N
N

N

HAL

open science

M2Flex: a process metamodel for flexibility at runtime

Eric Céret, Sophie Dupuy-Chessa, Gaélle Calvary

» To cite this version:

Eric Céret, Sophie Dupuy-Chessa, Gaélle Calvary. M2Flex: a process metamodel for flexibility at
runtime. proceedings of 7th IEEE International Conference on Research Challenges in Information

Science (RCIS 2013), 2013, Paris, France. pp.117-128. hal-00953358

HAL Id: hal-00953358
https://inria.hal.science/hal-00953358
Submitted on 28 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-00953358
https://hal.archives-ouvertes.fr

M2Flex: a process metamodel
for flexibility at runtime

Eric Céret Gaélle Calvary

Sophie Dupuy-Ches$a
Grenoble Institute of TechnolofyPierre Mendés France University
Grenoble Informatics Laboratory
41 rue des Mathématiques
38041 Grenoble Cedex 9, France

FirstName.Name@imag.fr

Abstract— Design and development methods do not meet
designers’ and developers’ needs. They are difficult to learn and
to use; they are complex, sequential and rigid and thus far from
being adapted, reliable and efficient.

This paper presents M2Flex, a process metamodel for highly
supporting flexibility. M2Flex is based on a recent definition of
flexibility along four dimensions: (1) variability, the existence of
equivalent choices, (2) granularability, the existence of different
levels of details, (3) completeness, the possibility of defining
optional components and pre-defined reusable results, and (4)
distensibility, the capacity of the resulting process model to be

flexibility, based on four dimensions: variability, distensibjlity
completenss and granularability.

Variability is the possibility offered by a process model to
designers of making choices in a set of equivalent variants. For
instance, the goal “write the use case” can be achieved by
several variants, which can be single activities like the creation
of a UML use case or the drafting of a free language text (with
Microsoft® Word, OpenOffice™, Google Document© or on
paper). The variants can also be sequences of activities, like
filming a user who expresses his needs and then transcribing
the video. Variability can also concern other elements of the

extended or reduced at runtime. process modekuch as the choice between equivalent artifacts

(e.g. documents with different structures but the same

This paper shows how M2Flex is original by the flexibility it information).

offersto designers and developersat runtime.

Granularability is the ability of a process model to support
elements with different granularities, e.g. with different
languages and/or quantities of details. For instance, if the
| INTRODUCTION process model includes an activity for defining the structure of

' a database, it can suggest a goal "create the database". An

Designers and developers are poorly satisfied by methodspert database designer will not need more information. It can
[1, 2, 3]. They report that methods (1) do not address variouslso iteratively define activities with more detailed steps
kinds of projects and customers' constraif@sare difficult to offering a stey-step approach for novice designers.
learn and to use, (3) impose complex, linear and rigid processes . . -
that are not described in adapted languages. The authors of the COMPleteness is the possibility of fulfilling or not the
studies conclude that the process models of the methods are RPOSed process, some activities and/or artifacts are then
flexible or adaptable enough. According[t) 5], the process ©OPtonal or can be replaced by a predefined result or product.
model is part of a method, with theoduct model and a 'II:or_mstance, in a User InEeractlon (UI)_ deS|gn, t_he activity
collection of tools. It focuses on a facet of the design and define the platforms model” can be avoided; in this case, the
development process - e.g. the tasks to complete, the prodquls then designed for an implicit platform, or, if this model is
to build or the decisions to make - to describe the activities (ge€ded because several platforms have to be addressed, it can
be realized. be replaced by “default” models that the designer picks up in a

repository proposed by the process model

In this paper, we investigate the flexibility of process

models. Many researchgs, 7, 8, 9, 10] have been driven to

Keywords—Process M odels, Flexibility, Design M ethods

evaluateit. In particular Harmsen Brinkkemper andOei [8] . 0\-\\&
defined a one-dimension classification (Figure 1) for & s =
measuringit, ranging from rigid modelsto the modular @on o @@“\ @é\"
construction of process models & Qt,@“ \\,\f‘) ch&“
8) R N

In [11], we proposed a taxonomy for evaluating and .c.sb‘*‘% \@*\\ o Qq,ob ®e>*“°
comparing process models, based on the study of 49 of them @c‘)\\\ \'\\°° & i &
and on several previous works. This taxonomy makes it | ¥ =E & & Nl
possible to classify process models with any orientation AT High flexibility

(activity, product, goal...) and offers a new definition of Fig.1 - Flexibility levels in process models according to Harmee.

Distensibility is the ability of a process model to be
extended or reduced, i.e. to accept that proposed elements
(such as activities, roles and artifacts) can be avoided or that
unexpected elements can be added. The question hereifis not L
someone did extend a process model: this has been achieved
several times, for instance in [12], where the Case-Based]
Reasoning Process is presented as an extension of intentional -
reminding [13], or in [14] where Scrum [15] is extended to S it
manage several teams working on the same project. The issue
is here the definition of mechanisms for distending the process Condition . 1%

model during its enactment. 2 T ok

ProcessModel

contains
*

Many examples in the taxonomy show that process models wtiviyConditin | isConaretizedBy
implement only partial flexibility. For instance, Rapid L1 -
Application Development (RAD) [16] is classified as offering
some well-defined variants but no possibility of extension, P
supporting partial incompleteness and including four levels of . s .

g ranu | al’lty *‘ output *‘ involves

Based on our taxonomy, we propose a metamodel and an
editor for creating flexible process models that suit the needs of
designers and developers at enactment-time, i.e. when they are Fig.2 - Process metamodel overview
selecting and then realizing their design activities and
producing the artifacts. The novelty does not only come fron@y be combined this is detailed in the section about
the flexibility dimensions covered, but also from the tool thaPPerators.

enables the process models adaptation during enactment. However, representing how activities can be combimsed i

We present this new process metamodel in the secompt sufficient to express all the conditions that have to be
section and analyze its flexibility in the third section. In theSatisfied before an activity can be started. Indeed, activities
following section, we present a process model compliant witRften require that another task has been completed and has

our metamodel and then describe the existing tools supporti(;igg/‘?duced some results. This is why activities are associated
our approach. In the sixth section, we compare our propositi

Artifacts Roles

ice to artifacts, once as inputs and once as outputs. The
to existing works, and conclude with perspectives. strategies are thereby associated to the artifeids the
activities. Therefore, the strategies implicitly have inputs and
outputs. At enactment-time, this makes it possible to
Il. - PROCESSMETAMODEL graphically represent the process in two ways: either showing
The metamodel description is divideddniwo main parts: first the activities (focusing on the "how", the artifacts being
a global explanation of the metamodel first, followed by detail considered as a result), or showing first the artifacts related to

about the packages. the strategies (focusing on the "what", the activities being then
presented in a second time as a guide for producing the chosen
A. Global overview of M2Flex artifacts). The developer is thus able, at enactment-time, to
Figure 2 presents the packages of our process metamod%rl]Oose the view he is the more comfortable with.
M2Flex. Activities are also related tmles, in order to express that

A process model is here considered to be realized iRome competencies might be needed to complete the task.

purpose, so it is composed of some main goals, as it is done in However, there can also be conditions that depend on
many goal-oriented process models such as KAOSIPLT18] artifacts, roles or operators. For instance, in RAD ,[16¢

or MAP [19]. As it is possible to achieve any of these goals inactivity "consider attendance [of individuals in other
many ways, he various possibilities are represented ascorporations]'is realized only if the system serves [such
strategies. A strategy can be associated taamdition: for individuals]'. Such a condition can not be expressed by an
instance, adopting a User Centered approach requires that ussssociation to artifacts. This implies that activities also have to
are available. be associated to conditions.

