
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Hypotheses engineering : first essential steps of experiment-driven software
development

© 2019, IEEE

Accepted version (Final draft)

Melegati, Jorge; Wang, Xiaofeng; Abrahamsson, Pekka

Melegati, J., Wang, X., & Abrahamsson, P. (2019). Hypotheses engineering : first essential steps
of experiment-driven software development. In 2019 IEEE/ACM Joint 4th International
Workshop on Rapid Continuous Software Engineering and 1st International Workshop on Data-
Driven Decisions, Experimentation and Evolution (RCoSE/DDrEE) (pp. 16-19). IEEE.
https://doi.org/10.1109/RCoSE/DDrEE.2019.00011

2019

Jorge Melegati
Faculty of Computer Science

Free University of Bozen-Bolzano
jmelegatigoncalves@unibz.it

Xiaofeng Wang
Faculty of Computer Science

Free University of Bozen-Bolzano
xiaofeng.wang@unibz.it

Pekka Abrahamsson
Faculty of Information Technology

University of Jyväskylä
pekka.abrahamsson@jyu.fi

Abstract—Recent studies have proposed the use of experiments
to guide software development in order to build features that
the user really wants. Some authors argue that this approach
represents a new way to develop software that is different from
the traditional requirement-driven one. In this position paper, we
propose the discipline of Hypotheses Engineering in comparison
to Requirements Engineering, highlighting the importance of
proper handling hypotheses that guide experiments. We derive
a set of practices within this discipline and present how the
literature has tackled them up to now. Finally, we propose a
set of research questions that could guide future work towards
helping practitioners.

Index Terms—hypotheses, assumptions, experimentation,
experiment-driven software development, hypotheses engineer-
ing, requirements engineering

I. INTRODUCTION

Recently, several studies focused on the use of experi-
ments to guide software development [1]–[3] as a way to
build features that indeed create value to customers [3]. By
experiments we mean testing product assumptions applying
scientific methods with the purpose of supporting or refuting
these assumptions [3]. Several methods could be used to run
experiments including problem or solution interviews, mock-
ups, and A/B tests [3]. According to Olsson and Bosch [2],
the lack of experiments systematic use and customer feedback
while developing high-quality features could lead teams to
frustration and fear when users do not appreciate or use these
features. Nevertheless, while exploring the state of practice
of experimentation, Lindgreen and Münch [3] realized the
need of further studies to integrate experimentation into the
development process.

Bosch et al. [4] proposed a framework identifying three
different approaches to software development: the “traditional
requirements driven development”, the “outcome/data driven
development”, and “artificial intelligence (AI) driven develop-
ment.” In the first, software is built based on specifications
provided by the product management or the clients. In the
second, decisions are based on data collected through experi-
ments. Lundgren and Münch [3] called it “experiment-driven
development.” In the third approach, the team uses “artificial
intelligence techniques [...] to create components that act based
on input data and that learn from previous actions.”

In the requirement-driven development, an important com-
ponent of the process is requirements engineering (RE). Ac-
cording to Nuseibeh and Easterbrook [5], RE is the process
of discovering the purpose to what the software was intended,
“by identifying stakeholders and their needs, and documenting
these in a form that is amenable to analysis, communication,
and subsequent implementation.” In their Requirements En-
gineering textbook, Kotonya and Sommerville divide RE in
the following activities: elicitation; analysis and negotiation;
documentation and validation [6].

The rise of agile methodologies brought the need of dis-
cussing RE in agile contexts [7] and a large number of
studies were performed. In a systematic literature review on
the subject, Inayat et al. [8] found 21 studies on practices and
challenges for agile requirements engineering. Among them,
we highlight user stories that “are created as specifications of
the customer requirements" [8]. Therefore, requirements are
still the artifact to be created and user stories are a simple
way to describe a feature needed by the user.

In requirement driven development, it is widely agreed that
poorly-performed RE activities put the project at risk [9].
Based on the similarities between requirements and hypothe-
ses, and the well-known practices for scientific experiments,
we argue that badly defined hypotheses leads to waste of time
and resources. Up to now, the literature on experimentation and
guidelines to identify, prioritize and verify if those hypotheses
could be answered by the proposed experiments are still
scarce. To start filling this gap, in this position paper, we
propose the discipline of Hypotheses Engineering and a set
of research questions about its activities.

II. EXPERIMENTATION MODELS

Based on a scientific literature review, we identified two
models for the experiment-driven software development: the
HYPEX (Hypothesis Experiment Data-driven Development)
proposed by Olsson and Bosch [2] and the RIGHT (Rapid It-
erative value creation Gained through High-frequency Testing)
model created by Fagerholm et al. [10].

