
Experiences Gained from the first Prêt à Voter Implementation

David B ismark, James Heather, Roger M. A . Peel, Steve Schneider, Zhe X ia
Department of Computing

Faculty of Engineering and Physical Sciences
University of Surrey

Guildford, United Kingdom
j.heather@surrey.ac.uk

Peter Y. A . Ryan
Faculté des Sciences

de la Technologie et de la Communication
University of Luxembourg

Luxembourg
peter.ryan@uni.lu

Abstract—Implementing an electronic voting system for the
first time can be difficult, since requirements are sometimes
hard to specify and keep changing, resources are scarce in an
academic setting, the gap between theory and practice is wider
than anticipated, adhering to a formal development lifecycle
is inconvenient and delivery on time is very hard. This paper
describes all of the work done by the Prêt à Voter team in
the run-up to VoComp in 2007 and enumerates a number of
lessons learned.

Keywords-electronic voting, implementation, Prêt à Voter

I. I N T R O D U C T I O N

The Prêt à Voter electronic voting system [1] is end-to-end
verifiable, meaning that voters are able to check that their
vote has been included in the announced result, and that the
correctness of that result is based on all the votes cast in
the election – without breaking the secrecy of the election
or introducing the dangers of coercion or vote buying. The
first implementation of this system was made by a group
from the University of Surrey in 2006/07 in order to run a
student sabbatical election and to enter the University Voting
Systems Competition (VoComp) in 2007.

The key innovation of the Prêt à Voter scheme is to encode
the vote using a randomised candidate list. Suppose that our
voter is called A nne. A t the polling station, A nne chooses
at random a ballot form sealed in an envelope; an example
of such a form is shown in F igure 1.

In the booth, A nne extracts her ballot form from the
envelope and makes her selection in the usual way by placing
a cross in the right hand column against the candidate
of choice (or, in the case of a Single Transferable Vote
(ST V) system for example, she marks her ranking against
the candidates). Once her selection has been made, she

Obelix
Idefix
A sterix
Panoramix

7304944

F igure 1. Prêt à Voter ballot form

separates the left and right hand strips along a thoughtfully
provided perforation and discards the left hand strip. She
is left with the right hand strip which now constitutes her
privacy protected receipt, as shown in F igure 2.

A nne now exits the booth clutching her receipt, registers
with an official and casts her receipt. Her receipt is placed
over an optical reader or similar device that records the
random value at the bottom of the strip and records in which
cell her X is marked. Her original paper receipt is digitally
signed and franked and is returned to her to keep.

The randomisation of the candidate list on each ballot
form ensures that the receipt does not reveal the way she
voted, so ensuring the secrecy of her vote. Incidentally, it
also removes any bias towards the top candidate that can
occur with a fixed ordering.

The value printed on the bottom of the receipt is the key
to extraction of the vote. Buried cryptographically in this
value is the information needed to reconstruct the candidate
order and so extract the vote encoded on the receipt. This
information is encrypted with secret keys shared across a
number of tellers. Thus, only a quorum of tellers acting in
together are able to interpret the vote encoded on the receipt.

A fter the election, voters (or perhaps proxies) can visit the
W B B and confirm their receipts appear correctly. Once this
is over, the tellers take over and perform anonymising mixes
and decryption of the receipts. A ll the intermediate stages
in this process are posted to the W B B and are audited later.
Various auditing mechanisms ensure that all the steps, the
creation of the ballot forms, the mixing and decryption etc
all performed correctly, but these are carefully designed so
as not to impinge on ballot privacy. A n accessible account
of Prêt à Voter can be found in [4].

X

7304944

F igure 2. Prêt à Voter ballot receipt (encoding a vote for ”Idefix”)

I I. M O T I V A T I O N A N D A PP R O A C H

VoComp was initially announced in September 2006. The
competition required teams to submit an implementation of
an electronic voting system, to prototype it in a campus-
based election, and take a working demonstration to the
VoComp conference [5].

The time gap between finding out about VoComp and the
University of Surrey Students’ Union (USSU) election that
we would use in our entry was sufficiently tight that we were
aware from the start that some corners would need to be cut.
Indeed, the initial discussions were concerned with whether
the project was feasible at all; and it was only a feeling that
VoComp was too big an opportunity to miss that persuaded
us that we should give it a go. In a commercial context, the
project would have been deemed infeasible from the start.

Having made the decision to take the project on, several
high-level design issues were resolved almost immediately:

≤ Prêt à Voter flavour: It was clear that we had to
implement the older version of Prêt à Voter, using RSA
onions [1], rather than the newer flavour using E lGamal
[2]. A lthough this was a disappointing decision to have
to make, because the E lGamal version is rather cleaner
and supports extra features, we were aware that we had
no off-the-shelf threshold E lGamal implementation, and
it simplified things greatly to stick with the standard
Sun Java SD K cryptography extensions.

≤ Programming language: We chose Java because we
wanted the program to be cross-platform. We believed
that we could demonstrate the flexibility of this by
having different parts of the system running on different
operating systems, in a fairly plug-and-play fashion.

