
Exploring Alternative Designs for
Sociotechnical Systems

Fatma Başak Aydemir, Paolo Giorgini, John Mylopoulos
University of Trento

Trento, Italy
{aydemir, pg, jm}@disi.unitn.it

Fabiano Dalpiaz
Utrecht University

Netherlands
f.dalpiaz@uu.nl

Abstract—Sociotechnial systems (STSs) consist of a complex
interplay of technical components, humans, and organizations.
As other types of systems, STSs need to evolve in response to
changing requirements and operational environments. Evolving
STSs is a complex activity, which requires reconfiguration of
technical components as well as rerouting of interactions among
human and social actors. Moreover, reconfiguration has to respect
participant autonomy, while coping with conflicting goals and
noncooperation in identifying a configuration that minimizes
changes relative to the current configuration.

In this paper, we present a framework that supports design
and evolution of STSs. The framework includes (i) the DEST
language for modeling STSs as goal-oriented actors that interact
via social commitments; (ii) techniques for building a network
of interactions that fulfills participant requirements; and (iii)
techniques for evolving an existing STS while minimizing change.
We encode the design and evolution of STSs as an automated
planning problem.

goal models; planning; sociotechnical systems; require-
ments engineering

I. INTRODUCTION

Exploring alternative solutions and constructing a plan to
realize them is essential in times of crisis. This occurs in very
different contexts: governments devise new policies to cope
with economic crises, organizations re-engineer their processes
to boost competitiveness in changing market conditions [1],
software companies create new releases to improve customer
satisfaction [2], etc.

Sociotechnical systems (STSs) are systems-of-systems in
which technical, social, and organizational subsystems inter-
act [?], [?]. Each of the systems has its own requirements—
that often conflict with other systems’ requirements— and the
satisfaction of some of these requirements depends on the
success of the interactions with other systems.

We encounter many STSs in our lives. A university is an
STS that includes information systems, administrative staff,
students, professors, etc. Air traffic management is an STS
that involves flight controllers, pilots, radars, airliners, etc.
Hospitals are STSs that include doctors, patients, nurses, local
governments, visit reservation systems, patient information
systems, and the like.

STSs are in constant evolution, for they need to cope with
the different types of changes that can occur: the participating
systems’ requirements may change, new systems may join,

some systems may leave, fail, or become untrustworthy [?],
[?]. For example, in a university, professors may stop using
an information system that they deem obsolete, the higher
education ministry may require staff to check-in/out, the
university board may impose a maximum time for students
to obtain a degree, the dean may leave, etc.

In this paper, we support the design and evolution of
STSs through the proposal of a planning framework that
uses high-level requirements models of an STS to identify
alternatives and to suggest a plan for implementing these
alternatives in the STS. A plan is a sequence of actions through
which participants requirements are satisfied [?] and Gans
et al. [?] show that a design problem can be modeled as a
planning problem. Our framework recommends the plans that
preserve the stability of the STS by minimizing the cost for
adopting/implementing the plan.

We represent the requirements of participating systems via
goal models [3], [4]. Specifically, in order to capture the
contractual relationships among STS participants, we adopt
and extend the work on goals and social commitments by
Chopra et al. [5].

The paper makes the following contributions:
• Introduces the DEST (DEsigning Sociotechnical

sysTems) requirements modeling language to represent
the actors in an STS, their goals, and their social
interactions. The language also supports expressing the
capabilities of an actor to achieve goals, goal conflicts,
and other requirements such as priorities on goals and
temporal ordering constraints.

• Formalizes the notion of an STS configuration and de-
sign plan, and shows how these concepts are useful for
describing how to design an STS from scratch. A plan is
a sequence of actions that leads to the establishment of
a network of interactions among the subsystems of the
STS that fulfills their requirements.

• Proposes a framework for supporting the evolution of
an STS. The framework responds to the occurrence of
triggering events in the STS (new requirements, exiting
actors, etc.) by identifying a redesigned plan that re-
configures the STS to deal with the changed context.

• The problems of design and evolution are encoded in the
PDDL 3.0 planning domain language—for off-the-shelf
planners.



Travel 

Agency

Student

Fund 

Manager

research 

activity 

increased

trip 

booked

booked by 

student
booked via 

travel agency

paid by 

student
expenses 

reimbursed

trip info 

provided

auth. sentget 

authorized

info. 

submittted 
auth. req. 

submitted

auth. 

received

booked

profit

trip 

booked
payment 

done

info. 

received

trip 

paid

Actor Goal Dependency AND/OR-refinement

Legend:

auth. req. 

inspected

info 

received

req. 

received

req. 

responded

Fig. 1: Partial i*/Tropos goal model for the travel authorization and reimbursement STS

• Presents a preliminary evaluation of our approach, both
in terms of its visual scalability, and of the scalability of
the planning mechanisms.

The paper is structured as follows. Section II presents our
baseline on goal models, social commitments and planning.
We introduce the DEST language to describe STSs in Sec-
tion III. Section IV details how to build a sociotechnical
system using DEST . Section V extends the framework of
Section IV to support STS evolution. The details of implemen-
tation in PDDL is given in Section VI. Section VII presents a
preliminary evaluation of our approach. Section VIII compares
our work with the relevant literature. Finally, Section IX
presents our conclusions and outlines future work.

II. RESEARCH BASELINE

Our research baseline consists of two state-of-the-art mod-
eling frameworks: goal models for representing requirements,
and commitments for modeling social interactions.

We illustrate our baseline and our proposal with the aid of
the following case study concerning the travel authorization
and expense reimbursement system at the University of Trento.
We build our models on the basis of the outcomes of an
interview with domain experts. Travel authorization and the
reimbursement system of the university is an STS where the
social actors including individuals and departments interact
with each other through technological actors such as informa-
tion systems.

The STS should satisfy the requirements of participating
actors, and currently provides alternative ways of doing so, but

needs to operate in the most cost–efficient way as the resources
of the university are limited. Since the university encourages
all of its personnel to participate in research activities, and
there is an underlying bureaucracy for travel application,
approval, and transaction processing, the social actors are
not only academics, but also administrators, financial offices,
department heads, research fund managers, travel agents, and
travelers such as students, post-docs, professors, etc. Inter-
actions among these actors are crucial for fulfilling their
respective requirements. Design here amounts to establishing
a network of interactions defined by commitments where
requirements are fulfilled if all actors respect their obligations.