The first was developed based on challenges observed on
three case studies in software development companies and
consists of six practices. The first practice is to generate
features in the backlog that could be valuable to the users

Hypotheses Engineering: first essential steps of
experiment-driven software development

and be experimented with. The second consists of selecting
the highest priority feature and creating hypotheses on how
the company believes that the feature creates value to the
customer. During the third practice, the team extracts the
feature smallest part that adds value to the customer (the so-
called minimum viable feature or MVF) and instrument it to
collect data. In the fourth practice, gap analysis, the company
analyze the difference between expected and actual behavior,
and, if they are different, the team develop hypotheses about
the reason to be used in the following steps. Then, in the next
practice, the team analyzes the hypotheses created and priori-
tize which ones they should test further. If the most probable
hypothesis is that the feature does not meet users needs, the
next practice will be to create an alternative implementation.

The RIGHT process model follows a similar path. Based
on learning obtained in previous cycles and company’s busi-
ness model and vision, the team identifies and prioritizes
hypotheses. Then, based on a subset of hypotheses, the
team design an experiment implementing an MVP (Minimum
Viable Product) or MVF and updating the instrumentation.
Later, the experiment is executed and its results are analyzed
leading to a decision making stage. From that, the team
draws new pieces of learning, taking it to persevere in the
idea (implementing/optimizing, scheduling for deployment) or
pivot it/change assumptions, etc.

It is important also to highlight that both studies cite the
Build-Measure-Learn cycle proposed by Ries [11]. The cycle
is one of the building blocks of the author’s Lean Startup
methodology. According to him, startups should work in these
cycles where they first take their assumptions as hypotheses
and build the minimum solution to test a hypothesis (Build).
Based on metrics (Measure), the team should accept or reject
the hypothesis (Learn), that is, persevering or pivoting.

From the models above described, in experiment-driven
software development:

• the main artifact is not a requirement but a hypothesis or
an assumption that could be validated or not in the end
of the experiment;

• based on metrics collected during the execution of the
experiment;

• leading to learning (validated learning in the Lean Startup
methodology) that updates the original set of hypotheses.

These common elements imply a similar approach to
experiment-driven software development. Figure 1 presents
this approach comparing it to a requirement-driven one in a
simplified manner to highlight the differences between them.

Therefore, it is reasonable to improve methods and tech-
niques to handle hypotheses in a similar way to what has
been done to requirements. In the next section, we propose
the Hypotheses Engineering discipline and show what has
been discussed up to now in the literature that addresses the
concerns represented by these activities.

III. HYPOTHESES ENGINEERING

In requirement-driven software development, the success of
a software is determined by to which degree it fits the users’

desires [5]. That is, it is important to understand users’ needs,
model, analyze, negotiate and document them, and validate
that the documented requirements fit the users’ desires [12].
On the other hand, in experiment-driven software develop-
ment, hypotheses guide the creation of experiments to allow
the team to learn about its user or customer. That is, the final
goal is not the code itself but learning about the market and
user. Therefore, given the limited time and resources, teams
should be able to find out the hypotheses which exploring at
that moment would take to the most relevant piece of learning.

Teams should be able to identify hypotheses from the
business goals, vision and learning previous obtained. Then,
prioritize these hypotheses in order to minimize waste of
time and resources. Besides that, a hypothesis should have
not been evaluated before in the same context and it should
be meaningful to the product roadmap, i.e., the team should
analyze it. Finally, the hypotheses should be communicated
to the development team to have the related experiment
performed. Figure 2 summarizes the activities.

In the following sections, we discuss each activity and
how they have been presented in the literature. Then, we
discuss how different development stages may influence these
activities. As for traditional RE, a breakdown may infer a
waterfall-like process [9] but this is not the case. In agile
RE, all steps are mingled together [13] and it is reasonable
to think that the same happens to hypotheses, especially given
that experiment results influence following experiments.

A. Hypotheses generation

Similar to RE elicitation, hypotheses generation should
describe techniques to gather assumptions to which experi-
ments will be built. Until now, authors have discussed this
issue very briefly. In HYPEX, the first practice is feature
backlog generation where product management and product
development staff “based on their understanding of customer
needs and strategic business goals” generate features that may
bring value to customers [2]. In the RIGHT model, “analyst
and product owner work with a data scientist role [...] to
communicate the assumptions of the roadmap and map the
areas of uncertainty which need to be tested.” Gutbrod and
Munch [14] mention that since the Business Model Canvas
or the Lean Canvas contain all relevant aspects of a product
or business idea, they could be used to get the important
assumptions. In this paper, the authors list 22 assumptions for
the Airbnb product but they ranged from business viability
issues or, as Fagerholm et al. [10] call, high-level questions,
like if travelers were willing to rent from strangers and if
Airbnb is legal, to more user interface optimization in a later
stage of optimization [10] like “the price selection is easier
with a sliding scale”. In Bosch and Olsson’s outcome/data
driven development [4], the team “receive a quantitative target
to realize and are asked to experiment with different solutions
to improve the metric.”