Strategies 1@ concretized intaactivities, representing the Hereafter, we detail all the packages that briefly are
operational tasks to be realized. In order to represent variogsesented in this sectiorin all diagrams, the attributes whose
amounts of details, activities can be elementary or compositename is followed by 2 (e.g. status?) are "simple fields" oépde
and then refined into other simpler activities. instantiation" [20]: when reifying the metamodel, they are
instantiated into identical attributes at model level (and, as
usual, into values at object level). We use this mechanism to
Wpose, at the metamodel level, attributes that are needed at
riEodeI level. Moreover, the classes that are directly composing

ie described package are drawn in grey, whilst the elements
rom other packages are drawn in white. Furthermore, as we

Some activities can be carrieditoin parallel, like the
coding of a functionality and the creation of its unit tests
whilst others need to be strictly sequenced: delivering a ne
release to the customer can only be done after implementing
M2Hex includes a mechanism for expressing how activitie%

A Strategy is defined by a name and a description. At

ProcessModel enactment-time, it can be selected or not by the designers: this
- name: String is modeled by the isSelected attribute with deep instantiation.
j;ﬁ?:;ﬁgie:mm A Strategy can be associated to so@enditions that represent
— <> the constraints that_have fo be fulfilled t_)efore the strategy
starts. For instance, mrequirements analysis, a user centered
ﬁ : contains strategy [22] requires the agreement of the customer and the
R L availability of some end users.
GoalsPair 1. source - Goal
D> temct | nmas.fmslfr?ﬁmg C. Conditions
L e frx The Condition class expresses the constraints which
pa el v strategies and activities are subjected It has two main
0.1 Siop attributes: its expression, which can be evaluated as true or
false, and an attribute isFulfilled with deep instantiation that is
stopTarget {redefarger) ot valued during process enactment, indicating whether the
1» |<CompasedOf condition is satisfied or not. A condition can be associated
Strategy either to (at least) an element of the Strategies packade,
+ jaaneasids (at least) an element of the Activities package. The same
jﬁiﬁgﬁﬁn:fggﬁ‘m condition cannot be associated to a strategy and an activity: a
- A . strategy being an aggregation of activities, it is hard to imagine
strategyCondition O“C"m""‘“ﬁ” that the same condition could apply to both these elements.
.] |1 However, a condition can be associated to several strategies or
Condition A ctivitos to several activities. Indeed, when many strategies are
- expression : String equivalent, many of them may depend on the same constraint.
-isFulfilled : Boolean _ Similarly, activities from equivalent strategies may have the
Fig.3 - Package Strategies same constraints.
focus here on flexibility, all attributes are not extensively
presented. D. Activities
B. Srategies We aim to represent here the tasks (that we name activities)

) _) to be realized during the design and development process.
Figure 3 presents the details of the Strategies package. Elementary activities only could not represent all the existing
process model has a name, authors and a publication date. Ipisssibilities. For instance, it would not be possible to represent
an aggregation of elements of the Strategy package. A stratefije Scrum Sprin[15], with its iterative sequence of activities
can be reused into several process models. that includs activities like "update product backlog", "sprint

We want to express that various strategies can lead frofﬂa””i”g meeting", or "product increment”. Thus, we represent
one main stage of the process model to another. Indpjrée 1€ activities using a composite pattern madeAdivities,
work done for defining the Map metamodel [19], we modelEeémentaryActivities andComplexActivities.

this package with goals and strategies. As shown on figure 4, &rategy is concretizedby an

The GoalsPairs represent couples of goals, each of them Activity, whigh s composed ofEIementaryActiviti&s and
associated to one source and one tagetls A goal COMPIexActivities The composition of elementary and
represents an important objective of a process model. F&PMplex activities as well as their order are ensured thanks to
instance, RAD process model [16] defines four stages: (g'fifacts and operators in theComplexActivity ~class.
requirements planning, (2) user design, (3) construction and (xplanations about the operators refer to the artifacts and the

cutover. Representing RAD in our metamodel would require t oles and are thus detailed below. An activity can be iterative.
convert these stages into goals, like "plan the requirement or instance, as already mentioned, the Scrum Sprint would be

and "design the systemA goal has a hame and an intention represented as an iteratidetivity. It also can be incremental,
which is a description of its purpose. "meaning that the resulting artifacts are built incrementally.

The Start goal represents the starting point of the process, AN €lementary activity has a name, a tygeequirement
where no activity has been started, andop goal represents analysis, coding,...) and an allocation (human, interactive or
its ending point, where all needed activities have beegYS€m task)The isOptional attribute is computed at process
achieved. At least one pair of goals must haveStiet goal as model enactment-time. It means that the activity camdie

a source and at least one goals pair haSttipegoal as a target. exeputed, i.e._that 'gh_ere is a p_ath in the Process ”?Ode' gt do
g P g not include this activity. We will see later that this is useful for

A GoalPair is composed of several equivaleitategies, verifying the validity of the process model.
which are different ways of achieving a goal. For instance,
requirement analysis in the V Model [21], modeled here as the
goal "describe the requirements'tould be reached using
User Centered approach [22] or the Map approach [19].

! Enumerations are not displayed on the figure hera feason of space.
They are described in the text.

Strategy

Condition

1 <>

activityCondition

isConcretizedBy

Activities L*

Activity

refines

- isIterative : Boolean
- isIncremental : Boolean

combines
0.1 | |

ElementaryActivity

ComplexActivity

-name: String
- type : ActivityType

- operator : ActivityOperator

- allocation : ActivityAllocation
- /isOptional® : Boolean

1. 1. 1Lx]1

=

ActivityHistory

input output historize

- status?: ActivityStatus
- startDate? : Date
- endDate’ : Date

Activity

1. 1. 1%

Roles

ATTIfacts mput| outpur
. =

Role

Status involves

- name : String 1.» | -name : String
- statusDate? : Date

-/isOptional : Boolean

1%

artifact

1
Artifact

-name : String
- versionNum? : String
- isDeliverable : String

Fig.5 - Roles and Atrtifacts

"validated" or to "rejected". This is why activities are in fact
associated with a status, which is in turn associated with an
artifact.