A simple version of the STS described above is as follows.
There are three actors: (i) student, (ii) project fund manager,
(iii) travel agent. These actors are heterogeneous in their re-
quirements and their capabilities within the STS. For example,
the student is concerned with the planning of a trip; on the
other hand, the project fund manager aims to increase project
research activity, while the travel agent wishes to make profit
through the selling of tickets to the other two actors. As far as
capabilities are concerned, the project fund manager is capable
of making payments, and authorizing trips while the travel
agent can book trips.

Goal-oriented requirements engineering [6] founded on the
premise that stakeholder requirements can be modeled and
analyzed as goals. We use the i*/Tropos [3], [7] modeling
language, which captures not only the goals assigned to a
software system (as KAOS [4] does), but traces these goals
back to the stakeholders (actors) that want them, and also



represents social dependencies among those actors.
Fig. 1 shows a goal model in i*/Tropos. Actors are visu-

alized as circles, and an actor boundary is represented by a
gray circle with dashed borders. Goals are ellipses linked to
their AND/OR refinements via straight, solid lines. When an
actor depends on another actor for the satisfaction of a goal, a
dependency link is used to model this social relationship. For
example, the student depends on the project fund manager to
get authorization. Similarly, the project fund manager depends
on the student for increased research output.

As shown in [5], [8], traditional goal models need to
be extended to adequately represent STSs that consist of
autonomous actors. In particular, social dependencies, as used
in i* and Tropos, do not capture the reciprocal nature of most
social dependencies between a depender and a dependee.

To address this limitation, we rely on the notion of social
commitment—denoted as C(debtor, creditor, antecedent, con-
sequent)—, a contractual relation between two parties to bring
out certain states of affairs [9]. The debtor commits to satisfy
the consequent for the creditor, if the antecedent comes to
hold.

Representing social interactions with commitments solves
the problems with dependencies stated above, for commit-
ments are created by the creditor when it communicates this
to the debtor, and they are reciprocal by their own nature.

Consider the dependencies between student and fund man-
ager in Fig. 1. The dependency of student for the authorization
is directly related to the dependency of project fund manager
for increased research output. Indeed, project fund manager
gives the authorization if there is an increase in the research
output by the student. In this case, a commitment would
adequately capture the relationship between these two depen-
dencies: when represented in the form C(fund manager, stu-
dent, research activity increased, authorization sent). A similar
commitment exists between travel agent and student where the
former relies on the latter for information related to the trip,
and the latter depends on the former for booking the trip.
The commitment C(travel agency, student, info. received, trip
booked) not only shows that both actors agree to be involved in
this contractual relation, but also explicitly states the relation
between the two seemingly independent relationships, which
cannot be captured in i*/Tropos.

III. DEST : A MODELING LANGUAGE FOR DESIGNING
SOCIOTECHNICAL SYSTEMS

DEST (DEsigning Sociotechnical sysTems) is a modeling
language for designing sociotechnical systems. DEST focuses
on the social components and their interactions; we reify
technical systems through the social entity (their developer,
owner, or user) that is liable for the effects of their interactions
with other entities. We model each component as an actor, an
autonomous entity that aims to satisfy its own requirements
either by its own means or through social interactions with
other actors.

DEST is based on and extends (i) the i* modeling frame-
work, from which we take the concepts of actor, goal, and

refinement; (ii) social commitments to represent the social
interactions among the actors; and (iii) advanced require-
ments, relationships such as priority and precedence [10],
[11]. Together, these elements support expressive modeling
and reasoning for requirements and interactions during STS
design and evolution.

Fig. 2 presents the meta-model of DEST . We ex-
plain the three fundamental concepts—goals, actors, and
commitments—in Sections III-A–III-C. Fig. 3 illustrates the
graphical syntax of DEST for the travel reimbursement STS.

A. Requirements

We represent stakeholder requirements as goals. In addition
we introduce priority and precedence relationships between
goals, so as to enable a fine-grained specification of the relative
importance and urgency of the goals. Specifically, DEST
supports the following elements to represent requirements:
• Goal models a desired state-of-affairs that an actor wants

the STS-to-be to achieve. In an STS, the behavior of actors
is determined by their respective goals.

• Precedence: a type of relationship between goals that
specifies that one goal is to be satisfied/carried out before
another. Precedence relationship represent actors’ tempo-
ral constraints on the goals. For example, a project fund
manager may require that a conference paper should be
accepted to be published before its authors submit a travel
authorization request.

• Priority: a type of a relationship between goals that in-
dicates that one goal has higher priority than another. A
student may prioritize spending its travel budget on plane
tickets rather than on accommodation.

• Conflict: a goal may conflict with another, i.e., they cannot
both be satisfied in the same STS configuration.

• Refinement: A goal may be AND/OR-refined to subgoals
that are easier to fulfill than their parent. For example, a
goal could be AND-refined into two subgoals for which
there are actors capable of fulfilling them.

• Capability: the actors ability to achieve a goal, a category
of goals or a state of affairs.

• Goal Category: each goal may belong in a category that
indicates the type of capability needed to fulfill it. For
example, in the travel reimbursement STS, a goal category
could be “authorization”, to aggregate all goals that can be
fulfilled through authorization the requests. An actor that
has the capability of satisfying a certain category, does not
need to declare his capability for each goal that belongs to
that category.
Fig. 3 describes a model built by using the concepts de-

scribed above. For example, ‘trip booked’ is a goal that is OR-
refined into two other goals: ‘booked by student’ ‘booked via
travel agent’, which implies that the child goals are easier than
to satisfy the parent goal. In the model, a precedence relation is
defined between the goals ‘trip planned’ and ‘paid by student’,
which states that the former should be satisfied before the
latter. The goal ‘expensive accommodation’ has priority over
the goal ‘expensive tickets’ so when taking actions in a plan



Actor Goal
Category

Commitment Refinement
type

Goal State of
Affairs

Precedence

Priority
Capability

has-capability

0. . . *

capable-of

0. . . *

capable-of

0. . . *

capable-of

0. . . *former1
latter 1

has-debtor

1

has-creditor

1

has-precedence
0. . . *

has-goal

1. . . *

conflicts
0. . . *

has-category0. . . *

has-refinement

0. . . 1

parent

1

subgoal

*has-consequent 1. . . *

has-antecedent
1. . . *

has-priority

0. . . *

high
1low

1

refers to

Fig. 2: Meta-model of the DEST modeling language

towards satisfying the goals, the former goal has a higher
priority. There is a conflict relationship defined between the
‘cash payment’ and the ‘expensive tickets’ goals, therefore only
one of them could be satisfied by the STS.

