
Securing Digital Identities in the Cloud by Selecting
an Apposite Federated Identity Management from

SAML, OAuth and OpenID Connect
Nitin Naik and Paul Jenkins

Defence School of Communications and Information Systems
Ministry of Defence, United Kingdom

Email: nitin.naik100@mod.gov.uk and paul.jenkins683@mod.gov.uk

Abstract—Access to computer systems and the information
held on them, be it commercially or personally sensitive, is
naturally, strictly controlled by both legal and technical security
measures. One such method is digital identity, which is used
to authenticate and authorize users to provide access to IT
infrastructure to perform official, financial or sensitive operations
within organisations. However, transmitting and sharing this
sensitive information with other organisations over insecure
channels always poses a significant security and privacy risk. An
example of an effective solution to this problem is the Federated
Identity Management (FIdM) standard adopted in the cloud
environment. The FIdM standard is used to authenticate and
authorize users across multiple organisations to obtain access
to their networks and resources without transmitting sensitive
information to other organisations. Using the same authentication
and authorization details among multiple organisations in one
federated group, it protects the identities and credentials of users
in the group. This protection is a balance, mitigating security
risk whilst maintaining a positive experience for users. Three
of the most popular FIdM standards are Security Assertion
Markup Language (SAML), Open Authentication (OAuth), and
OpenID Connect (OIDC). This paper presents an assessment of
these standards considering their architectural design, working,
security strength and security vulnerability, to cognise and ascer-
tain effective usages to protect digital identities and credentials.
Firstly, it explains the architectural design and working of these
standards. Secondly, it proposes several assessment criteria and
compares functionalities of these standards based on the proposed
criteria. Finally, it presents a comprehensive analysis of their
security vulnerabilities to aid in selecting an apposite FIdM. This
analysis of security vulnerabilities is of great significance because
their improper or erroneous deployment may be exploited for
attacks.

Index Terms—Federated Identity Management; FIdM; SAML;
OAuth; OpenID Connect; SSO; DoS; MITM; XSS

I. INTRODUCTION

In cyberspace, digital identities are used to represent an
individual, organization or electronic device, which controls
access to critical corporate information by the authentica-
tion and authorization of their users providing access to
organisational resources. Businesses are required to exchange
information both financial and personnel with government
agencies and other businesses electronically. This collabora-
tive working and sharing of sensitive information is strictly
controlled and protected by legislation in the countries in
which the organisation operates. However, the transmission of

this sensitive data over insecure channels poses a significant
security and privacy risk. This risk can be mitigated by using
the Federated Identity Management (FIdM) standard adopted
in the cloud environment. Federated identity links and employs
users’ digital identities across several identity management
systems [1], [2]. FIdM defines a unified set of policies and
procedures allowing identity management information to be
transportable from one security domain to another [3], [4].
Thus, a user accessing data/resources on one secure system
could then access data/resources from another secure system
without both systems needing individual identities for the
single user. In this way, it avoids the transmission of sensitive
information/credentials. For example, it is probable that users
could possess several accounts with the service providers such
as Google, Amazon, eBay and AOL. These service providers
require the users’ identity to be confirmed by a trusted central
policy framing authority in terms of scope and visibility [5],
[6], [7], [8]. This relieves the user of the burden of dealing with
multiple credentials thereby improving usability and security
[2], [7], [8]. The FIdM approach separates the authentication
and authorization functions for the better management of both.

There are a number of FIdM standards available, some of
the most popular and successful FIdM standards, are Security
Assertion Markup Language (SAML), Open Authentication
(OAuth), and OpenID Connect (OIDC). SAML is an XML-
oriented framework for transmitting user authentication, enti-
tlement and other attribute information [9]. OAuth is a scalable
delegation protocol allowing a user to permit access to an
application to accomplish authorized tasks on behalf of the
user [10]. OpenID Connect is an emerging suite of lightweight
specifications that provide a framework for communicating
identity via RESTful APIs [11]. These three FIdM standards
virtually cover the entire FIdM cloud industry.

This paper presents an assessment of these standards con-
sidering their architectural design, working, security strength
and security vulnerability, to understand and ascertain effective
usages to protect digital identities and credentials. Firstly,
it explains the architectural design and working of these
standards. Secondly, it proposes several assessment criteria
and compares functionalities of these standards based on
the proposed criteria. FIdM standards offer the solution to
protect digital identities and personal information; however,



their implementation requires thoughtful administration and
carefully enforced security and privacy policies. The improper
or erroneous deployment of the FIdM standard could have
serious consequences and open several security vulnerabili-
ties, which can be easily exploited for attacks. Therefore, it
is essential to understand various message flows and their
associated security vulnerabilities, which is comprehensively
covered in the final section to aid in selecting an apposite
FIdM.

The rest of the paper is organised as follows: Section
II presents the detailed architectural design and working
analysis of the three FIdM standards SAML, OAuth and
OIDC; Section III presents the comparative analysis of the
three FIdM standards SAML, OAuth and OIDC based on the
proposed evaluation criteria; Section IV elucidates potential
vulnerabilities of FIdM standards due to their improper or
erroneous deployment; Section V concludes the paper and
suggests some future work. At the end of this paper, a list
of acronyms and their full forms are presented to simplify the
discipline specific terminologies.

II. ARCHITECTURAL DESIGN AND WORKING OF
PREDOMINANT FEDERATED IDENTITY MANAGEMENT

(FIDM) STANDARDS

This section explains the three predominant FIdM standards
SAML, OAuth and OpenID Connect and their working in
details. All these standards have a commonality, and they
use security tokens for their services. Security Tokens are a
key concept in FIdM as they are the device of choice for
authenticating and authorizing a users identity or “digital iden-
tity”. They are also known as Identity Tokens, Authentication
Tokens and Authorization Tokens [12].