≤ Tallying method: The USSU ’s constitution specifies the
single transferable vote as the tallying method. It would
have been far easier to implement plurality voting, but
this was not an option open to us.

≤ Easily-understood security features: E lectronic voting
is difficult to trust if one’s vote disappears into an
obscure system, only to appear as part of a tallied
result. Paper receipts from many voting machines do
not secure the whole process, from the voter’s point
of view. The premise behind our implementation of
Prêt à Voter was that if the polling booth machine
was unable to determine how each voter voted, then it
would not be able to delete unwelcome votes, or change
them to something that it deemed more acceptable. This
blindness was achieved through voters choosing their
own ballot form, marking it, and only inserting one
part of the form into the voting machine. The machine
would have to register that vote honestly if it were
to appear correctly for voter verification on the final
bulletin board. This end-to-end (E2E) concept enables
considerable confidence to be gained at the time of sys-
tem testing - if one form can be encrypted successfully,

verified by the voter in the polling booth, presented
correctly on the web bulletin board, and decrypted
at the time of tallying, then all of the pathways for
successful votes will have been tested. If the decryption
fails, something has broken and needs rectification.

There then followed what has to be described as an
‘accelerated’ Software Development L ifecycle (SD L C).

A. Analysis
The analysis phase was very informal and consisted

mainly of a short series of meetings with University of
Surrey Students’ Union (USSU) officials. The main sys-
tem requirements were simply those put forward by these
officials, and they were usually not negotiable. We then
added technical requirements of our own, which were largely
related to our use of Prêt à Voter. Usability requirements
ensured that our system would be understandable by the
voters.

B. Design
The design process was guided by two major considera-

tions: the short timescale, and the limited resources available
(in terms of both staffing and expenditure). Many potentially
fruitful avenues were closed off from an early stage because
of one or both of these.

Much of the design discussion was taken up with ques-
tions of the user interface. Should we use a paper ballot
form, or a point-and-click screen-based interface? Each had
its drawbacks.

We opted for using paper ballots. This was certainly the
correct call in terms of producing a professional system. It
is possible in retrospect that it increased the workload to an
intolerable level; perhaps this is a corner we could have cut
but did not.

The design phase gave us a high-level overview of the
system, and told us who would implement what.

C. Implementation
A lthough the design phase gave us seemingly clear-cut

boundaries between various parts of the system, and a logical
way of dividing these parts between the members of the
team, it did not automatically provide the bridges between
these parts. Therefore the implementations of the various
parts went ahead without much consideration of how they
were to communicate with each other. This later meant that
we had to glue the parts together in not so beautiful ways.
This was also the most important source of bugs later on.
(Lesson 10)

During the implementation phase it (mistakenly) seemed
to us that it would be quicker to develop the various
components without certain tools needed by the election
officials. To be more clear, we created a way to create
and alter an election on the Web Bulletin Board system
but this did not output something which could be input by

the ballot form creation process or by the Optical Character
Recognition (O C R) system. Therefore there was not one set
of changes that needed to be made if the election changed,
but several. A nd, as it turned out, the election specification
was to change several times. (Lesson 11)

Further problems arose when the integration of the various
components caused us to discover things that were lacking
in the analysis and design. One such thing was the passing
of error messages: if the scanning or O C R processes ex-
perienced an error of any sort, this must be output to staff
and the voter. However, this meant that this error should be
passed via a “vote submission” component to the “printer”
component, something that had not been picked up by the
previous analysis. (Lessons 12 and 13)

F inally, because we started out with little time on our
hands and spent more time than we anticipated on integration
issues, there was little time to test the system and to train
poll workers. A t this stage, we were very happy that Prêt à
Voter actually verifies that the election system works without
the need to verify individual components of the system.

I I I. C H R O N O L O G I C A L S E Q U E N C E O F E V E N T S

In this section we simply tell the story of how the develop-
ment of the first Prêt à Voter implementation happened and
reference the next section, which enumerates the lessons we
have learned.

A. VoComp announcement (spotted September 2006)
We recall the overall purpose of the competition being

clear (groups of students with academic advisers build
electronic voting systems and a panel of judges selects
the best one) but the details less so (system requirements,
judging criteria, documentation etc) and immediately after
spotting the competition announcement in September or
October 2006 our group started planning our entry.

The competition requirements were arguably unclear at
the start but our impression is that they kept changing all the
time up to the deadline. A s this was the first time VoComp
was held we agree it natural that a discussion must be held
regarding its setup but in hindsight it was unfortunate that
the competition was not more well specified at the start and
we feel that the “seeking” of an optimal setup on part of the
organisers and panel of judges did, in fact, continue all the
way through to the final judging in Portland, Oregon.

We were tremendously impressed with the organisers of
VoComp for getting the whole concept of an electronic
voting competition off the ground and we do attribute our
hard work in 2006/2007 to the incentive placed by the
competition. (Lesson 1)

B. Agreed with USSU to run the election
In a series of meetings with the President, Deputy Re-

turning O fficer and other members of the University of
Surrey Students’ Union (USSU) it was agreed in October

or November 2006 that the E lectronic Voting Group of the
Computing Department would supply an electronic voting
system to be used in the sabbatical elections the following
February.