B. Actors

An actor is an autonomous component of an STS. An
actor could be a human such as a student or a project fund
manager, a social entity such as an airline or a hotel, or a
technical system such as the information system used within
a department. The following relationships relate actors to their
requirements:
• has-goal: this denotes that an actor has a requirement to

be satisfied by the STS. In DEST , requirements consist of
goals and relationships such as precedence, priority, and
conflict. A solution to the design problem should respect
these relationships and satisfy the goals of actors.

• is-capable-of: an actor is capable of (fulfilling) a goal if it
can do so on its own, without any help from other actors. I
an actor has some goals that she is not capable of satisfying,
the actor must interact with other actors to get the goal
satisfied by some other actor who is capable of satisfying
the goal. The actor who has the capability to satisfy the goal
may ask for the satisfaction of some of her own goals, as
often in case of real life, which initiates a reciprocal social
interaction between actors with various capabilities. There
may be alternative solutions for an STS where an actor still
interacts with others to get a goal satisfy of which she is
capable. For example, a travel agent may choose to use some
intermediary travel company for bookings due to its lower
cost although she has the capability of booking tickets and
hotel rooms.

• is-capable-of-category: an actor is capable of satisfying any
goal that belongs in a particular category.
There are three actors in the model presented in Fig.3 : stu-

dent, project fund manager, and travel agent. Each actor has its
requirements represented as goals, priorities, and precedences
within his actor boundary. Capabilities such as ‘booking’ and
‘payment done’ are shown in cloud shaped nodes within the
boundaries of the actor who is capable of them.

C. Commitments

A commitment represents a contractual relation between
two actors as they socially interact. Two actors get engaged in
a commitment whenever their capabilities are insufficient for
satisfying their requirements, or when interacting with others
is more convenient than exercising an internal capability. A
commitment is defined in terms of four relationships:
• has-debtor: the actor who is responsible for satisfying the

consequent of the commitment. A debtor participates in the
commitment because there is at least one goal listed in the
antecedent that he wants to achieve. The debtor should be
capable of satisfying all goals in the consequent.
• has-creditor: the actor who is the beneficiary of the com-

mitment. The creditor of the commitment is interested in the
satisfaction of at least one goal listed in the consequent. The
creditor should ensure that antecedent goals are satisfied, but
need not be the one to do so.
• has-antecedent: a set of goals whose satisfaction is a

precondition for the commitment to be fulfilled.
• has-consequent: a set of goals that the debtor is obliged to

fulfill.
Fig. 3 includes three commitments represented as split rect-

angles. For example, the commitment between the travel agent



Travel 

AgencyStudent
trip 

booked

booked by 

student
booked via 

travel agency

paid by 

student

expenses 

reimbursed

trip info 

provided

auth. sent

get 

authorized

info. 

submittted 
auth. req. 

submitted

auth. 

received

profit

trip 

booked
payment 

done

info. 

received

trip 

paid

Actor

Goal

AND-refinement

Legend:

OR-refinement

Fund 

Manager

research 

activity 

increased

conf. 

papers 

published

journal 

paper 

published

trip info provided 

AND auth. sent

trip booked

booking

auth. sent AND 

trip booked

payment done

payment 

done

auth. sent

Conf. paper published 

AND auth. req. submitted

auth. sent 

precedes

precedes

precedes

paper 

published

trip planed

accom. 

found itinerary 

found

cheap 

accom.

expensive 

accom.

cheap 

tickets
exp. tickets

cash 

payment

wire transfer 

made

precedes

has-priority

conflicts

Capability

Antecedent

Consequent
Debtor

Credit

or Commitment

precedes has-priority conflicts

reservation 

received

capable 

of goal

Fig. 3: DEST model of the travel reimbursement sociotechnical system

and student, where travel agent is the debtor that commits to
book the trip if the student provides needed information about
the trip and sends authorization for it.

IV. DESIGNING A STS

The modeling language introduced in Section III helps
abstracting the requirements of actors in STS, relationships
among these requirements, actor capabilities and social inter-
actions between actors that help fulfilling the requirements.
Analysis of this model consists of exploring the space of
alternatives for fulfilling requirements: actor root goals, while
respecting precedence, priority, and conflict relationships. Al-
ternative solutions may follow different paths to satisfy the
root goals. Differences in a path includes following different
OR-refinement branches, using an actor’s own capabilities to
satisfy leaf goals, and activating one of the commitments
described in the model. An STS deploys one of the alternative
solutions at run time as its configuration.

Definition 1 (Configuration). A configuration Cfg of a DEST
model M is a 3-tuple 〈G,Cap,Com〉, where G is the set of

(sub-)goals that the actors in the STS are adopting, Cap is
the set of capabilities that the actors are exploiting, and Com
is the set of commitments that the actors have established. G,
Cap, and Com are subsets of the set of goals, capabilities,
and commitments in M, respectively.

A configuration is empty at the beginning. Actors state
their goals, their capabilities and relationships among their
goals as well possible refinements and commitments. A valid
configuration includes the selected set of commitments and
refinements that satisfies the top-level goals of the actors while
respecting the specified relationships among goals.

We now present the design process whereby a STS is
designed using DEST :

Definition 2 (Design process). Let M be a DEST model that
represents the space of alternatives of an STS, and let Cfg be
a valid configuration of M. A design process DCfg,M is a list
of actions (Act1, . . . ,Actn) that, if correctly executed starting
from an empty configuration, leads to the configuration Cfg.