A. Security Assertion Markup Language (SAML)

Security Assertion Markup Language (SAML) was devel-
oped by the Security Services Technical Committee of OASIS
(Organization for the Advancement of Structured Informa-
tion Standards) [9]. SAML is an XML-oriented framework
for transmitting user authentication, entitlement, and other
attribute information [9]. This framework provides two fed-
eration partners to select and share identity attributes using a
SAML assertion/message payload, on the condition that these
attributes can be expressed in XML [11]. SAML assumes
three key roles in any transaction Identity Provider (IDP/IdP),
Service Provider (SP) and User:

• Identity Provider (IDP/IdP) is a trusted organisation
that authenticates and authorizes users. It issues security
assertion tokens for authentication and authorization ser-
vices.

• Service Provider (SP) is an organisation that provides
Web and other services. A SP relies on a trusted IDP
for authentication and authorization services. It acts on
information encoded in assertion tokens to determine
whether a user is to be allowed access to a resource or
not.

Fig. 1. SAML Assertion Structure [13]

• User is an entity that initiates a sequence of protocol
messages and consumes the service provided by the SP.
A user may be an application program that is requesting
access to a resource.

The latest version of the SAML specifications is SAML 2.0,
which describes the following components [13]:

• Assertions state how identities are represented.
• Protocols represent a sequence of XML messages de-

signed to achieve a single goal.
• Bindings describe how protocol messages are transported

over a lower-level protocol such as HTTP.
• Profiles combine a number of bindings to describe a

solution for a use case.
The SAML assertion is the main notion in SAML. It is

a claim, statement, or declaration of a digital identity which
is made by the IDP and trusted by the SP. The identity
information required by the SP, is usually agreed in advance
by the IDP and SP [14]. However, there is a provision after
the initial transaction to request additional information. The
structure of a SAML assertion is shown in Fig. 1. There
are three types of assertions: authentication, attribute, and
authorization. Authentication assertion validates the user’s
identity. Attribute assertion contains specific information about
the user. Authorization assertion identifies what the user is
authorized to do [3].

A typical SAML use case example is illustrated in Fig. 2
and its corresponding steps are described below:

1) User tries to access a hosted application on the SP’s
cloud

2) SP generates a SAML request
3) Browser redirects the SAML request to the IDP’s cloud
4) IDP authenticates User, generates and returns a SAML

response to Browser
5) Browser sends the SAML response to SP
6) SP verifies the SAML response and User logs in

B. Open Authorization (OAuth)

OAuth is a scalable delegation protocol (i.e., you delegate
someone to do something with somebody on your behalf).
OAuth allows a user to permit access to an application to



Fig. 2. A typical SAML use case example

accomplish authorized tasks on behalf of the user [10]. There-
fore, it allows a third-party program to gain restricted access
to an HTTP service. This API authorization process can be
securely implemented by a range of desktop, web and mobile
applications. It introduces the concept of an authorization
token that states the right of the client application to access
authorized services on the server [3]. Access to authorised
services on the server is controlled through the use of an au-
thorization token. Nonetheless, it does not override any access
control decisions that the server-side program may make [14].
The OAuth 2.0 core authorization framework is described by
IETF in RFC-6749 alongside with several other specifications
and profiles; a few commonly used specifications and profiles
are shown in Fig. 3 and described below [15], [16], [17], [18],
[19], [20], [21]:

• OAuth 2.0 Core Spec describes the generic flows of
OAuth operation. It is essentially descriptions of the in-
teractions between a client application, a resource owner
and an authorization server to request access tokens [17].

• OAuth 2.0 Bearer Spec describes how to use bearer
tokens in HTTP requests to access OAuth 2.0 protected
resources [18]. The bearer token is a large random num-
ber and a symbol of authorization. Since the number is
large, then the probability of guessing the correct number
is very small. This token is easier to process and use
than the signature but requires SSL. Bearer tokens are
the default type of access tokens.

• OAuth 2.0 MAC Spec describes the HTTP MAC access
authentication scheme, an HTTP authentication method
using a MAC algorithm to provide cryptographic verifi-
cation of portions of HTTP requests [19]. It is similar
to the OAuth 1.0a token and uses a signature instead
of SSL. This token securely authenticates users without
encrypting all traffic. Therefore, it is the most suitable
option for APIs that require the security of OAuth and

Fig. 3. OAuth 2.0 commonly used specifications and profiles

handle very large requests or responses where SSL is
inefficient.

• OAuth 2.0 JWT Spec describes the use of a JWT Bearer
Token as a means for requesting an OAuth 2.0 access
token as well as for client authentication [20]. JWT is a
JSON-based security token encoding that enables identity
and security information to be shared across security
domains.

• OAuth 2.0 SAML Spec describes the use of a SAML
2.0 Bearer Token (Assertion) as a means for requesting an
OAuth 2.0 access token in addition to use as a means of
client authentication. It is available in the OAuth 2.0 [21].
It extends the support to the SAML-based operations.
This facility of OAuth made it more popular among the
SAML community and the universal open standard.

OAuth assumes four key roles in any authorization process
Resource Server (RS), Resource Owner (RO)/User, OAuth
Consumer/Client (OC) and Authorization Server (AS) [15]:

• Resource Server (RS) hosts user data that is protected
by OAuth.

• Resource Owner (RO)/User is the user of the application
and owner of data.

• OAuth Consumer/Client (OC) is the application which
makes an API request to get protected resources on behalf
of the resource owner.

• Authorization Server (AS) authorises the consumer after
getting permission from resource owner and issues access
token to the consumer for accessing protected resources
available on the resource server.