Although not deeply explored, a common theme is the
guidance of business goals and vision to determine which
assumptions have to experimented with. These can range from

Identify, specify, and
prioritize hypotheses

Design the
experiment

Execute Analyze

Requirements
Engineering activities

Design the software Code Test

Learning

Fig. 1. Comparison between requirement-driven (upper) and experiment-driven (bottom) software development approaches.

Generation PrioritizationAnalysis

Hypothesis Engineering

Documentation
Learning from

other experiment
results

Business vision
and goals

Fig. 2. Activities in Hypotheses Engineering.

new products to new features or feature optimization [3]. The
lack of clear guidelines could make hard to practitioners to
elicit the most critical assumptions that their products will be
based on. Therefore, an important research question is:

RQ1: How can software development teams systematically
define hypotheses based on business goals and vision, and

own previously accumulated learning?

B. Hypotheses documentation

In traditional requirement-driven development, the docu-
mentation stage is essential to guide the implementation and,
after that, to check if a feature certainly fulfills the demand [5].
In agile RE, there is no formal documentation and long
requirements documents are replaced by user stories [8] that
are a way to foster face-to-face communication [13]. Similarly,
it is reasonable to think about artifacts, like user stories in agile
RE, that could help people involved in experimentation.

Until now, the discussion about artifacts to experimentation
is very limited. The RIGHT model mentions experiment plans
and learning as information artifacts not necessarily formally
documented [10]. In HYPEX, still in the feature selection and
specification stage, the team should specify how the feature
adds value to the customer and supports the business goals.
It also should describe the expected behavior the user will
take with the feature and this will guide analysis after the
experiment is concluded [2]. Therefore, a valuable study could
answer the following research question:

RQ2: What artifact could be useful to represent hypotheses
and support experiments creation?

Besides that, the team should update the hypotheses after
the experiments results, record the conclusions, and keep them
to further queries. Then, another research question would be:

RQ3: How could a hypothesis artifact be used to keep
experiment result information?

C. Hypotheses analysis

In a traditional RE process, during the analysis and ne-
gotiation phase, the team should analyze, detail and, in the
case they are not feasible or beyond project scope, discard
requirements [6]. Besides that, before implementing, there is
a validation stage when analysts check requirements [6]. They
should be complete, that is, they should have all the details
to allow the correct implementation of the functionality and
be consistent in the sense that they meet the users’ expec-
tations [12]. These practices were employed to ensure that
requirements implemented really represented users’ desires
and, consequently, to avoid implementation effort waste. In
agile methodologies, this concern is tackled by continuous
face-to-face communication between development team and
customers and the iterative RE [13]. The use of prototypes is
also a way to get customer feedback before moving ahead [8].

While doing experiments, similar concerns can arise: if the
hypotheses is not well-explained it could lead to an experiment
that will take a lot of resources or users attention and not
bring valuable learning. Prototyping experiments could be one
possible solution to that. Teams should analyze hypotheses to
check if they are consistent and not-duplicated, for instance,
another experiment already performed could have answered it.
That is, given a series of experiments, a hypothesis could have
been already tested previously and doing another experiment
will be waste. However, timing is a critical aspect that cannot

be ignored. For instance, a hypothesis valid in the beginning
of a product life-cycle can be no longer valid towards the end
of it. Then, some research questions arise:

RQ4: How could teams understand if a hypothesis can be
practically tested using an experiment?

RQ5: How could teams understand dependencies among
different hypotheses?

RQ6: How do hypotheses evolve over the time?

D. Hypotheses prioritization

Prioritization has been a more common theme both from
scientific and commercial authors. Such interest could be
explained by the fact that experimenting with less critical
assumptions first could lead to waste of resources once the
more important assumptions are later proven wrong. In a paper
about teaching Lean Startup prioritization, Gutbrod and Munch
perform a review on techniques to prioritize hypotheses [14].
Among others, they mention the Prioritizing Leap-of-Faith
Assumptions (LOFA) by Ries [15], and the Prioritization
Matrix by Gothelf and Seiden [16]. In their course, they
used the two axes of LOFA, named “time to impact” and
“magnitude of impact” in a experiment with students. In
HYPEX model, the second step is feature selection and spec-
ification where “the team selects the highest priority feature
for implementation” [2]. However, there were no systematic
evaluation of these approaches.