No funding came from USSU but they agreed to source
the perforated paper needed to print the Prêt à Voter ballot
forms and to lend us a number of laptops during the election
period itself.

Clear requirements.: There were only four require-
ments that were clearly laid forward in these meetings.
(Lesson 2)

1) STV. USSU elections are single transferable vote
(ST V) elections with an extra candidate called Re-
Open Nominations (popularly “RO N ”1) and no ac-
commodation of write-in candidates. If “RO N ” wins
a race, that part of the election has to be re-run.

2) HRPAT. We were told by USSU officials that they had
asked the National Union of Students (N US) whether
or not they were allowed to run an electronic voting
trial and that the response was that they could if a
paper trail was kept as backup. A fter explaining how
Prêt à Voter works it was agreed with USSU officials
that the normal Prêt à Voter voting procedure would
be followed, but instead of shredding part of the ballot
form and scanning the remainder, the two parts would
be stapled back together and put in a ballot box. It
was also agreed that a serial number would be printed
on both parts of the ballot form so that any forms that
fell apart could be matched back up. We agreed to
this as a plausible Human Readable Paper A udit Trail
(H RPAT) which could be removed in future uses of
the system.

3) Concurrent polling stations. The Students’ Union re-
quired three concurrent polling stations (one in the
Lecture Theatres complex, one in the University li-
brary and one in the Management building) and thus
some mechanism was to be in place to stop students
from voting in more than one place. It was finally
decided that a new vote cast by a voter would replace
any previous ones and we implemented such a system.
A s identification, we used the students’ campus cards
and we were given an E xcel spreadsheet of all eli-
gible voters, their names and University Registration
Numbers (U R N) in advance of the election.

4) Remote voting. A remote voting facility should exist
and USSU officials would decide who could cast a
vote through this interface.

Unclear requirements.: A set of implementation spe-
cific requirements that were not well defined during these
meetings were:

1) The candidates. The number of candidates and the

1 In some elections RO N is one of the more actively campaigning
candidates.

names of those candidates were not given to us as early
as we would have wanted. Because this was our first
version of the system, some components of the system
were hard-coded (e.g. the ballot form generation and
the O C R processing) which made it hard (although not
impossible) to change the layout of the ballot form (not
the names of candidates, but the number of candidates
in a race and the number of races).

2) Referendum questions. Similarly, we learned that there
were to be at least one referendum question on the
ballot form but there ended up being two. The length
of the question text for these also posed “ballot form
disposition” problems for us during the development
phase.

3) Who can vote online. We were told during the meet-
ings with USSU that there must be a facility for off-
campus students (i.e. those on their placement year) to
vote remotely, that is to say over the web. Who these
students were or the preferred method of contacting
them with voting credentials were not specified.

C. System design
Because of the limited time available to design and imple-

ment the system – recall that the project started in October
2006 and that the USSU election was held in February 2007
– the group made a number of decisions which would cut
the amount of work to be done:

1) User interface. Our most protracted decision was over
the design of the user interface. We discussed many
variants of the classic Prêt à Voter voting form that can
be separated in the privacy of the polling booth, with
just the voter’s marks being scanned and sent to the
bulletin board. A lternatives mainly revolved around
computer-based on-screen interfaces.

≤ A paper ballot meant having to read the form
somehow, which involved either a programmable
camera and a mechanism for holding the ballot
paper in place, or the slowness of a scanner. E x-
periments with webcams in 2006 did not produce
high enough image quality for reliable O C R op-
eration, due to their low resolution, the difficulty
of mounting them accurately and robustly, and
the difficulties of lighting the ballot forms. Sheet-
fed scanners appeared to be far more reliable,
and generated nicely linear images with a good
resolution and built-in monochrome conversion.
Paper ballots also involved image processing and
optical character recognition, areas in which our
team had no experience.

≤ On the other hand, it was difficult to conceive of a
clean point-and-click interface that did not violate
one of the key principles of Prêt à Voter: that the
booth machine should not be able to work out for
whom the voter cast the vote. Indirection (of the

sort found in Punchscan [3]) seemed too awkward
for the voter; a hybrid approach, of inserting a
printed list of candidate names into a slot on the
side of the monitor so that it would align with
voting boxes on the screen, would have involved
complex mechanical mechanisms which would
have constrained our choice of computer displays
and would probably have restricted the size of
the forms themselves to that of one dimension of
those displays. Training voters to insert the ballot
forms correctly into the voting machines was also
considered too difficult.

