance. 
According to [27], the software system life cycle 
establishes a succession of stages through which a 
software product passes, starting when the product is 
conceived and ending when the software is obsolete. 
Another characteristic is that it specifies a pre-
established order of stages and establishes criteria for 
moving from one stage to another. This specified and 
defined process framework includes a set of 
processes divided into three groups: basic, for support 
and organizational processes. SCM is one of the 
support processes. 

SCM process products, called configuration 
elements (CE), are created at each stage of the 
software development life cycle. Changes to the 
products can occur at any time as a result of the 
interaction among people participating in the different 
software project stages or the development, use and 
maintenance of the actual software features. 
According to [28], the system will change 
irrespective of where we are in the system life cycle, 
and the drive for change will continue throughout the 
life cycle. 

We refer to the set of CEs produced, used, 
modified and exposed to formal and informal 
configuration processes in a software project as SCM. 

According to [29], SCM is the art of coordinating 
software development to minimize confusion. SCM is 
the skill of identifying, organizing and controlling 
changes to software built by a team of programmers. 



SCM is then a formal engineering discipline that 
is part of system configuration management and 
provides methods and tools for identifying and 
controlling software throughout its development, use 
and maintenance. 

Experimentation is a process that is divided into 
several phases. Each phase outputs experimental 
products (materials, instruments, objects, etc.) that are 
part of the SE experiment. Experimental products 
could be considered as a reusable common set of 
interrelated products stored in repositories that are 
used to enact future experimentation processes in the 
experimental research cycle. Different versions of 
products, generated by changes made to different 
levels of the experiment, such as the experimental 
domain, the experimental subject matter, the problem 
or elements like protocol or design, etc., are required 
for further replications. The research run establishes 
the minimum contents required to deploy the proposed 
experimental elements configuration management 
(EECM) process for application throughout the 
experimental research cycle. The EECM process 
affords means for guaranteeing the integrity, 
reliability, consistency and traceability of 
experimental research cycle experimental products. 
The experimental products will be selected, identified, 
recorded and controlled during the experimentation, 
replication and synthesis processes. 

• Study for applying software product lining in the 
experimental research cycle. 

According to [30], a software product line (SPL) 
is a set or family of products that share a set of 
features that satisfy some special market needs and 
have been developed from a set of core assets with a 
particular production plan. 

This definition includes two key concepts for 
applying SPLs: features and core assets. A feature is a 
conceptual characteristic of a system and is used to 
describe or distinguish a product of a line. A core asset 
is a software artefact that is used to produce one or 
more products of a software product line. It can be a 
software component, a process model, an architecture, 
a document or any other system development process 
output. 

Software product lining has proved to be an 
effective means of taking advantage of code reuse. It 
leads to efficient development, a short time to market 
and quality products [31]. In SPL, a related set of 
products is developed by combining reusable core 
assets with specific products (custom assets). Core 
assets implement most of the product functionality and 
support variable functionality (reference architecture). 
Custom assets are built into core asset products. They 
instantiate changes and implement unique product 
functionalities. 

In order to apply SPL in SE experimentation, 
we will analyse information from research areas in 

which the group is experienced: software validation, 
requirements and usability. This information will be 
gathered by applying elicitation techniques, like 
interviews, observation and case analysis, and by 
running experiments. We will research, analyse and 
select techniques for abstracting and establishing 
common features (reusable) and variants at artefact 
(product) level that are typical across different 
experimental runs. Elicitation sessions with experts in 
the experimentation process (people with different 
profiles) will be necessary to establish (by different 
means) the information that they consider important 
for experimental replication. A structure of common 
contents and variants (products) will be useful for 
configuring different types of replications by selecting 
or rejecting set features. 

V. RELATED WORK 

Very active research lines in ESE are: improvement of 
experiment reporting by generating guidelines, such as [32], 
[33] or [34]; enrichment of quantitative SE experiments using 
qualitative experimental methods along the lines suggested by 
[35], which is being pursued in Spain by the Kybele group 
[36], or experimentation at the clinical level (to use an analogy 
with experimental medicine), rather than in the laboratory, 
getting industry to carry out their own experimental studies, as 
the Fraunhofer Institute for Software Engineering or 
Microsoft [37] are doing. But this project is part of a line of 
research on the generation of evidence by combining the 
outcomes of more than one experiment. 

The aim of research on replication is to better understand 
the concept of replication for adaptation to SE reality. This is 
what researchers at the University of Strathclyde, [14] and 
[15], are working on. Our group has contributed to this line 
[38]. Another aim is to improve the transmission of 
information using replication packages. Basili [39] pioneered 
this research and was later joined by Conradi [40] and 
Travassos [41]. Our group is also working on this line [10]. 