- motivation® : String
An artifact status has a name, a date that is valued at
1. .] runtime and a calculated attributOptional: the status of an
artifact is said optional when there is a selectable path in the
Artifacts involves Roles process model in which there is no activity producing this
Lx status. An artifact has a name and an attribute indicating if the
Fig.4 - Package Activities results-of the activity are deliverable. It also leasersion

The elementary activity is associatedAtivityHistory so number.
that to preserve information about its evolutions. Therefore,
four attributes are valued at enactment-time, the status of the F. Operators
activity (selected, rejected, running on,...), the start and end The ComplexActivity class offers operators between
date of this status and the motivation of the evolution. Thus, adlctivities and elementary activities. These operators are based
decisions made during the process can be tracked. on the operators used in task modeling [23]. All task modeling
operators are not necessary here. For instance, the distinction
between ‘enabling’ ¢he task enables a second one when it
terminates’) and 'Enabling with Information Passlrgvhen it

An elementary activity can be detailed thanks todfiies terminates, one task enables a second one and provides some
relation to an activity. This represents the possibility for arinformation to it) is not required, because it is implemented
activity to be detailed at a lower level. thanks to the inputs and outputs of activities. After analyzing
which operators are relevant here, we defined a set ofr§ n-a
operators. In the following description, the word element refers
stP an activity or an elementary activity.

An elementary activity is alsasociated to artifacts and
roles: this is described in the next sections.

E. Rolesand Artifacts

As shown on figure 5, an activity is associated to at lea
one Role, representing the human agents and/or the toolé Sequential enabling: after a source element is achieved,
required to achieve the task. Several attributes and specialized targeted elements can start. This operator is not useful when
classes (human, tool,...) would be needed to represent all the dependency between two activities can be expressed
required details, but they are not represented here, because theyusing the artifacts: if activity B depends on one artifact
are not relevant for discussing the process model flexibility. produced by activity A, the dependency is already
The kinds of roles that can be associated to an activity depend expressed when associating these activities with the
on the allocation of this activity. For instance, tools can only be artifacts. However, the operator is useful when B does not
associated to interactive or system tasks. depend on an artifact produced by A but there is a need that
A is achieved before B starts. For instance, coding does not
require that the step of writing the function unit tests is
completed, but the process may intend that the developer

Activities may also be associated to Artifacts: thegn
input artifacts and output new or modified artifacts. It is not
required that an activity is associated to any artifact. For : - M : . _
insqtance, "notify the cus%/omer that a new relea)s/e is available" ends it before beglnnlng to code. W'thOUt th|s operator, It
has no output and the first activity of the process has no input. would not be possible to express this constraint.

When activities input and output artifacts, these artifacts are Paralld: the targeted elements can be realized in parallel.
associated with a specific status. For instance, the activity For instance, a process model can specify - in opposition
"validate the requirements with the users” inputs a requirement with the example given in the section about sequential
record with status "draft” and changes this status either t0 enabling - that coding and writing unit tests can be realized

at the same time by different roles. The two activities would The third constraint (3is used at runtime to measure if an
then be combined by a parallel operator, each of them beiragtivity can be started. This is also true for the first activity of
associated to a specific role. the process : it cannot input artifacts (nothing has been done at

. . this time).
e Choice: the designer or the developer can choose between)

some equivalent activities, i.e. activities that produce These constraints also define the order in which the
similar results or outputs. This can also make an activityctivities can be realized, and thereby the order in which the
optional. For instance, the process proposed with thgoals can be chained.

Oxygen code generator [24proposes the creation of .
several components in which (a) Data Access Functions ©ale Adivity,vse Satus, 3)
(b) the optional "Data Access Interface” and (c) the Data (SeaLinput A al.status="running on")

Transfer Objects. This can be represented by a choice Ja2 e Activity,

between (b) and (c) and sequential enabling from (b) to (c): (j

one (a) is achieved, the developer can realize (b) and then

(c) or directly (c). (b) is in this case optional. The next section presents how M2Flex gives rise to

. . . creatirg flexible process models.
e Interleaving: with this operator, targeted elements are

executed in parallel by a unique agent/role, whnswitch
from an activity to another when he wants. For instance, an . FLEXIBILITY IN M2FLEX

activity such as "record anomalies" can be done by the In this section, we detail how the process metamodel

same person and at the same time that “carry out unit testgtesented before helps defining process models that offer the
This operator is a variant of the parallel operator and igarious dimensions of the flexibility, as defined in [11].

above all useful when enacting the process model, because
it is needed by model-driven user interface generation [23
For instance, the activities of an interleaving operator coul
be converted into different workspaces on the sam
window, whilst parallel activities would be transformed
into independent windows accessible with a menu.

=
sea2.output A a2.status =" ended"

We successively present how variability, completeness,
jranularability and distensibility are integrated into the
g1etamode|.

A. Variability

o . Variability is defined as the possibility for the desigier
o Disabling: the targeted elements are disabled when thg,ake choices in a set of equivalent variants. This is supported
source element is achieved. For instance, when the finak tyo levels of abstraction in M2Fleon one hand. the
acceptance is signed by the customer, it disables th§fferent strategies leading from one goal to another offer

iterative implementation of the functionalities. different paths among which the designer selects one. On the
o other hand, at activities level, the Choice operator makes it
G. Temporal organization possible for the designer to choose the activity he prefers.

Artifacts play a key role in the temporal organization oflmplicitly, as mentioned before, this results in proposing
activities at runtime: if an activity requires an artifact with avarious equivalent artifacts and/or roles.
specific status, then the process model must contain another

activity producing this artifact with this status. This constrain M2Flex makes it possible for a process model

: . Lo timplementing it to be variable, but it does not imply that this
$h?ssggntscir;i%|tldcagﬁ QZeeitrrléc;ture 1°_f the model at design t'mﬁrocess model is variable: the multiplicity of the strategies
pressex(l). associated to a goals pair is 1..* and there is no constraint that

Vale Activity, Vs e Satus, 1) thel process model offers any choice between strategies or

sealinput = Ja2 e Adiivity, se a2.output activities.