2) Seven segment display. With no experience of optical
character recognition (O C R) in the group, we decided
to use a seven segment digit layout (often found in
digital alarm clocks), where four vertical and three
horizontal bars are either left empty or filled out to
make any digit from 0 to 9, rather than free-format
text input. These 7-segment marks were used on the
ballot form to allow the voter to assign a rank to
each candidate. We also used a cross symbol which
was either left empty or filled out in response to a
referendum question. Our reasoning was that in this
instance it would be easier to ask voters to use this
method of writing their vote on the ballot paper than
to program a system which would be more intuitive.
This decision was largely validated – most voters were
able to follow the example on the form and vote
successfully. Many of the remainder were apparently
confused by the single transferable voting system as
well. (Lesson 3)

3) RSA onions. A t the time when we were designing
the implementation of Prêt à Voter the theory had
moved from “decryption” onions [1] using RSA to
“re-encryption” onions using E lGamal [2] or Paillier
[8] encryption. However, we failed to reconcile the
ST V requirement with the necessity of the E lGamal
onion to store the vote as a single numerical value
[6]. In simple terms, the problem was that a full
permutation of all candidates could not be represented
as a single numerical value which could successfully
be put through a re-encryption network [2]. Having
decided on RSA onions, we encountered the problem
of the size of the RSA payload (our onion rapidly
grew too large to encrypt using RSA) and we had
to encrypt the onion layer in a symmetric encryption
scheme using a random key which was then embedded
in the layer using the relevant RSA public key (Lesson
4). We have subsequently solved this issue in [9].

4) LaTeX. B y generating all printed material (that is to
say the ballot forms and various receipts) using the
typesetting package LaTeX , we were able to generate
a textual representation of what was to be printed

F igure 3. A VoComp ballot form; the vertical dashed line shows the
position of the perforations. The left-hand side of the form is shredded, and
the right-hand side (containing the voter’s marks and the machine-readable
form identification) is scanned.

and with a simple command combine this with the
LaTeX template, which output Postscript which could
immediately be sent to the printer. Developing the
template was difficult, but when this was done the
printing took mere seconds. However, because of the
complexities of such LaTeX templates, creating a new
style ballot form or one with a new layout was very
difficult (and thus time consuming). A n example of
such a form is shown in F igure 3. (Lesson 5)

5) Java. Java is a versatile programming language and
using it achieves not only platform independence but
the possibility to compile the (open source) code using
various compilers in order to achieve a higher degree
of verifiability.

6) Pre-printing ballot forms. Running an election in
Prêt à Voter version 2005 entails pre-printing ballot

forms and distributing these using various procedures
which ensure that the ballot secrecy is not threatened.
However, because of the time constraints and the level
of involvement USSU was willing to partake in, it was
decided that the electronic voting group would print
the ballot forms in advance and keep these safe. Thus
we printed 2000 ballot forms on our Departmental
high-throughput laser printer.

7) Rudimentary poll worker interface. We built a rudi-
mentary poll worker interface which allowed a polling
station worker not only to look up a potential voter’s
eligibility (searching using U R N) and assign a ballot
form to her, but also to initiate the scanning process
with the click of a mouse button.

8) Open source. We believe that the code running a
verifiable voting system must be made public and
we thus released all code under the General Public
L icense (GPL).

D. Coding
1) PKI. A s Prêt à Voter uses asymmetric key encryption,

not only as a basis for the encryption of the votes but
also for the verification of identities of a number of
distributed actors, a private key infrastructure (PK I)
should be used. Such a system is used to distribute
public keys together with the identities of key owners
and builds up a network of trust. A s there was no
time to implement the use of a PK I, the group simply
created the required number of key pairs.

2) All tellers on the same machine. The implementation
has been made such that it supports any number of
trusted parties (tellers) working in a distributed fashion
over a computer network (possibly the Internet). In
order to make the system easy to use for testing, and
in order to run the system efficiently this first time, five
tellers were instantiated on the same computer. Thus
the web bulletin board (W B B), its database, and all of
the tellers were run on the same computer even though
they simulated talking to each other over a network.

3) No diskless workstation. A lthough the encrypted re-
ceipt (that remains after the candidate list is removed
and shredded) is not secret, the complete ballot form
is. The reason for this is that if one can see a complete
ballot form before it is used to cast a vote and note
down the details of it, one is able to “decrypt” the
contents of that encrypted vote without knowing any
encryption keys. Therefore the ballot creation should
be done on what is called a “diskless workstation”, that
is to say a computer without a hard-drive, booted from
a verified C D containing just an operating system and
the ballot creation software. When the program has run
and created the necessary data, the ballot forms should
be sent to the printer and any technology capable
of storing any secret data destroyed. A ll required

ballot information is stored in a database on removable
media and transported to the W B B. However, because
of the level at which USSU wished to hold its in-
volvement and because of time restrictions, no such
diskless workstation was set up. Instead the electronic
voting group ran the ballot creation software, printed
the ballot forms, destroyed the data and so forth
on its own. On the other hand, we did not destroy
our Departmental printer infrastructure, nor our team
leader’s desktop computer!