The actions that construct a design process correspond to the



execution of one of the following action types on an element
of a DEST model:

• Adopt goal: an actor can adopt a new goal when he doesn’t
have the goal, and the goal is not already satisfied. As a
result of this action, the actor intends to achieve (has) the
goal.
• Satisfy goal via capability: an actor can satisfy a goal if

i) the actor has the goal, ii) the goal has not been satisfied,
iii) no conflicting goals are satisfied, iv) all goals that shall
precede it are satisfied, and v) the actor is either capable
of satisfying the goal itself or the category of the goal. As
a result, the goal becomes satisfied, and the actor does no
longer have the goal.
• Refine goal: an actor may AND/OR-refine a goal if i) the

actor has the goal, ii) the goal has not been satisfied, and
iii) there is a refinement for that goal in the actor’s goal
model. As a result of the action, the actor does no longer
have the parent goal, but he has the subgoals.
• Create commitment: An actor may create a commitment

playing the role of debtor if there is at least one goal in the
antecedent that the actor wants to satisfy.
• Accept commitment: An actor accepts a commitment as

creditor if the actor wants to satisfy at least one of the con-
sequent goals. As a result, the actor drops its goal(s) listed
in the consequent, and adds the goals in the antecedent.
• Detach commitment: The debtor of the commitment de-

taches it when all goals in the antecedent are satisfied. Such
condition binds the debtor to satisfy the consequent, so he
adopts the goals listed in the consequent.
• Discharge commitment: The creditor of the commitment

discharges the commitment when all the goals in the con-
sequent are satisfied.

All these action types defined above are used at design time
and executed on goals and commitments. Actors may adopt
new goals during the design process. After adopting a goal, an
actor may either satisfy the goal, or further refine it into other
goals. If capable, the actor may choose to satisfy the goal via
its own capabilities. If the actor is not capable of satisfying
the goal or does not prefer to do so due to some constraints
such as budget, the actor creates a commitment with another
actor to get its goal satisfied. Creating a commitment is to
activate the respective commitment described in the model and
a declaration to the creditor of the commitment to satisfy the
goals listed in the consequent of the commitment one of which
may be adopted by the creditor. In return, the debtor actor
expects the goals listed in the antecedent to be satisfied. If the
creditor is interested in the commitment, that is, if there are
some of its goals listed in the consequent of the commitment,
the creditor accepts the commitment. Once the goals in the
antecedent are satisfied, the commitment becomes detached.
When the debtor actor satisfies the goals in the consequent
the commitment is discharged. The list of actions that operate
on commitments do not include two commitment operations
that are defined in [9]: canceling a commitment and violating
a commitment. We deliberately omit these operations as they

1) Student adopts ‘trip booked’.
2) Student OR-refines ‘trip booked’ to ‘booked by

student’ and ‘booked via travel agency’.
3) Student AND-refines ‘booked via travel agency’ to

‘trip info provided’, ‘authorization sent’, and ‘reser-
vation received’.

4) Travel Agency creates commitment ‘C(Travel
Agency, Student, trip info. provided AND auth. sent,
reservation received)’.

5) Student accepts commitment ‘C(Travel Agency, Stu-
dent, trip info. provided AND auth. sent, reservation
received)’.

6) Student satisfies ‘trip info provided’.
7) Student satisfies ‘authorization sent’.
8) Travel Agency detaches commitment ‘C(Travel

Agency, Student, trip info. provided AND auth. sent,
reservation received)’.

9) Travel Agency satisfies ‘reservation received’.
10) Student discharges commitment ‘C(Travel Agency,

Student, trip info. provided AND auth. sent, reserva-
tion received)’.

Fig. 4: A partial design plan for the model described in Fig. 3

are deviations from the successful execution of commitments,
which may occur at run run-time as exceptions but are not
used at design time.

The output of the design process is a set of actions of
whose execution leads to a valid configuration for the STS.
The precedes relation imposes constraints on the satisfaction
order of goals; thus, the order of the actions in a design
process is relevant and should be used as a guideline for the
implementation of the STS.

Fig. ?? we provide a partial enactment of the design process
for our example STS in Fig. 3. The plan sets up the interaction
between the student and the travel agency. In this scenario,
the travel agency wants to make profit by selling trips, and
needs to receive necessary information for the trip as well
as reimbursement for the trip (hotel and tickets). The travel
agency is capable of making payments and booking trips. In
the following steps, first, the student adopts and refines a goal
(Steps 1-3). Then the travel agency creates a commitment
which potentially matches its goals and the capabilities to
those of the student’s (Step 4). The student accepts the
commitment (Step 5), and the two successfully A possible
sequence of run-time interaction that instantiates the design
plan is also shown (Steps 6-10). Among these steps, detaching
(Step 8) and discharging a commitment (Step 10) are necessary
for one actor to acknowledge that the other actor has, indeed,
satisfied the antecedent (Step 8) and the consequent (Step 10).

It is generally the case that there are alternative ways to
satisfy requirements for a STS. This happens when a goal
is OR-refined, when several actors have capabilities for the



same goal, and when multiple commitments are possible for
fulfilling a goal.

The problem of identifying configurations that fulfill a given
set of requirements can be reduced to an automated planning
problem [12], where a tool is employed to search the encoding
of a DEST model for feasible design plans that respect the
constraints. The planner returns a list of actions (a plan) to
be followed at run time that results in the satisfaction of the
requirements of the actors.

In order to identify the best plan, among many possible
ones, we add to each action a cost, which corresponds to the
effort for an actor to execute that action. There are multiple
ways of expressing a cost: either a cost can be assigned to
each action (e.g., to adopt(g1)), or a standard value is assigned
to action types, or simply, all actions are assumed to have
unit cost. The best plan is the one that has minimal cost,
among all possible plans. An alternative way to quantify the
results of the actions is to add a utility to each action, in
this case the best plan maximizes the total utility. How to
assign these are beyond the scope of this paper, one of the
existing methods from the literature could be applied for this
task. Karlsson and Ryan [?] adopts a cost based approach for
prioritizing requirements. Regan et al. [?] provide a method
on eliciting reward information and use regret-reduction to
choose suitable solutions. Their approach could be broadened
to utility elicitation. In Section VI, we show how we map the
identification of the best plan into an input for an off-the-shelf
planner.