OAuth offers the flexibility and leaves it up to server
implementers to decide how the actual authentication and
authorisation are to be done [22]. A typical OAuth use case
example is illustrated in Fig. 4 and its corresponding steps are
described below:

1) RO logs into an application and requires to access
resources from a different organisation

2) OC requests for a Request Token and Secret Key
3) AS issues the Request Token and Secret Key
4) OC sends a URL link containing the Request Token to

User and asks for an authorization
5) RO has logged into OP’s system and clicks on the URL

containing the Request Token
6) AS asks User to allow or deny OC
7) RO authorizes to access resources
8) AS generates an Access Token and forwards it to OC



Fig. 4. A typical OAuth use case example

9) OC sends the Access Token and acquires resources for
User

10) RS sends resources to OC
11) OC delivers resources to User

C. OpenID Connect (OIDC)

OpenID Connect is a group of lightweight specifications
that afford a framework for transmitting digital identity via
RESTful APIs [11]. The final OpenID Connect specifications
were launched on February 26, 2014 [23]. OpenID Connect
is seen as the evolution of OpenID 2.0, and is built as a
profile of OAuth 2.0 rather than a completely distinct protocol
foundation [11]. OpenID Connect 1.0 is just another identity
layer on the top of the OAuth 2.0 protocol [23], as shown in
Fig. 5. It facilitates clients to confirm the identity of the user
depending on the authentication made by an Authorization
Server, in addition to acquire simple profile information about
the user [3]. OpenID Connect uses two main types of tokens:
an access token and an ID token. The ID contains information
about the authenticated user and it is a JWT (JSON Web
Token). This token is signed by the identity provider and can
be read and verified without accessing the identity provider
[24].

OIDC assumes five key roles in any authentication and
authorization process End User, Relying Party (RP), Autho-
rization Endpoint (AE), Token Endpoint (TE) and UserInfo
Endpoint (UIE) [22], [24], [25], [26]:

• End User is the user of the application and owner of the
information.

• Relying Party (RP) is the application which makes API
request to get protected resources on behalf of the end
user.

• Authorization Endpoint (AE) is the only endpoint
where the end-user needs to interact if they are not
already logged in. It validates the identity of the end-user

and obtains the consent and authorization from the end-
user if the client has not been pre-authorized. It returns
an authorization grant to the end-user or client depending
on the use case. Sometimes, this authorization grant can
then be passed in a request by the client to the token
endpoint in exchange for an ID token, access token, and
refresh token [26].

• Token Endpoint (TE) handles requests for retrieving and
refreshing access tokens, ID tokens, refresh tokens, and
other variables. It accepts a request from the client that
includes an authorization code that is issued to the client
by the authorization endpoint directly or via end user.
When the authorization code is validated, the appropriate
tokens are returned in response to the client [22].

• UserInfo Endpoint (UIE) is an OAuth 2.0 protected
resource that the client application can retrieve consented
claims, or assertions, about the authenticated end user.
The client should present a valid access token to retrieve
only those UserInfo claims that are scoped by the pre-
sented token.

OpenID also offers some flexibility in the implementation,
however, it standardised many parameters such as instance
scopes, endpoint discovery, and dynamic registration of clients,
which were left up to implementers in the OAuth 2.0 imple-
mentation [22]. A typical OIDC use case example is illustrated
in Fig. 6, and its corresponding steps are described below:

1) EU provides their OpenID login details
2) RP discovers OP and forwards login details to OP
3) AE authenticates User after verifying login credentials
4) EU has logged in to the OP’s system
5) EU sends an authorization code
6) RP sends the authorization code and secret information
7) TE sends an ID Token and Access Token
8) RP validates the ID Token
9) RP sends the Access Token to UIE

10) UIE sends detailed information containing user’s at-
tributes

11) RP delivers services to User

III. COMPARISON OF FEDERATED IDENTITY
MANAGEMENT (FIDM) STANDARDS BASED ON THE

PROPOSED EVALUATION CRITERIA

This section presents the comparative analysis of the three
FIdM standard SAML, OAuth and OIDC based on the pro-
posed evaluation criteria as shown in Table I [1], [3]. They
have been critically analysed and compared on the basis of
proposed criteria to demonstrate their strengths and limitations.
From this critical analysis, it suggests that SAML has some
issues in some of the evaluation criteria related to mobile
devices and IoT, and requires an overhaul [3]. OAuth is an
effective protocol for authorization. Nonetheless, as it is a
delegation protocol, consequently, it has not been developed
for authentication and offer a complete FIdM solution. OpenID
Connect offers slightly better functionality, as it has been
developed to deliver services for the web, cloud, mobile



Fig. 5. OIDC Protocol Suite [23]

Fig. 6. A typical OIDC use case example

devices and IoT. Nevertheless, it is a developing standard,
and the OpenID Connect 1.0 specifications were instigated on
February 26, 2014 [23]. Moreover, many prominent companies
such as Facebook and Twitter have been using their own
version of OpenID Connect, known as Facebook and Twitter
Connect based on OAuth 2.0 [3]. Thus, OIDC requires more
time and enterprise acceptance to become established standard.

IV. SECURITY VULNERABILITY ANALYSIS OF FEDERATED
IDENTITY MANAGEMENT (FIDM) STANDARDS

This security vulnerability analysis focuses on SAML and
OIDC because OAuth is already an implicit standard in OIDC.
SAML and OIDC both describe the security and privacy
considerations for using them. They are powerful SSO frame-
works but their method of deployment and implementation
may leave some vulnerability which could lead to potential
attacks. Here some of the working procedures of SAML and

Fig. 7. SP-to-IdP Authentication Request in SP-Initiated SSO: Redirect/POST
Bindings

OIDC are discussed which can be referred throughout the
vulnerability analysis to demonstrate how their improper or
erroneous deployment may be exploited for attack.