4) SVN. During the development phase, we used a Sub-
version (SV N) repository. SV N is a version control
system which allowed us to share code and check in
new versions of the software which was then quickly
rolled out onto all development machines. We also
used our SV N repository to store project and software
documentation. We also stored test data for each of
the interfaces between our software modules. One of
the greatest benefits of the SV N repository was in the
replication of software on each of the polling station
computers – all of the software could be installed
or updated in a matter of seconds. We did have a
few last-minute problems when the software repository
reported merge conflicts between different versions of
the same file – we had not experienced these when
we were working on our own individual components,
so these issues only arose during the final stages of
system integration.

5) Not enough time for system integration. Because of
the time restriction, the different developers worked
in isolation on their own parts of the system which
resulted in crude connections between different parts.
One example was the bridge from the O C R software,
where the marks read from a ballot form were trans-
formed into a string of comma separated values (CSV)
and then transferred to a vote submission module and
subsequently submitted over the network to the W B B.
Whilst this worked satisfactorily, the use of X M L or
SO A P might have been more elegant. Protecting this
information with a digital signature would also have
been wise.

6) Insufficiently modular. E ven though all of the develop-
ers were aware of the benefits of modularity in their
code, there simply was not enough time to generalise
modules sufficiently. Some modules that could have
functioned differently are therefore instantiated, run
and destroyed each time they are needed.

7) Bug tracking. We did not use any formal, electronic,
system to keep track of bugs and open issues. Whilst
bug tracking software would have been useful, it was
more efficient to resolve most inter-module software
integration bugs, between their respective developers,
as they were discovered. This is an advantage of a
small team working in a single location. (Lesson 6)

8) Frequently changing requirements. The requirements
from VoComp and USSU often changed and we
constantly chased these new requirements. Some of
these changes caused major re-design work, which was
difficult to manage.

9) No code review. We did not have time for any code
reviews. Going through the code in pairs might have
found simple (silly) mistakes such as the use of the
Java class Random() instead of a secure variant.

E. Testing
1) No structured testing. There simply was not enough

time to perform structured testing of the system. How-
ever, because of the nature of Prêt à Voter (it is fully
verifiable), we were very confident that the system
would collect and tally votes absolutely correctly.
This is rare in systems development: we were able
to formally verify the correct function of the system
without verifying any code. (Lesson 7)

2) Network testing very late. In the USSU sabbatical
election, the system would collect votes from sev-
eral different locations around the Guildford campus.
Whilst we had tested the network connections in the
voting locations prior to the election, we encountered
some contention on several network addresses when
we tried to use them on the following day. This
caused initial problems when opening the election (see
below). We suspect that this problem was caused when
another local networked facility was re-booted that
morning.

3) Never the same laptop. Since the borrowed USSU
laptops that were used in the polling stations were also
used for other purposes in the Students’ Union, we
had to return them regularly for long or short periods.
This made maintaining the software installed on each
rather difficult, because we could not update them all
together. Using SV N for our application code, and the
L inux “yum” application for operating system updates,
minimised the inconvenience.

4) System Performance. The polling stations comprised
low-end Toshiba laptops, together with inexpensive
HP 5610 printer-scanners. Each laptop could host up
to eight scanners, although only one or two were used
in the USSU elections. The ballot forms were scanned
using the sheet feeders on the HP 5610s, and this
took approximately 20 seconds per form. A fter this,
the O C R processing took just over 10 seconds, the
encryption and uploading to the web bulletin board
a couple of seconds, the LaTeX receipt generation
a couple more, and the printing around 10 seconds
per form. The whole process therefore took around 45
seconds. For an individual form, all of these processes
were sequential, but they only involved about 15
seconds of CPU time on the laptop. In principle, it

would have been possible to scan one form whilst the
receipt of the previous one was being printed, but the
scanner and printer units in the HP 5610 appear to be
single-threaded, and so starting another scan before
the printer had completed the previous receipt held
up the previous voter unnecessarily. Paying more than
$150 for these devices, or using separate printers and
scanners, would have solved this issue.

F. Training
1) Training USSU volunteers. USSU volunteers were

given brief training on the day before the election.
They were shown how voters were to be given ballot
forms, how serial numbers would be registered after
U R Ns had been checked, how the scanning worked,
and so forth.

G. Election day
1) Remote voting was not ready. Because of the immense

pressure to complete the main system in time for the
start of the election, and the lack of information on
remote voting from USSU, the remote voting interface
was not functional at the start of the election. There
was no indication from USSU at that time that this
would be a problem, in fact we believe they were
preparing to send out e-mails with voting credentials
after the start of the election anyway.

2) Registration module laptop had network issues. The
first polling station that was opened by the group was
the one in the lecture theatre complex. Unfortunately
the laptop running the polling station administration
(voter registration) module had network issues just as
the election was opened. This made it impossible to
record the voters as planned, but the group started
keeping a paper list of voters, planning to tick these
off as soon as the registration laptop was back online.
A representative of the USSU voiced concerns over
this but was told by the group that it did not impact
voter eligibility and did not mean voters could vote
more than once.

3) Unclear start time. Setting up the first polling station
was very chaotic with lots of students, polling station
workers, USSU and University officials and others in
attendance. No USSU official made clear when the
polling was to start and as a result everyone was
confused.

