
Supporting requirements model evolution throughout the system life-cycle

Neil Ernst, John Mylopoulos
Dept. of Comp. Science
Univ. Toronto, Canada

{nernst,jm}@cs.toronto.edu

Yijun Yu
Dept. of Computing
Open University, UK

y.yu@open.ac.uk

Tien Nguyen
Elec. Comp. Engineering

Iowa State Univ., USA
tien@iastate.edu

Abstract
Requirements models are essential not just during sys-
tem implementation, but also to manage system changes
post-implementation. Such models should be supported
by a requirements model management framework that
allows users to create, manage and evolve models of
domains, requirements, code and other design-time ar-
tifacts along with traceability links between their ele-
ments. We propose a comprehensive framework which
delineates the operations and elements necessary, and
then describe a tool implementation which supports ver-
sioning goal models.

1. Introduction
Software-based systems are subject to change pres-

sures. Many of these change pressures affect a system’s
requirements [1, 2], which in turn affect system archi-
tecture, design and code. To support the evolution of
requirements for systems subject to adaptive pressures,
we need requirements models throughout the software
lifecycle, and particularly post-implementation. These
models provide the maintainer guidance and motivation
for code-level changes such as refactorings or the addi-
tion of new functionality. To manage models of these
requirements, a requirements model management sys-
tem that can cope with change is necessary.

2. Requirements model management
To formalize our discussion, we make use of the

notion of an abstract data type (ADT). A require-
ments model management system deals, broadly, with
three domain models, namely requirements goal model
G, implementation model I, and (reified) traceability
model T . An element in G is either a goal or a rela-
tion between two goals; an element in I is a component
or a relation between them, categorized as calls, imple-
ments, uses; an element in T is an object reifying a re-
lation between an element in G and an element in I.

Operations in the ADT – Operations on I, the im-
plementation model, include ones used during design
and implementation. For the traceability model T , the
operations reflect the creation and maintenance of the
traceability elements. In addition, it is desirable to be
able to merge models. For example, changes to the
initial model may need to be merged into a derivative
of that model. The merge operator takes two models
of the same type, a matching relation between them
(e.g., simple text matching), and produces a new model.
There is also an inverse operation, split. Match takes
two models and generates a relationship between their
elements. Trace (between a goal model and an imple-
mentation model) is a related operator that matches be-
tween models G and I. We define a specialized diff
operator which takes two versions of G, and describes
a set of operations, D, required to reproduce the orig-
inal from the changed model. The operations include
metaproperties such as the date of the diff, size of diff,
and user who called the function. There are several pos-
sible techniques to generate such operations. The most
common is to use a text-based diff which can gener-
ate line by line comparisons. Other approaches include
those demonstrated in model diff tools. The next oper-
ator we expand on is the slice operator. A slice in our
framework produces a subset of a requirements model
satisfying the criterion. We also define three operators
specific to the problem of changing requirements mod-
els.

The version operator takes a goal model at some
point in time, appends a logical timestamp v, and places
it in persistent storage. We call the right-hand side M,
a mirror of the goal model at time v. The Ttemporal
commit operator updates the persistent layer with the
changesets as defined by diff, where M1 is the “HEAD”
version of the repository. This temporal query oper-
ator uses the diff result. It produces a set of objects
matching the criterion at either the meta-level (proper-
ties of the diff) or object level (versions of object x in



time).
Finally, an important quality of goal models is eval-

uation. There are several different means to assess how
well a goal model is satisfied, which our model manage-
ment system needs to keep track of. In other words, we
also want to store metadata for the individual models
as to evaluation results, for some evaluation algorithm
F(G).

3. Implementation
Our implementation, which we call OpenOME, is a

goal modeling tool supporting several languages. At its
most elemental, the tool implements fundamental goal
modeling operations (such as create, edit, delete, eval-
uate). OpenOME has three flavours of editor to work
with goal models: a) a text editor, leveraging XTxt
DSL tools, supporting syntax highlighting and check-
ing; b) an object-oriented editor of goal models with
tree-based outline of objects and table-based field prop-
erty views (generated from the Eclipse Modeling Frame-
work (EMF)); c) a graph editor of the goal models. This
editor is generated from the Graphical Modeling Frame-
work (GMF).

On top of this, we integrated a customizable,
object-oriented, configuration management (CM) in-
frastructure, Molhado [4]. Our implementation mini-
mizes the cognitive dissonance of text-based systems,
such as CVS, as developers no longer need to translate
between the problem domain and the development en-
vironment. The implementation of the ADT concen-
trates principally on supporting the version and tempo-
ral commit operators, but we have also implemented
diff, match and temporal queries. We are currently
working on generating model slices. There is existing
work which addresses model merging and matching.
We evaluated the implementation using three versions
of a goal model of several thousand entities, spanning
two years of development.

Molhado has a novel slot-based property mecha-
nism. We represent the properties associated with a
goal model entity, such as a goal, using these slots to
store metadata about the element over time. To man-
age our models, we created five algorithms that im-
plement the version model management operation we
mentioned previously. These algorithms are respon-
sible for mirroring, mapping, and recording the oper-
ations performed by the user into the version control
system. We assessed the space and time complexity
of the approach to evaluate scalability. We found that
the algorithms were either linear or logN in time com-
plexity. A reporting framework displays changes be-
tween different versions of an artifact. Since our CM
is model-driven, we describe a reporting and differ-

encing scheme that addresses domain elements, rather
than typical line-oriented differencing algorithms. Our
evaluation showed our tool minimized the size of the
changesets by a factor of three over XML and text diff
tools. Finally, to show that our implementation main-
tains change history conformance, we ‘replayed’ a se-
ries of changes in a diff D, to confirm that our algo-
rithms do not alter the models beyond the operations
the user specified.

4. Conclusions and future work
This paper has highlighted the need for support for

requirements evolution throughout the software lifecy-
cle, that is, post-implementation. To support this, we
called for a requirements model management frame-
work which could support requirements modeling, ver-
sioning, merging, reporting, and traceability to code.
We noted that merging and traceability are supported
in existing research, but that the areas of versioning
and reporting are under-studied. We described a tool
which supports these two areas of requirements model
management, and evaluated the ability of that tool to
manage large goal models. An extended version of this
paper is available at https://se.cs.toronto.
edu/ome/wiki/REPaperDetails.

We intend to use our framework to guide work in
tracing from source to goal models and vice versa, pos-
sibly using incremental LSI as in [3]. The issues as-
sociated with changing requirements – tracing, impact
assessment, etc. – will be difficult to manage with ex-
isting tools. We are interested in exploring how our
model management techniques will fit with less formal
requirements practices.

References
[1] V. R. Basili and D. M. Weiss, “Evaluation of a software

requirements document by analysis of change data,” in
Intl Conf. on Software Engineering, San Diego, USA,
1981, pp. 314–323.

[2] S. D. P. Harker, K. D. Eason, and J. E. Dobson, “The
change and evolution of requirements as a challenge to
the practice of software engineering,” in Intl Symp on Re-
quirements Engineering, 1993, pp. 266–272.

[3] T. Nguyen, H. Jaygarl, and I.-X. Chen, “Incremental
latent semantic indexing for traceability link evolution
management,” in Intl Conf on Software Engineering,
Leipzig, Germany, September 2008, to appear.

[4] T. N. Nguyen, E. V. Munson, J. T. Boyland, and C. Thao,
“An infrastructure for development of object-oriented,
multi-level configuration management services,” in Intl
Conf on Software Engineering, St. Louis, MI, May 2005,
pp. 215–224.