Another constraint (2) is that when an activity requires an It would be possible to .add a constraint to make varlab|_I|ty
optional artifact status, then this activity must be optional itself"andatory. But, as we wish to be able to represent various
because there is no guaranty that the needed artifact will 5&iSting process models, we did not add this constraint.
produced. At runtime, it is used to unselect automatically »
activities depending on an optional (and unchosen) status. B. Granularability
Vae Adivity, Vs Satus A_s mentioned in_ the section about gc_ti_vities, an elementary

i PrE T) activity can be refined into other activities and elementary
(seainput A sisOptional = true) activities can be grouped into afctivity. This makes it
= aisOptional = true possible to refine activities with different amounts of details or
. with different languages, e.g. an expert vocabulary at the level
At runtime, this constraint helps the designer in makingy i, the |owest amount of details and common language for

chqices: when an optional activity A depends on an optiong|,ice designers when there are lots of details.
artifact status S and when the designer choose not to produce

this artifacts (i.e. he chooses not to realize the optional C. Completeness
activities producing S), then the system can infer that the ' mp o)
activity A cannot be realized. The system can thus avoid A Our metamodel implements the possibility of choosing
from the choices it proposes to the designer. strategy among the others. However, this not enough to

implement the completeness as defined in [11]. Indeed, this e Delete A
definition has to be interpreted here as: (1) is it possible not to

realize an activity in a selected path aRyit¢ pick up a default Delete all activities whose inputs are the outputs (or
result in a repository instead of creating it. part of the outputs) of A (this can be automated)

The answer in M2Flex is given by the Choice operator. * Adaptall activities that input jlsome of the outputs of
Indeed, as specified before, this operator makes it possible for A and (3 artifacts produced by activities other than A
activities to be optional, which is the first requirement of the to eliminate the need of A outputs.
completeness. M2Flex integrates the metaclasses and associations

It also makes it possible to create a choice between dfduired for instantiating flexible process models. When
activity for creating the result - e.g. a users model - and agPnforming to the metamodel, process models may support
activity for picking a default result - e.g. a standardized user¢riability, completeness, granularability and distensibility.
model - in a repository. Of course, in this case, the activit)T he next section presents an example of such a process model.
involving the default model will be realized, but not the
creation of the result itself, which matches the second IV. AN EXAMPLE OF FLEXIBLE PROCESSMODEL

requirement of the completeness. UsiXML [25] is a model-driven design and development

i - method for creating plastic User Interfaces (Uls). Plastic Uls
D. Distensibility are interfaces that have abilitie® dynamically adapt
Activities also give rise to the last flexibility dimension, themselves to their context of use. The context of use is defined
distensibility: a process model is said distensible (at enactmerds the triplet <User, Platform, Environment> [2Blastic Uls
time) whenit includes well defined procedures for adding orcan then adapt themselves to either the'sigbe platformor
avoiding components (activities, artifacts, roles,...). Accordinghe environment characteristics. For instance, such Uls are able
to this definition, distensibility is not part of M2Flex itself: this to take into account the programming languages available on
property is verified when procedures accompany thehe system they are running,dhe screen size of the targeted
metamodel. Whave defined the required procedures. device, the brightness of the room and so on. UsiXML offers
several metamodels, a process model and many tools for
%reating plastic Uls. The approach relies on successive model
transformations, starting from the models of (user's) Tasks,
e Instantiate the new activity A, associate it with (if Platforms, Domain (representing business concepts) and so on.
needed new) statuses of artifacts and strategies Required adaptations to the context of use are calculated at the
) o] application runtime and adapted transformations are then
 Verify that all activities producing the statuses used agerformed. These transformations produce successively more
input in A exist (constraint 1) and more concrete models, ending with the generation of the
o If one of these activities is missing, create it. exec_utable Final Ul. A reverse process is defined, making it
possible to start from a concrete model and to abstract some of
The procedure for avoiding an activity A (and thereby itsthe models with higér level of abstraction, like the Abstract Ul
associated artifacts) is: or the Task model, but not the Platform or the Domain model

e For each of the input statuses of A, consider if anothe':igure 6 represents the_ USiXM-L _development process
activity uses it. If not, it is possible that the artifacts‘smloos{ad on the W3C website [2This figure shows the four

: . i i i in
with these statuses are no more useful in the procemam stages for transforming successively the task model

nd that th fiviti roducing them Id be avoide oncrete Ul thanks to graph transformations (a formalism
a athe activities producing them could be avo hosen in UsiXML to represent model transformation and
too or adapted if they produce other artifacts ; th

e,. . . .
. . dialog). On the right of the picture, the generative programs
unneeded artifacts can then also be avoided and the rendering (that materializes how a particular Ul coded

The procedure for adding an activity A (and thereby th
artifacts) is here:

TransformiXML .
FlashiXML, QtkXML
- ~GrafiXML, InterpiXML
IdealXML P
A
a —\‘ Rendering
UsixhiL UsixXML model: UsiXML model:
models: task, Graph Abstract user ; Concrete User | [7G anerative Final user
domain {ransformations interface interface ragrarpming interface
VisualiXML
L Derivatipn rule%
KnowiXML GraﬂXML, VisiXML .
SketchiXML, FormiXML ReversiXML
PlastiXML, ComposiXML
Computing—IMndip:ang‘eJt P\atform—\[\:dip‘eng‘eﬁt Platform-Specific Code
odal (CIM) odel (FIM) Madel (PSM)

Fig.6 - UsiXML process model

in one language is rendered depending on the Ul toolkit, the ¢ Similarly, Uls can now be drawn as mockups and
window manager and the presentation manager) produce an converted into UsiXML concrete Ul. We have

executable Ul. Several tools can be used during the process, implemented a complete solution starting from
such as SketchiXML, which can prototype Uls. Balsamig Mockups, a tool available on the Internet.
UsiXML development process is poorly flexible [25]. Its e \We also created alternative activities in the "code
variability is low, due to the small number of different paths in Task2AUI", "code AUI2CUI" and code "CUI2FUI"
the process model: it is possible to start from the task model or strategies (fig. &. These new activities propose
to abstract it from a more concrete rabdlt offers no elementary transformations rules that can be picked up
distensibility and partial completeness. For instance, it is in a repository and then combined to create complete
possible to enter into the process at a more concrete level than transformations. This contributes to make the process
task model (e.g. the concrete Ul created using SketchiXML) model easier to execute, because large parts of the
but adaptability is then lowered and a reverse engineering of needed transformations are now proposed by the
the task model is needed to ensure all plastic abilities. Finally, system. The designer only has to select the interesting
its granularability also is low, for it offers a very small number ones and to eventually adapt them.
of levels of details and the descriptions of activities are written
only in expert language. B. Granularability

We have studied this process model in order to make it UsiXML did not offer the various levels of details nor the
(more) flexible using our meta-model. Several possibilitiedanguages addressing various designers' experfisese
emerged during this work. Figure 7 shows three subsets of tip@ssibilities have been added in two different ways.