4) Mayor was delayed. The Mayor of Guildford was
invited to open the election but was delayed. This
not only caused the election to be opened late, but
also prevented members of the electronic voting group
from proceeding to the next polling station while they
were waiting.

5) The system did work. When eventually the election
was opened, a long queue naturally built up (since lots

of student voters were waiting to see the Mayor open
the election and immediately queued up to vote). For
about fifteen minutes, people had to stand in a queue.
USSU officials may have expressed concern at this but
the throughput was good, with very few votes having
to be redone because they were filled out incorrectly,
and soon there was no waiting time at all.

6) Election pulled. Despite votes now going through at
a regular pace and no voter having to wait, a USSU
official decided to stop the election. He said this was
because other polling stations had not been opened on
time. He said they would send around an e-mail to all
voters saying that voting would re-start at 12.00 that
same day, with USSU running the election as they had
in previous years but using the Prêt à Voter random-
order candidate list ballot forms so that the electronic
voting group could still obtain valuable research data.

H. Scanned ballot forms

USSU allowed the electronic voting group to scan all of
the ballot forms used. This meant that USSU sealed the
group in a room in the Students’ Union building together
with USSU officials and allowed the ballot boxes to be
opened. The group put adhesive tape on the back of the
ballot form, over the whole length of the perforations, to
allow ballot forms to be scanned without falling apart. This
was also done because USSU would later cut the ballot
forms up to be able to hand-tally each race separately.

1) Hand-tallying random order ballot forms. Because
the Prêt à Voter ballot forms have a random order
candidate list, they are not very easy to hand-tally in an
ST V election. USSU cut the ballot forms horizontally
so as to divide the races and tally each race separately
and concurrently to save time.

2) Rubbish votes. When a vote is read in by the Prêt à
Voter scanner, the software checks – without knowing
the contents of the vote – that the ballot form has
been filled out correctly, i.e. that the vote is valid. If
the voter has made an involuntary mistake, she is then
able to try again. However, because these checks were
not performed at the time of vote submission, there
were not only a large number of spoilt votes, but also
a number of the votes that USSU did allow could not
be interpreted correctly by our system.

3) Folded/stapled. When USSU ran the polling stations,
polling station workers seem to be confused as to what
to do with the ballot forms (we noticed this when
preparing the votes for scanning) as some were torn
along the perforation, folded and stapled etc.

4) Never processed scans. We have not made any struc-
tured effort to process the scans, primarily because of
the absence of online verification of the forms.

I. VoComp
1) Unclear information about what was to happen at

VoComp. The information sent out to the VoComp
competitors was limited, and as a result we did not
know quite what to expect.

2) Judging forms. Just before the competition was to take
place in Portland, Oregon, USA we were sent a request
to create a number of judging forms. These would
all be different, instructing a judge to vote in a par-
ticular way. The reason for creating these forms was
that independent judges would take them and attempt
to submit votes in accordance with the instructions.
A fter the close of the competition election, the votes
would be tallied and the result compared to the result
intended by the judging forms. In the end, these forms
were not used.

3) Unclear judging criteria. The judging criteria were
never set out clearly in the run-up to the competition
and, we believe, were not quite clear at the time of
judging either. The criteria on which to base their
decision were simply left up to the judges to define.

4) Picking small holes. One feature of the competition
was the teams’ chance to highlight weaknesses in
the other teams’ systems and to respond to critiques
of their own system. A s a result of there being no
clear judging criteria, the teams did not know what
to look for or what to highlight in the limited time
available. A s an example, one of our competitors
found a place in our Java code where we had used the
class Random(), which is not considered a secure
pseudo-random generator. However, the fix is very
quick: simply change this to SecureRandom(). We
feel that such an easily fixed triviality was awarded
greater than necessary importance.

5) Router broke. A short time before the start of our
system demonstration at VoComp, our wireless router
broke – apparently as a result of being used at 110V
(despite supposedly supporting this voltage). A new
router was hurriedly purchased close to the venue, and
this worked without problem throughout the demon-
stration.

6) Pre-printed ballot forms. We took pre-printed ballot
forms to Portland with us. We would have found it
very difficult to produce modified forms at VoComp.

7) The election worked. Our demonstration election ran
without any problem and accepted votes from all of
the judges and independent testers.

J. Newcastle trial
A n electronic voting trial using the Prêt à Voter imple-

mentation was made at the University of Newcastle in the
A RO V E-v project [7].

1) Charity single choice election. In order to find voters
to take part in the trial, charities were invited to

send people to campaign outside the polling station,
drawing voters in. The charities would then be given
part of a large prize sum in proportion to the number
of votes they were awarded in the election. Voters
could only select one charity and indicated this with an
X . There were also two “referendum” style questions
where voters indicated their response using an X .

2) All asked to check their votes. In order to test if voters
were able to use the Web interface used to check one’s
vote, all voters were asked after voting to proceed to
a row of laptops displaying the website. These were
connected to the W B B laptop and so voters could
immediately check the inclusion of their votes in the
final tally after having them scanned.