A. Denial-of-Service (DoS) Attack

1) DoS Attack in SAML: To assimilate the possibility of
DoS attack in SAML, it is necessary to understand the SAML
message flow. SAML supports two general message flows,
namely SP-initiated and IdP-initiated. For the web SSO profile,
two common SAML messages are: an Authentication Request
message sent from an SP to an IdP, and a Response message,
containing a SAML assertion, sent from the IdP to the SP. The
SAML Conformance and Profiles specifications ascertain the
SAML bindings, which can validly be used with the above two
messages. In particular, an Authentication Request message
can be sent from an SP to an IdP via the HTTP Redirect
Binding, HTTP POST Binding, or HTTP Artefact Binding
[27], [28], [29]. Moreover, the Response message can be sent
from an IdP to a SP via the HTTP POST Binding or the HTTP
Artefact Binding [27], [28], [29]. Furthermore, SAML permits
asymmetry in the message pair, allowing a different binding
on the return message to that of the initiating message. The
decision of which binding to use, is made according to the
configuration settings at the SP and the IdP sides [30].

One possible scenario of DoS attack in SAML is when
the SP-Initiated SSO (Redirect/POST Bindings) message flow
is implemented. In this type of SAML message flow, the
user tries to access a resource on the SP (e.g., saml-sp.com).
Though the user does not hold a valid/current logon session on
this site and the corresponding federated identity is governed
by their IdP (e.g. saml-idp.com). Thus, the user is sent to the
IdP to log on and the IdP delivers a SAML web SSO assertion
for the user’s federated identity to the SP. This exchange uses
a Redirect Binding for the SP-to-IdP AuthnRequest message
(see Fig. 7) and a POST Binding for the IdP-to-SP Response
message (see Fig. 8).

In this scenario, an attacker can target the IdP for DoS
attack by exploiting any vulnerability related to erroneous
deployment or due to the vulnerabilities of other supporting
tools [31]. The IdP can potentially be flooded with requests by
compromising valid users or a honest SP because the SAML
request requires substantial processing overheads (including
parsing of request and assertion construction). Consequently,



TABLE I
COMPARATIVE ANALYSIS OF FIDM STANDARDS SAML, OAUTH AND OIDC BASED ON THE PROPOSED EVALUATION CRITERIA

Criteria SAML OAuth OIDC
1. Current Version SAML 2.0 OAuth 2.0 OpenID Connect 1.0

2. Introduction
Year 2005 2012 2014

3. Main Usages
Federated Identity Management

(FIdM), Single Sign-On (SSO) for
enterprise users.

API authorization between
Applications.

Federated Identity Management
(FIdM), Single Sign-On (SSO) for

consumers.

4. Authentication
and Authorization

It is a standard for authentication
and authorization.

It is a standard for authorization of
resources.

It is a standard for authentication
and authorization.

5. Token Format XML XML, JSON, JWT JSON, JWT

6. Token Content Token contains user identity
information but not credentials.

Token contains user identity
information but not credentials.

Token contains user identity
information but not credentials.

7. Protocol Used XML, HTTP, SOAP JSON, HTTP, REST JSON, HTTP, REST

8. Schemas and
Deployments SPML, SCIM SCIM SCIM

9. Roles/Actors Identity Provider (IDP), Service
Provider (SP) and User.

Resource Server (RS), Resource
Owner (RO)/User, OAuth

Consumer/Client (OC) and
Authorization Server (AS).

End User (EU), Relying Party
(RP), Authorization Endpoint

(AE), Token Endpoint (TE) and
UserInfo Endpoint (UIE).

10. Transaction
Initiation SP and IDP initiation. Consumer/Client (OC) initiation. Relying Party (RP)/ End User

initiation.

11. User Consent

It is not responsible for collecting
users consent. However, ECP

allows for the exchange of SAML
attributes outside the context of a

web browser.

It collects users consent before
sharing attributes.

It collects users consent before
sharing attributes.

12. Claims No distributed and aggregated
claims.

No distributed and aggregated
claims. Distributed and aggregated claims.

13. Client
Discovery and
On-Boarding

No dynamic introductions. No dynamic introductions. Dynamic introductions.

14. Immediate
Revocation of

Access

It supports revocation. However, in
some cases, if you remove a user
from your identity provider, you

must also manually suspend them.
Otherwise, they will continue to be

able to authenticate using access
tokens or SSH keys.

It supports revocation. Token
revocation is used to revoke a
specified OAuth 2.0 access or
refresh token. A revoke token

request causes the removal of the
client permissions associated with
the specified token used to access

the user’s protected resources.

It supports revocation. Similar to
OAuth. However, OIDC has
additional ID token that is a

cryptographically signed,
self-contained token. It allows
resource owners to authorize
access without a call to the

authorization server and it cannot
be explicitly revoked.



TABLE I
COMPARATIVE ANALYSIS OF FIDM STANDARDS SAML, OAUTH AND OIDC BASED ON THE PROPOSED EVALUATION CRITERIA

Criteria SAML OAuth OIDC

15. Data Integrity/
Non-repudiation

XML Signature - X.509; SAML
tokens are almost always signed

with a private key, as it is a trusted
relationship between IDP and SP.

Default bearer token has no proof
of possession. However, token

contents can be protected by using
a DS or a MAC.

JSON Web Signature (JWS)-
HMAC SHA-256; [Additional
Support -RSA SHA-256 and
ECDSA P-256 SHA-256].

16. Data
Confidentiality/

Privacy

XML Encryption-
Triple-DES-CBC with 192-bit key
and a 64-bit initialization Vector
(IV), AES-CBC with a 128-bit

initialization vector (IV);
[TLS-SSL, Web Services Security

(WSS)].

TLS is mandatory to implement
with OAuth for token

confidentiality. However, token
encryption must be applied in
addition to the usage of TLS

protection.

JSON Web Encryption (JWE)-
RSA-PKCS1-1.5 with 2048-bit

key, AES-128-CBC, and
AES-256-CBC; [Additional

Support- ECDH-ES with 256-bit
key, AES-128-GCM, and

AES-256-GCM].