The research planned as part of this project also touches 
upon a more technological line of ESE research involving the 
construction of experimentation support environments. These 
environments can range from a simple experimental materials 
repository to the definition and implementation of tools for use 
in experimental process activities. Examples of such 
environments are SESE [42] eSEE [43] and Ginger2 [44]. 
There have also been attempts at storing results (of 
experiments, case studies and even singular experiences) in 
what we might call experience repositories, like cebase [45] 
andVisek[46]. 

This project is part of a line of basic research on evidence 
generation, and especially replication and aggregation, plus a 
line of applied research into technology to support the two 
tasks. 



REFERENCES 2003. 

[I] C. Wohlin, P. Runeso, M. Host, M. Ohlsson, B. Regnel and A. Wesslen, 
Experimentation in SE: An Introduction, 2000. 

[2] N. Juristo and A. Moreno, "Reliable knowledge for software 
development," IEEE Software, 2002b. 

[3] Jedlitschka and Ciolkowski, "Towards evidence in SE," Proc. of 
ACM/IEEE Int. Symp. on Empirical SE, 2004. 

[4] S. Forrest, V. Basili, J. Carver and J. C. Maldonado, "Replicating 
Software Engineering Experiments: Addressing the Tacit Knowledge 
Problem," Proceedings. 2002 International Symposium, pp. 7-16, 2002. 

[5] O. S. Gomez, N. Juristo and S. Vegas, Replications Types in 
Experimental Disciplines, 2010. 

[6] D. T. Stanley and C. Campbell, Experimental and Quasi-Experimental 
Designs for Research., Hope-well, NJ: Houghton Mifflin Company, 
1963. 

[7] Judd, Smith and Kidder, Research Methods in Social Relations, 
Jovanovich College Publishers, 1991. 

[8] J. Forrest, C. Shull, J. Carver, S. Vegas and N. Juristo, "The role of 
replications in Empirical Software Engineering," Springer, pp. 211-218, 
2008. 

[9] C. Knutson, J. Krein, N. Juristo and L. Prechelt, "1st International 
Workshop on Replication in Empirical Software Engineering Research 
(RESER)," ICSE, 2010. 

[10] S. Vegas, N. Juristo, A. Moreno, M. Solari and Letelier, "Analysis of the 
influence of communication between researchers on experiment 
replication," Proc. of the ACM/IEEE Int. Symp. on Empirical SE, 2006. 

[II] E. Kamsties and C. Lott, "An empirical evaluation of three defect 
detection techniques," Technical Report ISERN 95-02, May 1995. 

[12] V. R. Basili, F. Shull and L. Filippo, "Building Knowledge through 
Families of Experiments," IEEE TRANSACTIONS ON SOFTWARE 
ENGINEERING, vol. 25, no. 456-473, 1999. 

[13] A. Stefik, S. Siebert, S. Melissa and K. Slattery, "An Empirical 
Comparison of the Accuracy Rates of Novices using the Quorum, Perl, 
and Randomo Programming Languages," 2011. 

[14] Brooks, Roper, Wood, Daly and Miller, Replication's Role in SE En 
Shull, Singer, Sjoberg (Eds.) Guide to Advanced Empirical SE, Springer-
Science, 2007. 

[15] Miller, "Replicating SE experiments: A poisoned chalice or the holy 
grail," Information and Software Technology, 2005. 

[16] A. Porter, L. Votta and V. Basili, "Comparing Detection Methods for 
Software Requirements Inspections: A Replicated Experiment," IEEE 
TRANSACTIONS ON SOFTWARE ENGINEERING, vol. 21, no. 6, 
1995. 

[17] J. Daly, A. Brooks, J. Miller, M. Roper and M. Wood, "An Empirical 
Study Evaluating Depth of Inheritance on the Maintainability of 
ObjectOriented Software," ISERN, 1996. 

[18] P. Fusaro, F. Lanubile and G. Visaggio, "A Replicated Experiment to 
Asses Requirement Inspection Tecnique," Kluwer Academic Publishers, 
1997. 

[19] A. Brooks, M. Roper, M. Wood, J. Daly and M. James, "Replication of 
Software Engineering Experiments," 2000. 

[20] M. Wood, R. Marc, A. Brooks y J. Miller, «Comparing and Combining 
Software Defect Detection Techniques: A Replicated Empirical Study,» 
2003. 

[21] E. Kamsties and C. Lott, "An Empirical Evaluation of Three Defect-
Detection Techniques," Proceedings of the Fifth European Software 
Engineering Conference, 1995. 

[22] J. Natalia and S. Vegas, "Functional Testing, Structural Testing and Code 
Reading: What Fault Type do they Each Detect," Springer, p. 208-232, 

[23] D. I. Sjoberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. 
Karahasanovic, N.-K. Liborg y A. C. Rekdal, «A Survey of Controlled 
Experiments in Software Engineering,* IEEE TRANSACTIONS ON 
SOFTWARE ENGINEERING, vol. 31, 2005. 