3) OCR failed initially. Despite testing the system the
night before, minutes before the election was due to
open the O C R functionality started failing for all ballot
forms. A fter about an hour of searching for the bug
and conferring with group members on the phone it
was determined that the O C R worked for previously-
used test ballot forms but when new ballot forms were
“freshly torn apart” there was a certain amount of fuzz
at the edge of the paper. A fter slightly adjusting the
value indicating where the O C R mechanism would
expect the edge to be, scans started to be processed
correctly and no more errors occurred for the rest of
the election. (Lesson 8)

4) No failed scans. A fter the O C R function was properly
set up and the election was opened, no scans of ballot
forms failed.

5) One scanner died. Soon after the start of the election,
one of the eight scanners failed. A s the system had
been built with replicated off-the-shelf hardware, the
failure of one particular scanner did not impact the
running of the election. In a real-world scenario, the
broken scanner could immediately have been replaced
with another. In this case the throughput of voters was
low and therefore there was no need to replace the
scanner. (Lesson 9)

A fter the Newcastle trial and VoComp, we have run
many small demonstration elections to groups of visitors
within our Department. These have validated the operational
processes of initialising elections, collecting votes and gen-
erating a final, audited, tally.

I V. S Y S T E M V U L N E R A B I L I T I E S

In addition to the threats and trust models of Prêt à
Voter that are discussed in [4], we noticed that our imple-
mentation had some vulnerabilities that would need attention
in a fuller implementation.

1) Sensitivity to network failure If the interconnecting
computer network were to fail, our system would not
function. This is because access to the web bulletin
board was required for successful registration of each

vote. In addition, the ballot form auditing process
required all of the teller machines to be accessible.
A t the end of the election, auditing and tallying also
required all of the teller machines to be available and
capable of handling significant workloads. We have
subsequently devised a number of caching schemes
to allow voting to proceed, and some thresholded
cryptographic mechanisms to tolerate a small number
of failed or inaccessible teller machines.

2) Denial of Service attacks Whilst the network could
fail of its own accord, denial-of-service threats could
be caused intentionally. E ither the network itself, or
the individual networked services, could be heavily
loaded by malicious traffic, thereby slowing or halting
the election process.

3) Mind the perforations A s mentioned in Lesson 8, the
paper stock used for the ballot form is critical. It has
to be able to withstand scanning, which is not too
difficult. It has to tear cleanly along the perforations,
and this is a function of paper thickness and of the
perforations themselves. If the paper is too thick, it
enables the weakened perforations to provide a good
separation, but laser printer toner then tends not to
stick to it well, and the bending during tearing causes
areas of toner to flake off the paper, thereby upsetting
the scanning process. If the perforations are too strong,
tearing becomes difficult. Bent, folded or torn ballots
might then cause the scanner to jam. F inally, scanning
ballot forms after the USSU election, after they had
been stabilised with adhesive tape, emphasised that
scanners can pick up dirt and debris and in sheet-feed
mode this can lead to vertical stripes on the scans.

4) Technical Support The installation and upkeep of
the polling station equipment is challenging, and re-
quires skilled technicians (or, in our case, develop-
ers). E ventually, this skilled manpower becomes a
critical resource. In a large election, especially with
geographically separated polling stations, this could
be a significant problem.

V. L E SS O N S L E A R N E D

In this section we choose simply to enumerate a number
of lessons that we have learned during this development.
Some are common to the development of any IT system,
while some are specific to electronic voting systems.

1) Define competition rules and requirements well and
early. For optimal return on a competition like Vo-
Comp, the requirements should be drawn up, agreed
and formalised before the competition commences.

2) Sign off system requirements. System requirements
must be signed off before development starts in order
to ensure that all stakeholders are not only aware of
the requirements but able to see as early as possible
if these meet real-world requirements.

3) OCR. The eventual machine interpretation of a vote
written on paper by a voter should not force the voter
to use a non-intuitive method for specifying the vote.
A n unusual marking scheme could be error-prone and
cause frustration to the voters. In the case of digits or
characters, it might be worth looking at open source
O C R packages. However, it is also worth bearing in
mind that optical character recognition is difficult – the
point of C A PT C H A technology being that machines
find reading text far more difficult than humans do –
so the reliability of O C R decoding of unconstrained
handwritten digits will never be perfect. Whether, say,
98% accuracy is sufficient is a difficult design and
usability decision.

4) Implementing theory brings surprises. There is a con-
siderable gap between theory and practice, meaning
that any work to implement an electronic voting sys-
tem which has previously only been specified theo-
retically will throw up issues previously not thought
about. Not only might these issues take time to be
discovered, but they may change the way one can
actually implement the system quite dramatically.

5) Build generalised modules. Modules should be made
as generic and as configurable as possible; i.e. de-
velopers should not hard-code any parts of the sys-
tem. Whilst making a module more general is more
time consuming in the development phase, this will
inevitably save time whenever a change of that module
is made in the future. One example of this is our ballot
form printing module. In order to build a functioning
system, this was initially hard-coded to work with
a single ballot form, containing five races and two
referendum questions. It should be clear that this style
of module requires reprogramming when the number
of candidates, the number of races or even the names
of the candidates or races change, then any time saved
in the development phase would quickly be lost. On
the other hand, the production of a generic form-
generation program subsequently formed the basis
the whole of an M.Sc. dissertation project, and the
software produced was not able to pack as many
races and candidates onto a ballot form as the manual
method.