17. Web and
Native Mobile
Apps Support

It is specially designed for Web
apps. However, HTTP artefact

binding can be used to reduce the
flow of SAML messages through

the browser.

It supports both Web and native
mobile apps.

It supports both Web and native
mobile apps.

18. Consumer and
Enterprise Support

It mainly supports enterprise users
because it involves SP and IdP.

It supports enterprise users, and
consumer apps and services.

It supports enterprise users, and
consumer apps and services.

19. Lightweight
Standard/Protocol

It is not a lightweight standard.
XML states trees in a verbose

form. Every element in the tree has
a name (the element type name),
and the element must be enclosed

in a matching pair of tags.

It is a lightweight standard. JSON
states trees in a nested array type

of notation similar to that of
Javascript. Indeed, a JSON

document can exactly be parsed as
Javascript to result in the

corresponding array.

It is a lightweight standard.
Similar to OAuth. JSON has a

much smaller grammar and maps.

20. Platform
Independent

Vendor-Neutral and
Open Standard

It is a platform independent,
vendor-neutral and open standard.

However, flexibility in the
implementation leads to the

different design models.

It is a platform independent,
vendor-neutral and open standard.

However, flexibility in the
implementation leads to the

different design models.

It is a platform independent,
vendor-neutral and open standard.

It also standardised many
parameters such as instance

scopes, endpoint discovery, and
dynamic registration of clients,

which were left up to
implementers in the OAuth 2.0

implementation.

21. Scalable
Standard

It requires the implementation of a
complex broker service in order to

support multi-SP and multi-IDP
use cases.

It greatly reduces the work
required to act as a client of a
service, which is very vital for

mobile community. Also
ScalableOAuth extension can be

used. Also ScalableOAuth
extension can be used.

It is highly scalable, as it has been
designed from the inception to
provide services for the web,

cloud, mobile devices and things.

22. Mobile
Standard

It is limited in its ability to support
mobile and smart-TV devices.

It has been designed for the
mobile API and therefore it is also
known as a token in your mobile.

It has been working towards
standardising a GSMA Mobile
Connect standard for mobile

devices.

23. Service
Examples

Google, Salaseforce, Amazon,
OneLogin, Shibboleth, AOL, Go

Daddy

Facebook, Twitter, Linkedin,
Google, Salaseforce, Yahoo, AOL,

Orange, Deutsche, Telekom

Google, Salaseforce, Yahoo, AOL,
Orange, Deutsche, Telekom

24. Vendor
Examples

Microsoft, Ping Identity, IBM,
Oracle, Centrify, Okta, VeriSign

IBM, Microsoft, NRI, Ping
Identity, Layer 7, ForgeRock,

Gluu, MITRE

IBM, Microsoft, NRI, Ping
Identity, Layer 7, ForgeRock,

Gluu, MITRE



Fig. 8. IdP-to-SP Response in SP-Initiated SSO-Redirect/POST Bindings

Fig. 9. OIDC Discovery Configuration Request

the effort required for processing of each Response assertion
(see Fig. 8) is proportionally much greater than the effort
required by an attacker to generate the request [32]. This is
confirmed by the draft on Security and Privacy Considerations
for SAML document [33] that SAML is vulnerable to DoS
attacks.

2) DoS Attack in OIDC: To assimilate the possibility
of DoS attack in OIDC, it is necessary to understand the
discovery process for obtaining OIDC identity provider’s con-
figuration information. OIDC identity provider (e.g., openid-
provider.com) supports metadata discovery and therefore, it
hosts its configuration information at the endpoint (/.well-
known/opened-configuration). In most of the implementation,
endpoint is accessible by any client/relying party who is wish-
ing to send registration request and thus, it is publicly open and
possibly non-secure. Subsequently, OIDC client/relying party
sends an HTTP GET request (see Fig. 9) to this metadata
endpoint to obtain the configuration information of OIDC
identity provider.

In response to this request for the configuration information,
the OIDC identity provider (openid-provider.com) sends a
response which is a set of Claims about the OIDC provider’s
configuration, including all necessary endpoints and public key
location information as shown in Fig. 10. This information is
necessary for client/relying party to further communicate with
the OIDC identity provider or the OAuth authorization server.

Assuming this common implementation model when the
endpoint is publicly open and non-secure, and dynamic discov-
ery process is allowed without any authentication. If not prop-
erly implemented, this vulnerability can be easily exploited
for DoS attack on an OIDC identity provider and flooded
by countless dynamic discovery requests, which could easily

Fig. 10. OIDC Discovery Configuration Response

Fig. 11. A SAML AuthnRequest message encoded as the value of a
hidden form control named SAMLRequest in SP-Initiated SSO: POST/Artefact
Bindings

overwhelm the OIDC identity provider [34]. Furthermore,
this dynamic discovery process may also be exploited for
DoS attack on client/relying party. Where, an attacker may
try to spoof an OpenID identity provider by publishing a
discovery information that contains an issuer Claims using
the Issuer URL of the OIDC identity provider being imper-
sonated, but with its own endpoints and signing keys. Thus,
the client/relying party can be flooded with information by
attacker.

B. Man-In-The-Middle (MITM) Attack

1) MITM Attack in SAML: One of the many possibilities
of a MITM attack in SAML is when the SP-Initiated SSO
(POST/Artefact Bindings) message flow is implemented. This
exchange uses a POST Binding for the SP-to-IdP Authn-
Request message and a Artefact Binding for the IdP-to-SP
Response message [30]. In this type of SAML flow, the user
tries to access a resource on the SP (e.g., saml-sp.com).
Though the user does not hold a valid/current logon session on
this site and the corresponding federated identity is governed
by their IdP (e.g. saml-idp.com). The SP saves the requested
resource URL in local state information, which can be saved
across the web SSO exchange and sends an HTML form to
the requested browser in the HTTP response (HTTP status
200) [27]. The HTML form contains a SAML AuthnRequest
message (see Fig. 12) encoded as the value of a hidden form
control named SAMLRequest as shown in Fig. 11.