Besides that, several authors propose different techniques to
prioritize requirements like analytical hierarchy process (AHP)
and MosCow, but they have several limitations [17]. Their
use in experiment-driven software development has not been
explored so far either. Then, several research questions arise:

RQ7: Are current assumption prioritization techniques
effective?

RQ8: Could requirements prioritization techniques be
adapted to hypotheses in experiment-driven development?

E. Development stages

In a literature review on customer feedback and data col-
lection techniques, Fabijan et al. [18] distinguished between
three development stages: pre-development, development and
post-deployment. Even though they highlighted the iterative
nature of most development processes, they identified different
techniques used for different stages. In the first stage, com-
panies are testing interesting for the product in the market.
Then they evaluate early product concepts with techniques
like prototyping and beta-testing. Finally, once the product
is deployed, they use techniques to learn about customer
behavior and optimize the product. Therefore, it is reasonable
to think that different techniques will be used for Hypotheses
Engineering in different stages.

IV. CONCLUSIONS

In this position paper, we compared requirement-driven and
experiment-driven software development approaches. Based
on that, we argued the need of a Hypotheses Engineering

discipline to contrast with Requirements Engineering. We pro-
posed a set of activities to be included and further developed
so teams could find out the most critical assumptions to guide
their experiments. For each activity, we suggested at least one
research question creating a roadmap to further develop the
discipline.

REFERENCES

[1] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the "Stairway to
heaven" - A mulitiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software,”
Proceedings - 38th EUROMICRO Conference on Software Engineering
and Advanced Applications, SEAA 2012, pp. 392–399, 2012.

[2] H. H. Olsson and J. Bosch, “From Opinions to Data-Driven Software
R&D: A Multi-case Study on How to Close the ’Open Loop’ Problem,”
in 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications. IEEE, aug 2014, pp. 9–16.

[3] E. Lindgren and J. Münch, “Raising the odds of success: the current state
of experimentation in product development,” Information and Software
Technology, vol. 77, pp. 80–91, 2016.

[4] J. Bosch, H. H. Olsson, and I. Crnkovic, “It Takes Three to Tango : Re-
quirement , Outcome / data , and AI Driven Development,” in Software-
intensive Business Workshop on Start-ups, Platforms and Ecosystems
(SiBW 2018). Espoo: CEUR-WS.org, 2018, pp. 177–192.

[5] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a
roadmap,” ICSE 2000 Proceedings of the Conference on The Future
of Software Engineering, vol. 1, pp. 35–46, 2000.

[6] G. Kotonya and I. Sommerville, Requirements Engineering: Processes
and Techniques. New York, NY, USA: John Wiley & Sons, Inc., 1998.

[7] A. Eberlein and J. Leite, “Agile Requirements Definition: A View
from Requirements Engineering,” International Workshop on Time-
Constrained Requirements Engineering, TCRE 2002, pp. 1–5, 2002.

[8] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in Human Behavior, vol. 51, no. 0, pp. –,
2015.

[9] I. C. Society, P. Bourque, and R. E. Fairley, Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2014.

[10] F. Fagerholm, A. Sanchez Guinea, H. Mäenpää, and J. Münch, “The
RIGHT model for Continuous Experimentation,” Journal of Systems and
Software, vol. 123, pp. 292–305, 2017.

[11] E. Ries, The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business,
2011.

[12] B. H. C. Cheng, J. M. Atlee, and M. Joanne, “Research Directions
in Requirements Engineering,” Proceeding FOSE ’07 2007 Future of
Software Engineering, pp. 285–303, 2007.

[13] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements engineering
practices and challenges: an empirical study,” Information Systems
Journal, vol. 20, no. 5, pp. 449–480, nov 2007.

[14] M. Gutbrod and J. Münch, “Teaching Lean Startup Principles : An
Empirical Study on Assumption Prioritization,” in Software-intensive
Business Workshop on Start-ups, Platforms and Ecosystems (SiBW
2018), 2018, pp. 245–253.

[15] E. Ries, The Startup Way: How Modern Companies Use Entrepreneurial
Management to Transform Culture and Drive Long-term Growth. Cur-
rency, 2017.

[16] J. Gothelf and J. Seiden, Lean UX: Applying Lean Principles to Improve
User Experience, ser. Lean series. O’Reilly Media, 2013.

[17] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. R. Mahrin, “A system-
atic literature review of software requirements prioritization research,”
Information and Software Technology, vol. 56, no. 6, pp. 568–585, 2014.

[18] A. Fabijan, H. H. Olsson, and J. Bosch, “Customer Feedback and
Data Collection Techniques in Software R&D: A Literature Review,”
in Lecture Notes in Business Information Processing, 2015, vol. 210,
pp. 139–153.