UsiXML process model once made flexiblehe graphical First th i f del forming t
syntax shown on this figure will be detailed in section V, we >0 the creation ol-a process model conforming to our
focus here on the flexibility represented in the figure. The torgnetamodel offers the possibility of defining activities

of the figure (part a) presents the goals and the strategies. g?émements. We have added several refinements to activities,
e

second part of the figure (b) presents choices betw Qar instance a step by step explanation for configuring and

activities and the last part of the figure (c) shows an activit xecuting our tool that generates t'h'e Domain fT‘Ode' ff.o.”.”' a
refinement. atabase (Fig. 7c¢). Secondly, defining alternative activities

such as the integration of Balsamiq Mockups makes it possible
In the following, we present some of these newfor designers to produce a UsiXML model without having to

possibilities, grouped by flexibility dimension. learn it. Therefore, novice designers can now enact UsiXML
process, while UsiXML experts can still realize the classical
A. Variability activities. This corresponds to the goal of the granularability:

In order to make the process model able to propose varioQ{€ring to designers activities with various level of
paths and especially paths that would offer a lower threstiold §OMPIExity, corresponding to the designers’ various expertise.
use [28] and/or increased possibilities of reusing already
existing components, we have proposed several ways for C. Completeness
generating the models instead of creating them. As already mentioned, UsiXML offers no possibility of
making some activities or artifacts optional. However, every
‘azcésigner does not want to produce fully plastic Uls. Sometimes
designers want to address users' disabilities, sometimes they
e The task model can be generated by Compose [29],target several platforms and sometimes they want to take

framework that uses automated p|anning a|g0ri[hms foenvironment brig_htness or noise_ into account. They rarely yvant
generating a task model corresponding to a godlo address all of it at the same time, and even more rarely in the

expressed by the user (or a designer in our cib& first version of their Uls. This is why we improved UsiXML
is achieved in the process model by adding a choicabilities for managing incompleteness.

between the UsiXML "create task model" activity and
a new activity "generate task model from Compose"

Several strategies and choices between equivalent activiti
have been added in the process model.

We have defined some default and optional models that
) g, i " designers can pick up in a repository when they do not need to
(fig. 7b. activity 6) _in the strategy "model tasks, 4qress very specific issues in a model. We proposed a default
domain, environment” (fig. 7a. strategy 3). user model, in which users are considered monolingual, able-
e In the same strategy also, we defiregrocess for bodied, and competent, some default platforms models,
converting existing Uls into UsiXML models that can representing for instance PCs and Andro_ld Smartphones with
be abstracted into task model. This has been deepljiternet connections, and a default environment model, the
studied on a concrete case in nuclear plants contr@nviroment being seen as “average”, i.e. neither too much or
command. In the process model, this corresponds to {0 less dark or luminous or noisy.
new choice operator with a new optional activity
"Generate models from existing Uls".

2 The numbers in brackets refer to the numbers on figuaes B.

To offer these possibilities, we added new activities in the 12 f T s A A S HBSIGY =
process model ("pick up default users / domain / environment / e = 13
platform model"), making it possible for the designer either to B O o 8= = BRSNS

create each of these models to use the proposed default Scenarii
models Tasks 14
' Domain
cuI
D. Distensibility Fig.8 - D2Flex toolboxes

UsiXML offered a predefined and fixed set of activities. development tools, for instance by configuring some
We modeled UsiXML process into one of our tool (see nextlevelopment tools according to the choices of the designer.
section), representing all activities and needed artifacts. Thus,
this process model takes benefit of the constraints, makin
distensibility possible.

We have created D2Flex, a tool supporting the design of
ocess modelgrigure 7 has been created by assembling three
screenshots of D2FlexVe can see examples of a Start goal

After presenting how a quite rigid process model has beefl), of casual goals (2) and of strategies (3). Activities (4) are
flexibilized thanks to the variability, granularability, concretizing (5) these strategies and they input (6) or output (7
completeness and distensibility modeled in M2Fleg,imthe artifacts, that can be documents (8) or executables. Refinement

following section the tools supporting our metamodel. also is implemented: refined activities are represented with a
"+" sign drawn of them (9). When displaying a refined actjvity
V. TooOLSSUPPORTINGTHE METAMODEL a new window is displayed, e.g. parts (b) and (c) on figute 7.

. . _ is then possible to design how the activity is detailed. On part
A !ot of tools.or fgnct|onal|t|es are required to put_MZFIex (c) of figure 7, the activity "Generate [Domain model] from
in action, at design time as well as enactment:tiMe aim 0 yaapase” is detailed by two (sub-)activities, respectively
create tools for designing a process model as an instance of 0lf|ect database access data” and "run DB2domain”. This
metamodel and to enact this process model while allowingyre also shows an example of the "parallel’ operator is
designers to adapt it. This means that the process model hasp sentedn (10) and the "choice" operator in (11).
be in turn instantiated as a process and that this process
supports the flexibility, offering the possibility of selecting the Figure 8 shows the two toolboxes offered by D2Flex. The
activities, recording these choices and their motivationdirst one (2) offers files managements and presentation
showing thé& impacts of on the following possibilities. We functionalities (elements alignment or font size management,
also aim that the enactment of the process model impacts tf instance). The second toolbox (13) shows the various

%
5 ick up in repository 5 - 5 5
2 3 Pick’up in repositol Pjel up in repositol
o o) » G o} N .
o »3 i % Create Cote Models, @ Generate AUI X Generate Ul 5 = ,:} Ul > 'O
Model tasks, domain, environment Code Task2AUI Code AUI2CUI Code CUI2FUI Pl
Classical UsiXML
(a) Goals, strategleS\/
B _ —
XML classic 4
reate Task 8 - fasfs
1< 3 z RETY 5
Model tasks, domain, environmeht Genera: froﬁ'?(iompose Compose Task Model Transform
5 i 6
Scenarii
10
Parallel 11
3
5 B =
How create Do inUleMLgQass\c —
n— = E
Generate frofil database — =
_— ~ Domain
Generate from Wha o et = _—
L — >
Geperate fiom UML
Generale%mXML
(b) concretization of \\ yd
" Z
Model tasks, domain,
= " bo
environ ment Generate from database
)| Start goal L3 system activity m Operator - interleaving I\ Operator activities
©® Goal = Artifact: document | ' Strategy input 0— — e e
5 = \ v Concretizes or refines Collect database access data Database URL, login, password, run DB2Domain Domain
(M Stop goal =y Attifact : executable Strategy output ®
»| Strategy | Operator - parallel ‘\ Activity input Available details
o Operator : choice LN = " "
L} Interactive activity g Activity output Legend (c) Refinement of "Generate from database

Fig.7 - UsiXML flexible process model

elements of the metamodel that can be instantiated in the A. "Classical" Approaches
process modeThe list of already instantiated components (14) gofrware and Systems Process Engineering (SPEM)S33]

makes it possible to represent several times the Samegiandardized activity-oriented process metamodel proposed
componentin the process model. For instance, on figure 8By the Object Management Group.
e

some already instantiated artifacts are proposed: they can

added in an activity refinement, letting the system know that Activities are submitted to very generic conditions that

both the representations refer to the same artifact. enable a method engineer to specify the artifacts (and their
states) required by activities. However, there is no structure

We also have integrated some of the possibilities offered by,,ying it possible to specify a free choice between equivalent
flexibility in some tools related to UsiXML [25]. Therefore, we actjvities or artifacts There is no goals and strategies
created a framework, whose first version is named US'Cothanagement: the offered variability is partial.