The user enters correct credentials and a local logon related
security setting is generated for the user at the IdP. Later, the
IdP creates an artefact containing the source ID for its website
(saml-idp.com) and a reference to the Response message (the



Fig. 12. SP-to-IdP-Authentication Request in SP-Initiated SSO:
POST/Artefact Bindings

Fig. 13. SP’s Assertion Consumer Service sends a SAML ArtifactResolve
message to IdP using the synchronous SOAP binding in SP-Initiated SSO:
POST/Artefact Bindings

MessageHandle). The HTTP Artefact binding permits the
choice of either HTTP redirection or an HTML form POST
as a way to deliver the artefact to the SP [27].

The SP’s Assertion Consumer Service sends a SAML Arti-
factResolve message (see Fig. 13), which contains the artefact
to the IdP’s Artefact Resolution Service endpoint using the
synchronous SOAP binding. The IdP’s Artefact Resolution
Service extracts the MessageHandle from the artefact and
finds the original SAML Response message accompanying
with it [27]. The retrieved message is placed in a SAML
ArtifactResponse message (see Fig. 14) that is returned to the
SP using the synchronous SOAP binding. The SP extracts and
processes the Response message and processes the embedded
assertion for creating a local logon security setting for the user
at the SP [27].

The above explained SAML SP-Initiated SSO
(POST/Artefact Bindings) process utilises the SOAP binding
which is the weak link and vulnerable to the MITM attack
[35]. The RelayState token is not a transparent reference
to state information which is maintained at the SP. This
RelayState mechanism can leak information about the user’s
activities at the SP to the IdP if the SP deployment is
erroneous or some other kind of existing vulnerabilities which
may also lead to the MITM attack [31]. Since the HTTP
Artefact binding will be used to deliver the SAML Response
message, it is not compulsory that this assertion be digitally
signed which is also a great security risk and increases the
chances of the MITM attack in SAML.

2) MITM Attack in OIDC: One of the many possibilities of
a MITM attack in OIDC is in the process of OIDC dynamic

Fig. 14. IdP’s Artefact Resolution Service sends back a SAML ArtifactRe-
sponse message to SP using the synchronous SOAP binding in SP-Initiated
SSO: POST/Artefact Bindings

client registration. After obtaining the OIDC configuration
information, an OIDC client/relying party has to register with
the OpenID provider in order to utilise OIDC services for an
End-User. For registering a new OIDC client/relying party at
the Authorization Server, the client/relying party (e.g., openid-
app.com) sends an HTTP POST message including its meta-
data to the Client Registration Endpoint (OAuth 2.0 Protected
Resource) with a content type of application/JSON, and the
parameters represented as top-level elements of the root JSON
object as shown in Fig. 15. The subsequent response may
carry a Registration Access Token which can be used by
the client/relying party to accomplish required tasks upon the
resulting client/relying party registration. This response should
use the HTTP 201 Created status code and return a JSON
document [RFC4627] using the application/JSON content type
with the corresponding fields and the client/relying party
Metadata parameters as top-level elements of the root JSON
object as shown in Fig. 16.

The OIDC identity provider may require an Initial Access
Token to limit registration requests to only authorized clients
or developers [34]. However, to support an open dynamic
registration, the Client Registration Endpoint should accept
registration requests without OAuth 2.0 Access Tokens. There-
fore, the dynamic client registration could be the potential
source of many attacks including the MITM attack. This
MITM attack may be caused by a logical flaw in the OAuth
2.0 protocol or the presence of a malicious OIDC identity
provider or malicious client/relying party [36], [37].



Fig. 15. OIDC Dynamic Client Registration Request

Fig. 16. OIDC Dynamic Client Registration Response

A malicious OIDC identity provider can trick the
client/relying party into sending an authorization code to the
attacker’s Token Endpoint. Once a code is stolen, an attack that
involves cutting and pasting values and state in authorization
requests and responses can be used to confuse the relying party
into binding an authorization to the wrong user [38].

The MITM attacker can confuse a relying party in relation
to the selection of an appropriate IdP at the start of the login or
authorization procedure for obtaining an authentication code or
access token that can be utilised to impersonate the user or for
acquiring user data. [36], [37]. It permits a hacker to modify
user data and fool the relying party into treating it as the IdP
the user wants [36], [37]. As a consequence, the relying party
sends the authorisation code or the access token issued by
the honest IdP to the attacker depending on the OAuth mode
employed. Eventually, an attacker can utilise this information
for login at the client/relying party under the user’s identity
(managed by the honest IdP) or accessing the user’s protected
resources at the honest IdP [36], [37].

C. Cross-Site Scripting (XSS) Attack

1) XSS Attack in SAML: In ordinary XSS attacks, the
attacker uses social engineering methods to trap a user by
clicking on a malicious link, whereas XSS attacks in SAML,

an exploitation of the vulnerability of the erroneous deploy-
ment of SAML framework makes it easy for systematically
trapping a user by visiting URIs that may be vulnerable to
XSS attacks [39]. This is a more serious XSS attack because
here, the client is not suspicious in receiving an altered
resource. Furthermore, a Response used in SAML process
could possibly contain unencoded data delivered by a source
which is not a trustworthy source. Therefore, an attacker could
use this to initiate an XSS attack by diverting to a maliciously-
crafted URL. In addition to the issue with SAML Response, a
plain deployment of SAML exposes the RelayState field (see
Fig. 11) to a probable injection of malicious code which may
be executed at the honest SP side.