V. SUPPORTING EVOLUTION FOR STSS

The framework for STS design that we provide in Sec-
tion IV addresses the problem of devising a plan starting from
scratch. However, in most cases, STS designers are confronted
with the evolution of an existing system.

While an STS can evolve in an unmanaged manner (when
the actors change their relationships autonomously), we are
interested here in managed evolution, i.e., when the designer
is in charge of devising an alternative configuration and a plan
to reach it. We call this activity an evolution episode.

An episode is triggered by the occurrence of one or more
events. There are many types of triggers; here, we consider
only those that affect the elements of DEST :
• Changed capabilities: an actor may lose a capability that

he needs to satisfy either his own goals, or the goals he
adopted through a commitment. In the former case, the actor
fails to satisfy his own requirements and needs to establish
a commitment with another actor to get his requirement
satisfied. In the latter case, the actor either violates the
commitment of which he is the debtor, and fails to satisfy
the consequent, thereby harming another actor, or he cancels
a commitment of which he is the creditor and disappoints
the debtor actor who relies on him to satisfy the antecedent.
• Changed commitments: new commitments can be cre-

ated, introducing new opportunities for fulfilling the re-
quirements, or existing commitments may be withdrawn,
threatening the actors that rely on those commitments.

• Unreliable actor: an actor may not respect its commit-
ments, either intentionally (i.e., maliciously), or due to other
exogenous reasons, such as external regulations, lack of
resources, etc. Such an actor does not satisfy the consequent
of a commitment even though the antecedent is satisfied by
the creditor or he does satisfy the antecedent although he
agrees to take part in the commitment, therefore stalls the
debtor.

• Dropping a requirement: an actor may not respect his
commitments if he drops a requirements, thereby losing his
interest in the interaction.

• New requirements: actors may have new requirements
(goal, priority, precedence) which cannot be satisfied
through the existing plan.

• Joining/leaving actors: the effect may be either beneficial
or harmful. A new actor, along with its capabilities and
potential commitments, provides new alternatives, but also
introduces new requirements to satisfy. A leaving actor
does harm other actors, which may be relying on his
commitments. However, quitting also means that there are
fewer requirements to satisfy.

Whenever one of these events makes the current configura-
tion invalid, an evolution plan has to be identified, that brings
the STS towards a valid configuration.

Definition 3 (Evolution plan). Given a DEST model M, and
an invalid configuration C for M, an evolution plan is a list of
additions and removals of actions (those in Section IV), such
that the correct rollback of removals and the correct execution
of additions conducts to a valid configuration C′ for M.

In order to preserve the stability of the STS, we would
like the plan to lead to the valid configuration that is the
closest to the current one. We measure closeness in terms
of the cost of the evolution plan: the lower the cost, the
closer the configuration. To do so, we associate with every
addition/removal action a cost:

• Remove an action that exists in the previous plan but fails
the bring out the desired effect due to one of the evolution
triggers. Removing an action changes the currently imple-
mented STS, so it has its own cost. As a result of removing
an action, all of its effects are rolled back.

• Add one of the actions listed in Section IV either to
compensate for the rolled back effects of a removed action,
or to find a solution for a new requirement. For simplicity,
we assume that the cost for adding an action in the evolution
phase corresponds to the cost of adding it in the design
phase.

Consider the following scenario as an example of the
evolution in our example STS. The travel agency leaves the
STS, therefore the current configuration becomes invalid for
the rest of the actors. Any new configuration will have to
remove the elements that relate with the travel agency, such
as its commitment to the student. In particular, the additions
in Steps 4–10 described in Section IV have to be removed.
The only alternative for the student is to follow the other



branch in the goal model for ‘booked by student’. Since he
does not have the capability for the reimbursement, he needs
a commitment from the fund manager. The actions that are
related to existing commitments are removed (starting from
the creation and onward) and a new commitment is created
that has both the authorization and the reimbursement in its
consequent. Then, the student accepts the new commitment
and the interaction continues.

An interesting case is where the fund manager gains the
capability of directly paying for accommodations and tickets,
and the student changes the refinement of his root goal
accordingly. Furthermore, he states that he prefers this option
to others, that is, ‘paid by student’ and ‘booked via travel
agency’, thus, the current configuration does not respect the
preference of the student. However, without the commitment
with the student, there is no way for the travel agency to
satisfy his requirements, so the plan is unchanged and discards
the preference of the student. However, noting that there is
no solution that accommodates both the requirement of the
travel agency and the preference of the student, a designer
may choose to intervene and remove the travel agency from
the STS. Then, a new plan is constructed as in the previous
example. Another possibility is that even though the plan has
not changed, the student does not interact with the travel
agency at run time, hence forces him out of the STS.

VI. IMPLEMENTATION

The field of AI planning has found a number of applications
in various areas such as multiagent systems and robotics. A
planning problem includes the initial state of the world, the
desired of the world, and the possible actions that can be
taken throughout the plan [12]. Using the DEST language
described in Section III and the actions in Section IV, we
encode the problem of building a network of interactions for
the actors in an STS to a planning problem that satisfies actor
requirements while minimizing cost. We encode the problem
using the Planning Domain Definition Language (PDDL) [?],
the de-facto standard input format for planners. We use PDDL
v3.0 [13], which supports preferences and soft constraints that
we need to implement the has-priority relation.

An of-the-shelf PDDL planner has two inputs: the domain
description and the problem definition. We map the DEST
concepts defined in Fig. 2 into PDDL constructs in the domain
description file. Mappings of the actions in Section IV are also
added to the domain description file. This file can be re-used
for various problem definitions, each consisting of the model
(instances of the concepts), the initial state of the STS, metrics
for the plan, and the instances of the requirements.

In the domain description file, we state the requirements
for the planner, which are features of PDDL that the plan-
ner provides. For our purposes, we use typing to ab-
breviate the type declarations for the multiple objects of
the same type, adl for using disjunctions, quantifiers in
preconditions, and conditional effects, :constraints for
the trajectory constraints and numeric-fluents to model
costs. Among the classes in Section III we map Actor, Goal,

Goal Category, and Commitment classes into object types
in PDDL, so goal(trip-booked) is translated that trip-
booked represents an instance of the goal class in DEST .
Since there is a one-to-one correspondence between DEST
and PDDL for these four classes, we directly map their
relationships into namesake PDDL predicates. For example,
a has-goal relation between actor a and goal g is mapped
to has-goal(?a - actor, ?g - goal). Note that we
provide a template in the domain description file, and the
question marks mean that these objects are variables for that
predicate.