[30] and whose ongoing version is named FlexiLab. This

framework offers two modules, one dedicated to the design of Conversely, its granularability is well established: an
models and transformations, and the other for executing tteetivity is modeled as aBreakdownElement and as a
transformations and producing the executable Ul. Thigomposition of otherBreakdownElements. SPEM also offers a
framework implements a part of the process model described stiper-class named MethodPlugin that gives rise to more
section IV (integration of Balsamiq Mockups, generation of thegranularities. However, this class does not make SPEM
task model by Compose [29], repository of elementangistensible: methods plugins can only be added when designing
transformations and default models and so on). However, thetigé process model.

is (up to now) no link between D2Flex in which we describe BreakdownElements can be optional. Similarly, a
the process and UsiComp/Flexilab in which we execute th%askDefinition may input optional WorkProducts (dur

resulting application. It is also not yet possible t0 have, it ts) However there is no mechanism to define that a

information about the process and adapt the process moqftkproduct is pre-existing and can be picked up somewhere.
implemented in UsiComp/FlexiLab at enactment-time. SPEM completeness is therefore partial

In the next section, we compare our proposition With apqther standard metamodel is given by ISO/IEC 24744
related works. [38]. This metamodel uses powertypes (pairs of classes) such
asDocumentKind (the kinds of documents described by the
VI. RELATED WORKS methodology) andDocument (the documents that people
We have analyzed many approaches, process models am@nage). This makes possible to define that a task produces a
metamodels to define the four dimensions of flexibility DocumentKind, the choice of the concret®ocument being
(variability, granularability, completeness and distensibility) made during enactment. Powertypes are used for defining
This study also relies on more than 500 scientific and industri@ftifacts as well as activities, giving rise to a high variability.

papers. This work led us to identify four main approaches id e granularability is also high, thanks to several
researches about flexible process models: compositions/aggregation in process and artifacts definition.

(a) "classical" approaches including or not some flexibility, ~OPtions are managed at several levels. For instance, the
such as the Spiral Model [31], Scrum [15] or FDD [3jese attribute named optionality in thictionKind class represents
approaches focus on a facet of the process model (activitidge Possibility for a task to use sorWérkProduct or not.
activities to be realized by designers and developers. The thrB8& Picked up on the shelf at enactment-time. The completeness

examples mentioned before are activity-oriented, an approa@i _this metamodel is therefore partial. Moreover, ISO/IEC
whose metamodel is SPEM [33]. 24744 clearly states that its metamodel intended to be

_ _ instantiated by method engineers (methodology domain), the
(b) approaches based on method engineering33436], resulting methodology being used by developers (endeavour

where methods fragments, or chunks, are assembled to cregtmain). This is not what we aim to do in a distensible process
an ad-hoc process model. (meta)model.

(c) studies on the integration of business process qualities QOther approaches exist. We already mentioned KAOS[17]
and design process models [9]. These works intend to combiipe [18] and the MAP [19] as examples of goal-oriented
the expressiveness, understandability and abstraction gpproaches. The Work Product Pool approach [39] is an
Sditware Process Modeling Languages with the capacity oéxample of a product-oriented approach: the authors focus
executing processes of business processes. directly on the products to be built. They reuse the notion of

(d) services-based approaches [37], which propose to builfyork Product Kind defined in [38], making it possible to offer
dynamically ad-hoc process models thanks to servicedP0d variability in artifacts.

representing methods fragments However, the authors leave thertcess' (the activities) to

In the following, we compare the flexibility provided by °€ éjefined Iat engctmﬁnt time. Tofacpiefve this, It"hfe Work
our process metamodel to the flexibility offered by four othef”roduct Pool requires thasSistance” of a "software tool™ for

approaches, that we consider being representative of the fo'ﬁlrem.if.ying the ‘possible _proca@/producw' pz_iirs, Le. the
categories mentioned before. activities. The authors claim that, as the procesadt part of

the structure of the methodology, it can be freely changed as

long as the overall product network stays constant”. However, C. Hybrid Business & Development Process
this makes poor native variability in activities, as they are not Models

defined: the variability relies on external tools that are not 1o UML4SPM to WS-BPEL approadd, 40] combines
guaranteed to exist and to offer variants. Therefore, thgy 45pM, a metamodel for software process modeling and
variability of the metamodel itself is partial. WS-BPEL, an XML-based standard supporting Web services

A product can be considered at various levels of details argfchestration in the context of business processes

refined into inter-products. The Work Pool Product approach ignplementation. The former is expected to provide
thus granular. The authors expligitsay that an expected €xpressiveness, understandability and abstraction and the latter

artifact can be either produced either found in the "reusabl@ offer the concepts supporting process execution.
asset pool", thereby managing incompleteness. Being based on UML 2.0 and SPEM, UML4SPM origin

The Work Product Pool approach defines a procedure fg@nsure him a good granularability. UMLASPM includes
extending the process model at enactment time. It is thg@mponents (mainly th®ecision and Merge Nodes classes)

distensible. for expressing decisions and alternatives. Combined to the
hierarchical structure, this can be considered as an equivalent
B. Stuational Methods to strategies. This metamodel is therefore variable.
A "Process Engineering Method based on a Process Activities being constrained by generic pre- and post-

Domain Model and Patterns' is proposed in [34], aiming to conditions and by analyst's decisions, they may be optional.
help method engineers building process metamodels that stdpwever, there is no mention of any available pre-defined

the specific needs of their organization. This methods leads tesults, such as a default (and thus simplified) users model. The
build "unified, fitted and multi-viewpoints process meta- completeness of this approach is therefore partial.

models’. To achieve this, the authors have analyzed several

. . The approach relies on (a) the modeling of the process with
process metamodels and propose an alignment of the vario .
concepts coming from different metamodels, making itﬁAMSPM’ (b) the mapping of process model components

. into BEPL elements and (c) the execution of these elements as
possible to assemble fragments of these metamodels. Th ervices. The approach would then be distensible if (a) the

5223rlcfhci;ff%'ﬂggtérgiﬁggféaﬁggf SI ;N #]Ztgﬁtgégls that can lf)eFocess quel is distensible at runtime and (b) th(_a services
' corresponding to new components were dynamically integrated

The domain model on which this approach relies offers twdnto the orchestration. Even if it is possible to take into account

abstraction levels: (a) an intentional level representing ththe emergence of new services dynamically, the approach does

goals (named intentions) and (b) an operational levehot define the complete procedures for extending a process

representing the activities that concretize these goals. It alsnodel. The distensibility is thus partial.

offers the concept ofAlternative, representing the various

decisions that can be made when a problem is identified and D. Service-based approaches

that "contributes to the advance of a Work Unit" (a Work Unit The Service-Oriented Meta-Method (SO2M) [41] proposes

being close to what we call here an activity). This concept mogel for composing dynamically methodological services
offers possibilities of choosing an activity. These structures arg 1 hrovide solutions for development problems. The services
equivalent to our proposition and offer the same pOSSIbIlItIeﬁre goal-oriented so that to manage the knowledge for

regarding variability. describing and solving a problem.