2) XSS Attack in OIDC: Some of the popular OIDC identity
providers support an automatic authorization granting feature,
which creates an authorization response automatically if a
user has an existing session with the OIDC identity provider
and previously granted permission for the same client/relying
party [40]. Using this automatic authorization granting feature,
an attacker may be able to steal a user access token by
exploiting an XSS vulnerability in the client/relying party.
Currently, this vulnerability revealed in Android’s built-in
browser has been exploited for this XSS attack. Where, an
attacker utilises a browser window.open event for sending a
counterfeit authorization request to OIDC authorization server,
in which response type=code is altered to response type=code
token id token.

V. CONCLUSION

This paper presented an assessment of the three pop-
ular FIdM standards Security Assertion Markup Language
(SAML), Open Authentication (OAuth), and OpenID Con-
nect (OIDC) considering their architectural design, working,
security strength and security vulnerability, to cognise and
ascertain effective usages to protect digital identities and
credentials. Firstly, it explained the architectural design and
working of these FIdM standards. Secondly, it proposed sev-
eral assessment criteria and compared functionalities of these
FIdM standards based on the proposed criteria. Finally, it
presented a comprehensive analysis of their security vulner-
abilities to aid in selecting an apposite FIdM. This analysis
of security vulnerabilities is of great significance for their
correct implementation because the improper or erroneous
deployment of these standards may be exploited for several
attacks. This in-depth assessment would be helpful for other
FIdM users and researchers to select apposite FIdM based
on their characteristics and application areas. In the future,
it would be worthwhile to perform a further investigation of
security vulnerabilities of SAML, OAuth and OIDC.

LIST OF ACRONYMS

AE Authorization Endpoint
AES Advanced Encryption Standard
API Application Program Interface
AS Authorization Server
CBC Cipher Block Chaining



CSRF Cross-Site Request Forgery
DES Data Encryption Standard
DoS Denial-of-Service
DS Digital Signature
ECDH Elliptic Curve Diffie-Hellman
ECDSA Elliptic Curve Digital Signature Algorithm
ES Ephemeral Static
EU End User
FIdM Federated Identity Management
GSMA Groupe Speciale Mobile Association
HMAC Hash-based Message Authentication Code
HTTP Hyper Text Transfer Protocol
IDM IDentity Management
IdP/IDP IDentity Provider
IETF Internet Engineering Task Force
JSON JavaScript Object Notation
JWE JSON Web Encryption
JWS JSON Web Signature
JWT JSON Web Token
MAC Message Authentication Code
MITM Man-In-The-Middle
OC OAuth Consumer/Client
OAuth Open Authorization
OASIS Organization for the Advancement of Structured

Information Standards
OIDC OpenID Connect
OP OAuth/OpenID Provider
PKCS Public-Key Cryptography Standards
REST REpresentational State Transfer
RFC Requests For Comments
RO Resource Owner
RP Relying Part
RS Resource Server
RSA Rivest-Shamir-Adleman
SCIM Simple Cloud Identity Management
SAML Security Assertion Markup Language
SP Service Provider
SPML Services Provisioning Markup Language
Spec Specification
SSL Secure Sockets Layer
SSO Single Sign-On
TE Token Endpoint
TLS Transport Layer Security
UIE UserInfo Endpoint
URL Uniform Resource Locator
WSS Web Services Security
XML eXtensible Markup Language
XSS Cross-Site Scripting

REFERENCES

[1] N. Naik and P. Jenkins, “A secure mobile cloud identity: Criteria for
effective identity and access management standards,” in 2016 4th IEEE
International Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud 2016). IEEE, 2016, pp. 89–90.

[2] N. Naik, “Connecting Google cloud system with organizational systems
for effortless data analysis by anyone, anytime, anywhere,” in IEEE

International Symposium on Systems Engineering (ISSE 2016). IEEE,
2016.

[3] N. Naik and P. Jenkins, “An analysis of open standard identity protocols
in cloud computing security paradigm,” in 14th IEEE International
Conference on Dependable, Autonomic and Secure Computing (DASC
2016). IEEE, 2016.

[4] C. A. Gunter, D. Liebovitz, and B. Malin, “Experience-based access
management: A life-cycle framework for identity and access manage-
ment systems,” IEEE Security & Privacy, vol. 9, no. 5, p. 48, 2011.

[5] N. Naik, “Migrating from virtualization to dockerization in the cloud:
Simulation and evaluation of distributed systems,” in IEEE 10th Interna-
tional Symposium on the Maintenance and Evolution of Service-Oriented
and Cloud-Based Environments, (MESOCA 2016). IEEE, 2016, pp. 1–
8.

[6] A. Gopalakrishnan, “Cloud computing identity management,” SETLabs
briefings, vol. 7, no. 7, pp. 45–55, 2009.

[7] N. Naik, “Building a virtual system of systems using Docker Swarm
in multiple clouds,” in IEEE International Symposium on Systems
Engineering (ISSE 2016). IEEE, 2016.

[8] ——, “Applying computational intelligence for enhancing the depend-
ability of multi-cloud systems using docker swarm,” in IEEE Symposium
Series on Computational Intelligence (SSCI), 2016.

[9] N. Klingenstein, T. Hardjono, H. Lockhart, and S. Cantor. (2012)
OASIS Security Services (SAML) TC. [Online]. Available: https:
//www.oasis-open.org/committees/tc home.php?wg abbrev=security

[10] N. Ranjbar and M. Abdinejadi, “Authentication and Authorization for
Mobile Devices,” B.Sc. Dissertation, Department of Computer Science
and and Engineering Goteborg, Sweden, 2012.