6) Use a system to track bugs and open issues. This
project was large enough that the use of a bug-tracking
mechanism would have been worthwhile. We just
about coped without one.

7) Verifiable systems. End-to-end verifiable electronic
voting systems can be verified without verifying any
code or procedure, because the decryption of the votes
fails, or the voter checks in the polling booth or on
the web bulletin board fail if the main path through
all of the software processes are incorrect.

8) Test under real circumstances. Only if the system is

tested under real circumstances, in preparation for the
opening of an election, is it possible to determine
that the system is in fact working. E ven then, the
infrastructure might change overnight.

9) Use off the shelf hardware. Using off the shelf hard-
ware in any IT system not only keep costs down, but
replacement of failed components is easy.

10) Integrate components. A lthough the specification of
various components of a system is important, do not
forget to specify carefully (and elegantly) the way that
these components fit together.

11) Elections Change. In the implementation of an elec-
tronic voting system for a very specific purpose,
perhaps the running of a single election, it may seem
possible to save time by hard-coding election defi-
nition and other variables. This is a false economy,
as elections invariably change right up until the last
moment that they can possibly change.

12) Check the analysis by implementation. The only way
the analysis and design can be checked is by doing
the implementation. Beware of a plethora of things
popping up at this stage.

13) Remember error handling. In electronic voting sys-
tems, the trust in the system is crucial and therefore
error handling must be very transparent. Not only
does any error thrown in any component during ballot
casting have to be reported and explained to the voter,
they must also be logged and explained in an election
log.

V I. C O N C L U S I O N S

This paper has reported on the first large-scale implemen-
tation of the Prêt à Voter electronic voting implementation,
and the first application of Prêt à Voter to single-transferable
vote elections. This development was successful due to our
strong understanding of the underlying cryptographic theory,
our diligent design work and a largely fault-free, if rushed,
software development phase. We were able to collect votes in
a large election with multiple polling stations. Subsequently,
we were able to collect votes and successfully tally several
other public demonstration elections.

On the basis of the final section of the paper, we conclude
that there were many lessons learned: but anticipating the
immense divide between the underlying theory and its
practical implementation is perhaps the most important.

A C K N O W L E D G E M E N T S

The authors would like to thank the organisers and judges
of VoComp in 2007 for their hard work in putting the
competition together and allowing us to take part in that
marvellous event. It truly was memorable and we would not
have missed it for the world!

We would also like to thank officials of the University of
Surrey Students Union who were working under tremendous
stress but were willing to put our science to a severe test.

R E F E R E N C E S

[1] D. Chaum, P.Y.A . Ryan, and S. Schneider. A practical voter-
verifiable election scheme. Proceedings of the tenth European
Symposium on Research in Computer Science (ESORICS’05),
pages 118–139, 2005. L N CS 3679.

[2] P.Y.A . Ryan and S. Schneider. Prêt à voter with re-encryption
mixes. Proceedings of ESORICS, 2006. L N CS.

[3] K . F isher, R. Carback, and A .T. Sherman. Punchscan: Introduc-
tion and system definition of a high-integrity election system.
In PRE-PROCEEDINGS, pages 19 – 29. I AVoSS Workshop on
Trustworthy E lections, 2006.

[4] P.Y.A . Ryan. The Computer A te my Vote. University of New-
castle upon Tyne Technical Report no. CS-TR-988, November,
2006.

[5] A .T. Sherman et al. VoComp Rules. available at http://www.
vocomp.org/rules.php, 2007, referenced July 2009.

[6] D. Lundin. Simple and secure electronic voting with prêt à
voter. Technical Report at the University of Surrey, CS-08-05,
2008.

[7] M. Winckler, R. Bernhaupt, P. Palanque, D. Lundin, K . Leach,
P.Y.A . Ryan, E. A lberdi and L. Strigini. A ssessing the usability
of open verifiable e-voting systems: a trial with the system Prêt
à Voter. in K aplan, A . a. B., A sim and A ktan, Coskun and
Dalbay, O zkan (Ed.) Proc. of IC E-G O V, 12-13 March 2009,
A nkara, Turkey. Vol. 1. pages 281- 296. ISB N 975-6339-00-0.

[8] P.Y.A . Ryan. Prêt à V oter with Paillier encryption University of
Newcastle upon Tyne Technical Report no. CS-TR:1014, 2007

[9] Z. X ia, S.A . Schneider, J. Heather, P.Y.A . Ryan, D. Lundin,
R.M.A . Peel and P. Howard. Prêt à V oter: A ll-In-One, in
Proceedings of IAVoSS Workshop on Trustworthy Elections
(WOTE 2007), 2007, pp 47–56, Ottawa, Canada