Activity refinement is not native in the metamodel: the goo\m provides pre-defined services, among which

Work Units (activities) have no sub-structure. However, theyegigners and developers choose those that suit their needs.
method defines a pattern for adding a reflexive composition a§5, offers guidance for selecting the services. Moreover, the
aggregation to a class. Therefore, it is possible to Specify &jices are focusing on the problem more than the solution
composed structure as a customization. Granularability is th%d the composition may dynamically provide various paths to

possible. solve the problem. The process metamodel is therefore
This approach is made for building process metamodelégariable.

and embedding all what a method engineer may need. It a genjice may invoke others services when needed,
integrates thus all the mechanisms for adding elements to t%ﬁering thereby some granularity. However, there is no
metamodel. However, this is not the point we address when Weandion that equivalent services with different levels of details
analyze distensibility. Indeed, the metamodel is said distensible, | be defined and composed. The granularability of the
when it produces distensible process madalshis approach, resulting process model is thus pairti

there is nothing that makes it possible to extend or retract

components at process enactment-time. This metamodel is Designers and developers are invited to explore a set of pre-
therefore not distensible. defined services and to select those that suit their needs. As

services can be chosen or not at enactment-time, there is some

. I}he melzam.odell propt())ses an attribute fgr fmalnaginfg Optilor?ﬁanagement of completeness. However the completeness is
in the WorkUnit class, but proposes no default artifact. ItSpartial” hecause there is no pre-defined results that the

completeness is therefore partial. designers and developers could reuse. Moreover, even if the set
of services is obviously extendable and even if services can

dynamically been added to an orchestration, there is no defined In the future, we plan to improve our tools (for instance,

procedure for enabling the designers and developers to creatéh validity checkers for the constraints to be satisfied). We
new services at runtime. The distensibility is partial. also plan to create additional tools like for instance a module
. . for executing the process models compliant with M2Flex.

In addiion to these approaches dedicated to SOﬂ\’v‘"‘rﬁttention will be paid to distensibility and to impact

design and development, we have analyzed the flexibilit - .
offered by Business Process Model and Notation (BPMN)%evelopment tools by configuring and/or executing them. We

. . oo . also intend to make extensions sharable and reusable: for
ﬁ‘;ﬁogng;geggg]’bsppl\:lo'\éosstfﬁgo\?:rigl%h J;’éf'“tHyéV;’alr'.ants instance, if an activity is created by a team, it might be made

: . A ayailable to others. Finally, as soon as this series of tools will
does not make it possible to express anything like goals arbcg available, we plan to evaluate usage and to collect best
strategies. Its variability is therefore partial. It manage '

granularability as well as distensibility, but, even if default ractices.
paths (named Default Sequence Flow) are possifRMN
does not mention default result that could be picked up on the ACKNOWLEDGMENT
shelf. The completeness also is therefore partial. The authors warmly thank the European ITEA UsiXML
project, which strongly supported this work.
E. Synthesis
In summary, Table | shows that flexibility is only partially REFERENCES

supported in the literaturespecially in terms of completeness

and distensibility at runtime [1] F. Garzotto and V. Perrone, “Industrial Acceptability of

Web Design Methods: an Empirical Sttidyournal of
Web Engineering, vol. 6, no. 1, pp. 736, 2007.

TABLE I. FLEXIBILITY IN 8 APPROACHES [2] C. Barry and M. Lang, “A Survey of Multimedia and
A) Kinds of flexibility Web Devglopment Techniques and Methodology Usage
pproaches Var. Gran. | Comp. | Dis. IEEE.MuIthed|a, vol. 8, no. 2, Pp- 52§O, Apr. 2001.
- - - - [3] B. Fitzgerald, “An empirical investigation into the
M2Fiex high high | high | high adoption of systems development methodologies,”
SPEM partial | high | partial] none Information & Management, vol. 34, no. 6, pp. 317
: : : 328, 1998.
ISO/IEC 24744 high high tial ’ :
9 9 parial none [4] G. Booch, Object-Oriented Analysis and Design with
Work Product Pool partial | high high | high Applications, 2nd ed. Addison-Wesley, 1993.
Process Engineering Method high | high | partiall none [5] Harmsen, “Situational Method Engineering”, University
. . . . of Twente, Moret Ernst & Young Management
UML4SPM to WS-BEPL high high partial| partial Consultants, Netherlands, 1997.
SO2M high | partial | partial| Partial [6] V.R. Basili and H. D. Rombach, “Tailoring the software
) . .) process to project goals and environméntsn
BPMN partial | high | partial] high Proceedings of the 9th int. conference on Software
Engineering, Los Alamitos, USA, 1987, pp. 34357.
VI, CONCLUSIONAND PERSPECTIVES [7] C. Potts, “A generic model for representing design

method3 in Proceedings of the 11th int. conference on

This paper promotes flexibility of design and development yfpware engineering, New York, 1989, pp. 21226.
process models, even at enactment time. The corner stoneqd$ F. Harmsen, S. Brinkkemper, and J. L. H. Oei,

M2Flex, a process metamodel that covers the four dimensions

of flexibility: (1) variability, the ability of the metamodel to project approach&sn Methods and Associated Tools for
provide several equivalent choices, (2) granularability, the the Information Systems Life Cycle, 1994, pp. 169194
possibility of defining components with multiple levels of 9 R.B ' P :

- - e . . Bendraou, A. Sadovykh, M.-P. Gervais, and X. Blanc,
details, (3) completeness, the possibility of defining optlona‘ “Software Process Modeling and Execution: The

components and pre-defined reusable results, and (4) .
distensibility, the capacity of the resulting process model to be ~YML4SPM to WS-BPEL Approach, in EUROMICRO-

extended or cut at runtime. SEAA, 2007, pp. 314321. o
[10] C. Hug, A. Front, and D. Rieu, “A Process Engineering

M2Flex is original by the flexibility it offers to designers Method based on a Process Domain Model and Pdtterns
and developers, not only at design time as it is classically done, jn MoDISE-EUS, Montpellier, France, 2008, vol. 341.
but also at runtime which is new to our best knowledge. [11] E. Céret, S. DupugGhessa, G. Calvary, A. Front, and D.