The other classes (refinement, conflicts, precedence, and
has-priority) are mapped through their relations with the four
classes mentioned above into PDDL, rather than introducing
namesake object types. We implement and-ref, or-ref,
and conflicts to capture refined-to relation (specifying the
refinement type) and has-conflict relation, respectively. For the
priority class, we combine high- and low-priority relations
into has-priority. Similarly, we define the precedes
predicate for the precedence classes. Other than these predi-
cates, we define auxiliary predicates to check the state of a
goal or a commitment, such as is-satisfied for a goal
and is-created for a commitment. The full list of the
predicates,together with the object types and orders are given
in the first two columns of Table I.

In our implementation of the actions and the DEST lan-
guage, in order to find an optimal plan, we use cost as a
metric. The individual efforts performed by each actor are
aggregated via in the actor-cost fluent. When an actor
performs an action, the actor’s cost increases by that action’s
cost. The cost of satisfying a goal by a particular action is
kept in has-goal-cost. Finally, the overall cost of the
plan is kept in total-cost. Those values are initiated in
the problem definition files before the planning starts. All the
fluents that we use are listed in the third column of Table I.
Various cost aggregation functions or other metrics could be
defined and implemented in the PDDL language and we leave
exploring the details of plan optimization as a future work.
The implementation of the priority relation is also part of the
future work where the priority violence is possible but not
desired.

We define a PDDL action for each action in Section IV.
Also, to determine the satisfaction of a goal through AND/OR-
refinement, we implement the corresponding actions that sat-
isfies the goals instead of relying on the PDDL’s derived
axioms due to performance issues. A PDDL action has three
components: parameters, precondition, and effect. Below we
provide the PDDL code for the satisfy-goal action: both
preconditions (the actor has the goal, etc.) and effects (the
goal becomes satisfied, etc.) correspond to those described in
Section IV. Finally, the costs are increased by i) a variable cost
for satisfying the goal g by the actor a, and ii) a fixed cost
for satisfying a goal. The second part of the implementation
is the problem definition, where the instances of the objects
and relations are defined and the initial values of the fluents
are assigned, such as (:init (=(total-cost) 0 )).



TABLE I: LIST OF PDDL PREDICATES AND FLUENTS

Predicates Predicates Fluents

(is-satisfied ?g - goal) (and-ref ?g ?g1 - goal) (actor-cost ?a - actor)
(or-ref ?g ?g1 - goal) (has-goal ?a - actor ?g - goal) (has-goal-cost ?a - actor
(precedes ?g ?g1 - goal) (has-priority ?g ?g1 - goal) ?g - goal)
(has-category ?g ?gc - gcat) (conflicts ?g ?g1 - goal) (total-cost)
(is-capable ?a - actor ?g - goal) (is-capable-cat ?a - actor ?g - goal)
(has-debtor ?c - comm ?a - actor) (has-creditor ?c - comm ?a - actor)
(has-ant ?c - comm ?g - goal) (has-cons ?c - comm ?g - goal)
(is-created ?c - comm) (is-discharged ?c - comm)
(is-detached ?c - comm)

;Actor satisfies a goal
(:action satisfy-goal
:parameters(?a - actor ?g - goal)
:precondition(and (has-goal ?a ?g)
(not (is-satisfied ?g))
(or (is-capable ?a ?g)
(exists(?cat - gcat)
(and (has-category ?g ?gcat)
(is-capable-cat ?a ?gcat))))

(not(exist(?cg - goal)
(and (or (conflicts?g ?cg)

(conflicts ?cg ?g))
(is-satisfied ?cg))))

(forall(?pc - goal)
(imply(precedes ?a ?pc ?g)
(is-satisfied ?pc))))

:effect (and (is-satisfied ?g)
(not (has-goal ?a ?g))
((total-cost) += (has-goal-cost ?a

?g) + <num>)
((actor-cost ?a) += (has-goal-cost

?a ?g) + <num>)))

Fig. 5: PDDL action for an actor satisfying the goal of which
it is capable

Also, the goals that are adopted by the actors are stated in
the (:goal ... ) section to tell the planner to satisfy
these particular goals. In this implementation we opt for a
simple metric, the minimal total cost, which is encoded as
(:metric minimize (total-cost)).

In order to handle evolution (Section V), we implement
remove-actions: for each action a implemented, remove-
action-a takes back the effects of the action a (except the
cost). Moreover, in the case of evolution, the initial state is
a definition of the current configuration (as opposed to the
empty state for the initial design case).

VII. PRELIMINARY EVALUATION

Visual scalability. Fig. 3 illustrates our running travel
reimbursement STS example in DEST . We deliberately choose
a syntax similar to that of i*/Tropos to foster adoption from
experts in the area of goal-oriented requirements engineering.

The visual notation of DEST follows the design principles
provided in [14]. Semiotic clarity. There is a one-to-one corre-
spondence between the symbols used in the visual notation and
their referent concepts: each symbol is only used to represent
a single concept from the language and each language concept
is represent by only one symbol.

Concepts, such as actor, goal, capability and commitments
are highly distinguishable as their respective symbols have
clearly different shapes from different shape families. Per-
ceptual discriminability. Goals belong in the oval family,
whereas actors are from the circles. We introduced the new
node shape for commitment, which is represented by split
rectangles so the shape does not only belong to a different
shape family from other symbols used in DEST visual syntax
but it also distinctly different from the rectangle node used in
i* which represent resources since it is split in two. The other
introduced node is the cloud-shaped node that corresponds
to ‘can-satisfy’ relationship. By using shapes from distinct
shape families we ensure the visual distance between the node
symbols are at least one.

To further increase the visual distance, positional cues
are used. Goal and capability nodes are placed within the
boundaries of an actor, actor name nodes are placed on the
actor boundary and the commitments are placed between the
actors. Since the goal and capability symbols are spatially
close to each other, we use color as the secondary dimension
for the visual distance. As light green is traditionally used for
the goal nodes, we use white for the capability nodes. We
depart from the i* syntax for the actor names and color them
in blush to increase the visual distance from goal nodes both
of which are light green in the i* syntax.