[11] Pingidentity.com. (2011) A standards-based mo-
bile application idm architecture. [Online]. Avail-
able: http://www.enterprisemanagement360.com/wp-content/files mf/
white paper/exp final wp mobile-application-idm-arch-8-11-v4.pdf

[12] T. J. Smedinghoff. (2008) Introduction to online identity management.
[Online]. Available: https://www.uncitral.org/pdf/english/colloquia/EC/
Smedinghoff Paper - Introduction to Identity Management.pdf

[13] C. Forster and N. Readshaw. (2008, April 29) Using SAML security
tokens with microsoft web services enhancements: A standards-based
approach enabled by tivoli federated identity managers. [Online].
Available: http://www.ibm.com/developerworks/tivoli/library/t-samlwse/

[14] A. Hindle. (2010, May 8) Authentication
vs. Authorization - Part 2: SAML and
OAuth. [Online]. Available: http://www.axiomatics.com/blog/entry/
authentication-vs-authorization-part-2-saml-and-oauth-2.html

[15] R. Boyd, Getting Started with OAuth 2.0, 2nd ed. OReilly Media, 2012.
[16] G. Brail and S. Ramji, OAuth - The Big Picture. Apigee,

2014. [Online]. Available: http://pages.apigee.com/rs/apigee/images/
oauth-ebook-2012-02.pdf

[17] D. Hardt. (2012, October) The OAuth 2.0 authorization framework.
[Online]. Available: https://tools.ietf.org/html/rfc6749

[18] M. Jones and D. Hardt. (2012, October) The OAuth 2.0 authorization
framework: Bearer token usage. [Online]. Available: https://tools.ietf.
org/html/rfc6750

[19] J. Richer and W. Mills. (2012, November 28) OAuth 2.0 message
authentication code (MAC) tokens. [Online]. Available: https://tools.
ietf.org/html/draft-ietf-oauth-v2-http-mac-02

[20] M. Jones, B. Campbell, and C. Mortimore. (2015, May) JSON web token
(JWT) profile. [Online]. Available: https://tools.ietf.org/html/rfc7523

[21] B. Campbell, C. Mortimore, and M. Jones. (2014, November
12) SAML 2.0 profile for OAuth 2.0 client authentication and
authorization grants. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-oauth-saml2-bearer-23

[22] IBM.com. (2015, September 8) Invoking the autho-
rization endpoint for openid connect. [Online]. Avail-
able: http://www-01.ibm.com/support/knowledgecenter/SSEQTP 8.5.5/
com.ibm.websphere.wlp.core.doc/ae/twlp oidc auth endpoint.html

[23] Openid.com. (2014) What is OpenID Connect? [Online]. Available:
http://openid.net/connect/

[24] N. Sakimura. (2014) OpenID Connect Core 1.0 incorporating errata set
1. [Online]. Available: http://openid.net/specs/openid-connect-core-1 0.
html

[25] J. Basney, J. Gaynor, and W. Edwards. (2013) OpenID connect for
myproxy protocol specification. [Online]. Available: https://redmine.
ogf.org/dmsf files/13113?download=20852



[26] Connect2id.com. (2015) OAuth 2.0 authorisation endpoint. [Online].
Available: http://connect2id.com/products/server/docs/api/authorization

[27] Oasis-open.org. (2008, March 25) Security Assertion Markup Language
(SAML) v2.0 technical Overview. [Online]. Available: http://docs.
oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html

[28] N. Naik, P. Jenkins, P. Davies, and D. Newell, “Native web communica-
tion protocols and their effects on the performance of web services and
systems,” in Computer and Information Technology (CIT), 2016 IEEE
International Conference on. IEEE, 2016, pp. 219–225.

[29] N. Naik and P. Jenkins, “Web protocols and challenges of web latency
in the web of things,” in Ubiquitous and Future Networks (ICUFN),
2016 Eighth International Conference on. IEEE, 2016, pp. 845–850.

[30] J. Somorovsky, A. Mayer, J. Schwenk, M. Kampmann, and M. Jensen,
“On breaking saml: Be whoever you want to be.” in USENIX Security
Symposium, 2012, pp. 397–412.

[31] SANS. (2003) Global information assurance certification
paper. [Online]. Available: https://www.giac.org/paper/gsec/2876/
saml-common-security-language-web-services/104846

[32] J. Naithan, “SAML proposal for securing XML web services.Project
paper,” University of St. Thomas, Saint Paul, 2008.

[33] J. Hodges, O. C. McLaren, P. Mishra, R. Netegrity, T. Moses, E. E.
Prodromou, and S. M. Erdos, “Security and privacy considerations for
the oasis security assertion markup language (saml),” 2002.

[34] V. Mladenov, C. Mainka, and J. Schwenk, “On the security of modern
single sign-on protocols: Second-order vulnerabilities in openid con-
nect,” arXiv preprint arXiv:1508.04324, 2015.

[35] T. Groß, “Security analysis of the saml single sign-on browser/artifact
profile,” in Computer Security Applications Conference, 2003. Proceed-
ings. 19th Annual. IEEE, 2003, pp. 298–307.

[36] D. Fett, R. Küsters, and G. Schmitz, “A comprehensive formal security
analysis of oauth 2.0,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 1204–1215.

[37] R. Millman. (2016, January 11) Researchers find two flaws
in OAuth 2.0. [Online]. Available: https://www.scmagazine.com/
researchers-find-two-flaws-in-oauth-20/article/530038/

[38] G. Curtis. (2016, July 16) Preventing mix-up attacks with
OpenID Connect. [Online]. Available: http://openid.net/2016/07/16/
preventing-mix-up-attacks-with-openid-connect/

[39] A. Armando, R. Carbone, L. Compagna, J. Cuellar, G. Pellegrino, and
A. Sorniotti, “From multiple credentials to browser-based single sign-
on: Are we more secure?” in IFIP International Information Security
Conference. Springer, 2011, pp. 68–79.

[40] W. Li and C. J. Mitchell, “Analysing the Security of Google’s imple-
mentation of OpenID Connect,” in Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2016, pp. 357–376.