In additon to the metamodel, we present rules for Rieu, “A taxonomy of design methods process models,”
validating the process model being built. We also describe an Information and Software Technology, Elsevier, vol. 55,
instantiation of M2Flex that shows that the resulting process no. 5, pp. 795821, May 2013.
model is understandable and usable. Last but not least, 2] J. L. Kolodner, R. L. S. Jr, and K. Sycatgranski, “A
present the tools we created for managing and implementing Process Model of Cased-Based Reasoning in Problem
M2Flex. Solving,” in IJCAI, 1985, pp. 284290.

“Situational method engineering for informational system

[13] R. C. SchankPynamic memory - a theory of reminding

and learning in computers and people. Cambridge

University Press, 1983.

[14] M. Laanti, “Implementing Program Model with Agile
Principles in a Large Software
Organization,” in Computer Software and Applications,
2008. COMPSAC’08. 32nd Annual IEEE International,
2008, pp. 13831391.

[15] K. Schwaber, “SCRUM Development Process,” in
Proceedings of the 10th Annual ACM Conference on
Object Oriented Programming Systems, Languages, and
Applications (OOPSLA), 1995, pp. 117134.

[16] J. Martin, Rapid application development. Indianapolis,
IN, USA: Macmillan Publishing Co., Inc., 1991.

[17] A. Dardenne, A. van Lamsweerde, and Sk#d, “Goal-
directed requirements acquisition,” Science of Computer
Programming, vol. 20, no. 2, pp. 3- 50, 1993.

[18] E. Yu, “Modelling Strategic Relationships for Process
Reengineering,” Department of Computer Science
University of Toronto, Toronto, 1995.

[19] C. Rolland, N. Prakash, and A. Benjamen, “A Multi-
Model View of Process Modelling,” Requirements
Engineering, vol. 4, no. 4, pp. 16487, Dec. 1999.

[20] C. Atkinson and T. Kiihne, “The Essence of Multilevel
Metamodeling,” in <«UML>» 2001 — The Unified
Modeling Language. Modeling Languages, Concepts, and

Tools, vol. 2185, M. Gogolla and C. Kobryn, Eds.

Springer Berlin Heidelberg, 2001, pp.-B3.
[21] 3. McDermid and K. RipkerLife Cycle Support in the

ADA Environment. New York, NY, USA: Cambridge

University Press, 1984.

[22] D. A. Norman and S. W. Drapeldser centered system
design: new perspectives on human-computer interaction.
Lawrence Erlbaum Associates, 1986.

[23] L. Nobrega, N. Nunes, and H. Coelho, “Mapping
ConcurTaskTrees into UM2.0,” in Interactive Systems.

Design, Specification, and Verification, vol. 3941, S.
Gilroy and M. Harrison, Eds. Springer Berlin Heidelberg,

2006, pp. 237248.
[24] TechiS, “Oxygen Code Generator.” [Online]. Available:
http://www.oxygencode.com/. [Accessed: @¢t2012].
[25] Q. Limbourg and J. Vanderdonckt, “UsiXML: A User

Interface Description Language Supporting Multiple
Levels of Independentean | CWE Workshops, 2004, pp.

325-338.
[26] G. Calvary, J. Coutaz, and D. Thevenin, “A Unifying

Reference Framework for the Development of Plastic

User Interfaces,” in Engineering for Human-Computer

Interaction, vol. 2254, M. Little and L. Nigay, Eds.

Springer Berlin / Heidelberg, 2001, pp. +132.

[27] W3C, “UsiXML - Model-based User Interfaces Incubator

Grow Wiki.” [Online]. Available:
http://lwww.w3.0rg/2005/Incubator/model-based-
ui/wiki/UsiXML. [Accessed: 30-Jan-2013].

[28] M. Resnick, B. Myers, K. Nakakoji, B. Shneiderman, R.

Pausch, T. Selker, and M. Eisenberg, “Design Principles
for Tools to Support Creative ThinkihgA Workshop

Development

Soonsored by the National Science Foundation, pp. 25
35, 2005.

[29] Y. Gabillon, M. Petit, G. Calvary, and H. Fiorino,
“Automated planning for user interface compositidrin
Proceedings of the 2nd International Workshop on
Semantic Models for Adaptive Interactive Systems:
SEMAIS’11 at IUI 2011 conference, 2011.

[30] A. G. Frey, E. Ceret, S. Dupuy-Chessa, G. Calvary, and
Y. Gabillon, “UsiComp: an extensible model-driven
composet in EICS, 2012, pp. 263268.

[31] B. Boehm, “A spiral model of software development and
enhancemeiitS GSOFT Softw. Eng. Notes, vol. 11, pp.
14-24, Aug. 1986.

[32] P. Coad, E. Lefebvre, and E. DeLudaya Modeling in
Color with UML: Enterprise Components and Process.
Upper Saddle River, NJ: Prentice Hall PTR, 1999.

[33] Object Management Group, “Software & Systems
Process Engineering Metamodel (SPEM).” Apr-2008.

[34] C. Hug, A. Front, and D. Rieu, “A Process Engineering
Method based on a Process Domain Model and Patterns,”
in International workshop MoDISE-EUS 2008 (Model
Driven Information Systems Engineering: Enterprise,

User and System Models), held in conjunction with
CAISE 2008, Montpellier, France, 2008.

[35] I. Mirbel and V. De Riviére, “Introducing flexibility in
the heart of analysis and desi’ presented at the 6th
World Multi-conference on Systemics, Cybernetics and
Informatics (SCI 2002), Orlando, USA, 2002.

[36] B. Henderson-Sellers, C. Gonzalez-Perez, and J. Ralyté,
“Comparison of Method Chunks and Method Fragments
for Situational Methd Engineering,” in Australian
Software Engineering Conference, 2008, pp. 479488.

[37]N. Arni-Bloch and J. Ralyté, “Service-Oriented
Information Systems Engineering: A Situation-Driven
Approach for Service Integratibnn CAISE, 2008, pp.
140-143.

[38] ISO/IEC, “Software Engineering —
Development Methodologies.”
Organization for Standardization, 2007.

[39] C. Gonzalez-Perez and B. HenderSeilers, “A work
product pool approach to methodology specification and
enactment,” Journal of Systems and Software, vol. 81, no.

8, pp. 12881305, 2008.

[40] R. Bendraou, MR. Gervais, and X. Blanc, “UML4SPM:

A UML2.0-Based Metamodel for Software Process

Modelling,” in Model Driven Engineering Languages

and Systems, vol. 3713, L. Briand and C. Williams, Eds.

Springer Berlin / Heidelberg, 2005, pp-BB.

[41] G. Guzelian, “Conception de systémes d’information, une
approche orientée service,” PhD dissertation, University
Paul Cézanne, Marseille, France, 2007.

[42] M. Cortes Cornax, A. Matei, E. Letier, S. Dupuy-Chessa,
and D. Rieu, “Intentional Fragments: Bridging the Gap
between Organizational and Intentional Levels in
Business Processem OTM Conferences, 2012, pp. 110
127.

Metamodel for
International