Complexity management. We omit representation of goal
categories not to overload the visual syntax. Furthermore, in
order to distinguish the goals that an actor is capable of
satisfying himself, we place small cloud shape nodes on them.
So, with the shape, size, color, horizontal and vertical positions
being different, the nodes have a visual distance of five from
each other.

The visual distance of the edges used in the notation is
also greater than one. Edges to and from commitments are
solid lines with an arrowhead filled with black. Since the
direction of the edges naturally conveys the meaning for the
debtor and the creditor we do not use textual labels on these



edges to keep the notation light for the human eye. We follow
the traditional representation for the refinements, which is
solid blue lines, and the type label is positioned close to the
parent node. Among the edges that represent the precedes,
has-priority and conflicts, the edge that represents conflicts
relations differentiates from the other since it is i bi-directional
dashed ii has simple arrowhead, has-priority edge has a dotted
line whereas precedes edge has the dashed style. So at least
a visual distance of two is ensured among the edge types
with the variables texture (line style), shape (arrowhead), and
color. Textual labels also ensure that the three edge types are
distinguishable from each other.

Overall, symbols used in the DEST visual notation have
at least visual distance one from the other symbols. In terms
of shape, color, and position the notation stays well within
the boundaries of the cognitive capacities, that is number of
perceptible chunks as there are 3 relative positions with respect
to the actor boundaries (in, out, on) and 2 with respect to the
refinements (label is closer to the parent and at the intersection
of the edges) so a total of 5 where the maximum value is 10
to 15. Also there are 4 colors used in the notation where the
maximum capacity for the color variable is seven to 10.

Scalability with respect to the size of the problem. To
test the scalability of our approach with respect to the size of
the problem, we manually create a DEST model that consists
of three actors, four commitments, two OR-refinements, five
AND-refinements, one precedence, one conflict and 20 goals.
We then automatically generate 30 test models by replicating
the original model. So the final model consists of 90 actors,
600 goals, 120 commitments, 60 OR-refinements, 150 AND-
refinements, 30 precedence and 30 conflicts. We use sgplan
version 5.221 as our choice of of-the-shelf planner and run
our test files together with our domain file which includes our
domain declaration in PDDL. The experiment is run on an
Ubuntu 12.04 virtual machine with 2 GB memory hosted on
a Mac OSX with 4 GB memory and a 2.5 GHz Intel Core i5
processor. The results of the experiments are summarized in
Fig.4 where y-axis shows the time in seconds to find a solution
(plan) and x-axis shows the number of replicas in the test
model. The first phase to find a solution is to read the domain
description and problem files and to construct the model. The
time spent for the first phase is indicated as ‘parsing time’ and
shown by bright green line with cross in Fig.4. Parsing time
increases rapidly beyond 1000 model elements. The second
phase is the planning phase in which the planner search for
solutions in the search space, that is, the constructed model
in the first phase. Planning time is shown by the blue line
with squares in Fig.4. The planning time constitutes a less
significant of the total time spent. Parsing time has a more
rapid increase than the planning time. The reported values
highly depends on the performance of the chosen planner.

The results are promising, for we have artificially synthe-
sized extra-large models that are way bigger than those that are
typically created by modelers. However, more work is required

1http://wah.cse.cuhk.edu.hk/wah/programs/SGPlan/

Fig. 6: The results of the scalability experiments w.r.t model
size

to test scalability when increasing other dimensions of the
model, such as complexity and connectivity.

VIII. RELATED WORK

Goal-based requirements engineering has been widely ap-
plied for sociotechnical system research [?]. KAOS [4] is
a goal-oriented approach that also provides reasoning but
does not represent actors explicitly. Tropos [7] software
development framework that is based on the i* modeling
framework [3] associates actors with their respective goals and
represent social interactions as dependencies. Precedence and
priority relationships do not exist in these frameworks. Several
analysis techniques are devised including interactive analysis
and forward and backwards analysis on the models [?].

The benefits of integrating commitments into goal models
are discussed in [5], [8]. [8] proposes a shift in goal-oriented
requirements engineering which we follow and use as a basis
for our research. [5] focuses on a different problem than ours—
whether a specific agent’s goals are supported. Thus, the in-
teraction network is given as input specified in a commitment-
based protocol. We focus on building an interaction network
given the requirements and the capabilities of the actors to
satisfy their requirements.

Bryl et al. [15] support the design of STSs by analyzing
actor capabilities and exploring a search space of actor depen-
dency networks. In that work, a social interaction between two
actors is represented via dependencies, which we replace in
our work with the more expressive concept of a commitment.
The authors focus on evaluation of alternative plans and devise
several metrics for the evaluation. We focus on a trigger-based
evolution of an STS. We use a minimal cost metric to choose
the optimal plan among all alternative solutions, and support
a richer set of requirements types.

Günay et al. [16] provide a run-time approach for an
agent within a multiagent system to generate a commitment-
based protocol that satisfies the goals of the agent, and rank
the protocols using a trust/risk metric. We consider more



expressive types of requirements, and our outcome is not
simply a protocol, but also suggests actor internal actions
(adopt a goal, use capability, etc.).

Jureta et al. [17] discuss the need for specifying priorities
in requirements models. We adopt their idea and include
priority specification in our meta-model. Techne [18] is a
requirements modeling language that includes priorities. Ernst
et al. [19] use Techne to identify alternative solutions to the
requirements problem. A similar approach is taken by Liaskos
et al. [20] (using traditional goal models), that implement
optional goals and priorities in PDDL. However, these ap-
proaches are inadequate for modeling the requirements of an
STS, as they lack the concepts of actor and interactions. As
for the implementation of the priorities, we leave it as a future
work to adopt the elaborate implementation of preferences and
priorities presented in [20].

Business process management offers well-developed tech-
niques for supporting evolution [21]. In this field, the problem
is that of identifying and implementing variants of a business
process, starting from an initial configuration. While we use a
radically different modeling language, the usage of case-based
reasoning to drive evolution based on previous history [22] is
an interesting research direction for our framework.