[24] S. Vegas, «Maduracion de Conocimiento Mediante una Familia de 
Experimentos,» 2005. 

[25] C. Apa, M. Solari, D. Vallespir y S. Vegas, «Construccion de un paquete 
de laboratorio para un experimento en Ingenieia en Software,* 2011. 

[26] IEEE/EIA 12207, Standard for Information Technology Software life 
cycle processes Implementation considerations., 1997. 

[27] IEEE Std 610.12, Standard Glossary of Software Engineering 
Terminology, 1990. 

[28] Bersoftf, Henderson and Siegel, Software Configuration Management, 
Prentice Hall, 1980. 

[29] W. Babich, Software Configuration Management, Coordination for Team 
Productivity., 1st edition. Boston: Addison-Wesley, 1986. 

[30] A. Wesley, Software product lines: practices and patterns, Boston, 2002. 

[31] P. Clements and C. W. Krueger, "Being Proactive Pais Off/ Eliminating 
the Adoption Barrir.," Point Counterpoint article in IEEE Software, 
Julio/August 2002. 

[32] Singer, «Using the American Psychological Association (APA) Style 
Guidelines to Report Experimental Results,» Proc. of the IEEE Workshop 
on Empirical Studies in Software Maintenance, 1999. 

[33] Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, E. Emam y Rosenberg, 
«Preliminary Guidelines for Empirical Research in SE,» IEEE 
Transactions on SE, vol. 28, n° 8, 2002. 

[34] P. Jedlitschka, «Reporting Experiments in Software Engineering,* Proc. 
of the ACM/IEEE Int. Symp. on Empirical SE, 2005. 

[35] Seaman, «Qualitative Methods in Empirical Studies of Software 
Engineering,* IEEE Trans, on SE, vol. 25, 1999. 

[36] M. Lazaro, «Experiences in Integrating Qualitative and Quantitative 
Methods,)) Proc. of the ACM/IEEE Int. Symp. on Empirical SE, 2006. 

[37] Nagappan, «Empirical case studies in industry: Some thoughts,)) 
Empirical SE Journal, vol. 132, 2007. 

[38] Gomez, Juristo and Vegas, "Replications Types in Experimental 
Disciplines," Proc. of the 4th ISESE15, 2010a. 

[39] Basili, Green, Laitenberger, L. Shull, Sorumgaard and Zelkowitz, 
"Packaging researcher experience to assist replication of experiments," 
ISERN Meeting, 1996. 

[40] Conradi, Basili, Carver, Shull and Travassos, "A Pragmatic Documents 
Standard for an Experience Library: Roles, Documents, Contents and 
Structure," University of Maryland CS-TR-4235, 2001. 

[41] Shull, Basili, Carver, Maldonado, Travassos, Mendonca and Fabbri, 
"Replicating Software Engineering Experiments: Addressing the Tacit 
Knowledge Problem," Proc. of the ACM/IEEE Int. Symp. on Empirical 
SE, 2002. 

[42] Arisholm, Sjoberg, Carelius and Lindsjorn, "SESE — an Experiment 
Support Environment for Evaluating Software Engineering 
Technologies," Proc. of the 10th Nordic Wkshp on Programming & Sw 
Dvlopmnt Tools and Techniques., 2002. 

[43] Lopes and Travassos, Knowledge Repository Structure of an 
Experimental Software Engineering Environment Proc. of the XXIII 
Brazilian Symposium on Software Engineering., 2009. 

[44] Torii, Matsumoto, Nakakoji, Takada, Takada and Shima, "Ginger2: 
Computer-aided," ESE TSE15, vol. 25, no. 4, 1999. 

[45] Boehm and Basili, The CeBASE Framework for Strategic Software 
Development and Evolution Proc. of the 3rd International Workshop on 
Economics-Driven Software Engineering Research., 2001. 



[46] Hofmann and Wulf, Building Communities among Software Engineers: 
The ViSEK Approach to Intra- and Inter-Organizational Learning 
Lecture Notes in CS 2640., 2003. 

[47] IEEE 730, IEEE Standard for Software Quality Assurance Plans, 2002. 

[48] V. Basili y S. W., «Comparing the Effectiveness of Software Testing 
Strategies,* University of Maryland. Technical Report TR-1501, May 
1985. 

[49] M. C. Bastarrica, «Arquitectura base en una linea de productos de 
software,)) 2002. 

[50] N. Juristo, A. Moreno and S. Vegas, "TOWARDS BUILDING A SOLID 
EMPIRICAL BODY OF KNOWLEDGE IN TESTING TECHNIQUES," 
2004. 

[51] N. Juristo y A. Moreno, Basics of Software Engineering Experimentation, 
2001. 

[52] M. Staples, «Change Control for Product Line Software Engineering,)) 
2004. 

[53] ANSI/IEEE Std 828 2005, Standard for Software Configuration 
Management Plan. IEEE. 2005, 2005. 