IX. CONCLUSIONS

We have presented a framework that supports exploring
alternative plans for building and evolving a sociotechnical
system. Our framework is model-driven, and uses our pro-
posed DEST language for representing actor requirements in
an STS and the space of alternative designs.

In addition to introducing DEST , we have proposed tech-
niques for building a network of interaction that fulfills par-
ticipant requirements from scratch, and also to re-design such
a network in case of evolution. For implementation, we have
encoded plan generation to a problem a native language of an
automated planner.

DEST visual notation has similar limitations in terms of
readability as the other goal-oriented approaches do. As the
DEST models become bigger, it is hard for humans to read
the model as a whole. A dedicated editor with different types
of views as in [?] could be a solution to this problem. Eliciting
cost values for single actions is a challenge for practical
purposes, yet even more elaborate cost schemes, and the effect
of actions on other actions are other future challenges that
are need to be addressed. Finally, to obtain the quantitative
effect of additions and removals during the evolution is another
challenge to overcome. Trying to satisfice the requirements as
suggested in [?] may help decreasing the complexity.

This paper opens the door to several future research direc-
tions. Firstly, for the empirical validation of our framework
(we are currently conducting a project in collaboration with
an Italian airport). Secondly, we are conducting a study of
the scalability of our approach. Thirdly, we are looking at the
usage of historical information to guide the evolution of an
STS using case-based reasoning techniques. Finally, we are

working on and the development of a design environment for
STSs founded on the DEST proposal.

ACKNOWLEDGMENTS

This research was partially supported by the ERC advanced
grant 267856 ‘Lucretius: Foundations for Software Evolution’.

REFERENCES

[1] V. Grover, J. T. C. Teng, and K. D. Fiedler, “Information technology
enabled business process redesign: an integrated planning framework,”
Omega, vol. 21, no. 4, pp. 433–447, 1993.

[2] M. M. Lehman and J. F. Ramil, “Rules and tools for software evolution
planning and management,” Ann. Softw. Eng., vol. 11, no. 1, pp. 15–44,
2001.

[3] E. S.-K. Yu, “Modelling strategic relationships for process reengineer-
ing,” Ph.D. dissertation, 1996.

[4] A. Dardenne, A. Van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Sci. Comput. Program., vol. 20, no. 1, pp. 3–50,
1993.

[5] A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “Modeling
and Reasoning about Service-Oriented Applications via Goals and
Commitments,” in Proc. CAiSE, ser. LNCS, vol. 6051. Springer, 2010,
pp. 113–128.

[6] A. Van Lamsweerde, “Goal-oriented requirements engineering: A guided
tour,” in Proc. RE. IEEE, 2001, pp. 249–262.

[7] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos,
“Tropos: An agent-oriented software development methodology,” Auton.
Agents Multi-Agent Sytems, vol. 8, no. 3, pp. 203–236, 2004.

[8] A. K. Chopra, J. Mylopoulos, F. Dalpiaz, P. Giorgini, and M. P.
Singh, “Requirements as Goals and Commitments too,” in Intentional
Perspectives Inf. Syst. Eng., 2010, pp. 137–153.

[9] M. P. Singh, “An ontology for commitments in multiagent systems,”
Artif. Intell. Law, vol. 7, no. 1, pp. 97–113, 1999.

[10] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne:
Towards a New Generation of Requirements Modeling Languages with
Goals, Preferences, and Inconsistency Handling,” Proc. 18th IEEE Int.
Requir. Eng. Conf. (RE 2010), pp. 115–124, Sep. 2010.

[11] S. Liaskos, S. a. McIlraith, S. Sohrabi, and J. Mylopoulos, “Integrating
Preferences into Goal Models for Requirements Engineering,” Proc. 18th
IEEE Int. Requir. Eng. Conf. (RE 2010), pp. 135–144, Sep. 2010.

[12] D. S. Weld, “Recent advances in {AI} planning,” AI Mag., vol. 20, no. 2,
p. 93, 1999.

[13] A. Gerevini and D. Long, “Plan constraints and preferences in
{PDDL3}: The Language of the Fifth International Planning Compe-
tition,” Tech. Report, Dep. Electron. Autom. Univ. Brescia, Italy, 2005.

[14] D. L. Moody, “The “Physics” of Notations: Towards a Scientific Basis
for Constructing Visual Notations in Software Engineering,” Softw. Eng.
IEEE Trans., vol. 35, no. 5, pp. 756–778, Nov. 2009.

[15] V. Bryl, P. Giorgini, and J. Mylopoulos, “Designing socio-technical
systems: from stakeholder goals to social networks,” Requir. Eng.,
vol. 14, no. 1, pp. 47–70, 2009.

[16] A. Günay, M. Winikoff, and P. Yolum, “Generating and ranking com-
mitment protocols,” in Proc. AAMAS, 2013, pp. 1323–1324.

[17] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the core ontology
and problem in requirements engineering,” in Proc. RE, 2008, pp. 71–80.

[18] I. J. Jureta, A. Borgida, N. A. Ernst, and J. Mylopoulos, “Techne:
Towards a new generation of requirements modeling languages with
goals, preferences, and inconsistency handling,” in Proc. RE, 2010, pp.
115–124.

[19] N. A. Ernst, A. Borgida, and I. Jureta, “Finding incremental solutions
for evolving requirements,” in Proc. RE, 2011, pp. 15–24.

[20] S. Liaskos, S. A. McIlraith, S. Sohrabi, and J. Mylopoulos, “Integrating
preferences into goal models for requirements engineering,” in Proc. RE,
2010, pp. 135–144.

[21] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing variability in
business process models: the Provop approach,” J. Softw. Maint. Evol.
Res. Pract., vol. 22, no. 6-7, pp. 519–546, 2010.

[22] B. Weber, S. Rinderle, W. Wild, and M. Reichert, “{CCBR}–driven
business process evolution,” in Case-Based Reason. Res. Dev., 2005,
pp. 610–624.


	Introduction
	Research Baseline
	DESIST: A Modeling Language for Designing Sociotechnical Systems
	Requirements
	Actors
	Commitments

	Designing a STS
	Supporting Evolution for STSs
	Implementation
	Preliminary Evaluation
	Discussion
	Conclusions
	References

