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Abstract 
 

Missing or imprecise requirements can lead 

stakeholders to make incorrect assumptions.  A “Not a 

Problem” defect report (NaP) describes a software 

behavior that a stakeholder regards as a problem 

while the developer believes this behavior is 

acceptable and chooses not to take any action.  As a 

result, a NaP wastes the time of the development team 

because resources are spent analyzing the problem but 

the quality of the software is not improved. 

Performance requirements specification and analysis 

are instance-based.  System performance can change 

based upon the execution environment or usage 

patterns.  To understand how the availability and 

precision of performance requirements can affect NaP 

occurrence rate, we conducted a case study on an 

embedded control module.  We applied the 

Performance Refinement and Evolution Model to 

examine the relationship between each factor in the 

performance requirements and the corresponding NaP 

occurrence rate.  Our findings show that precise 

specification of subjects or workloads lowers the 

occurrence rate of NaPs.  Precise specification of 

measures or environments does not lower the 

occurrence rate of NaPs. Finally, the availability of 

performance requirements does not affect NaP 

occurrence rate in this case study.  

 

1. Introduction 
 

Missing or imprecise requirements can lead 

stakeholders to make a variety of assumptions about 

the correct behaviors of the system.  A defect
1
 report 

describes a software behavior that a stakeholder 

                                                           
1 A defect is a product anomaly [12]. 

regards as an anomaly.  However, the development 

team may consider this software behavior acceptable 

and choose not to take any action.  The development 

team designates such a defect report as “Not a 

Problem.” Such decisions are usually made by 

management, who determine the features to be included 

in the software product, after discussions among the 

different stakeholders involved in the development 

project.  A “Not a Problem” defect report, henceforth 

NaP, wastes the time of the development team and 

other key stakeholders since resources are spent on 

analyzing the problem but, in the end, the quality of the 

software is not improved.   

The specification and analysis for performance 

requirements, such as response time, throughput, and 

resource consumption, is instance-based [17].  The 

performance described in requirements documents 

typically applies to the specified workloads and 

computation environment.  Exhausting all possible 

conditions for performance requirements is nearly 

impossible and infeasible.  A defect report may 

describe the system performance under conditions that 

are different from those specified in the requirements.  

In this situation, the development team can only decide 

whether such a defect report is a NaP based on 

experience.  With complete and precise requirements, 

the defect submitter could avoid reporting a NaP 

entirely. 

Our objective is to examine how missing or 

imprecise performance requirements affect the 

occurrence rate of NaPs related to software 

performance.  To assess the precision level of a 

requirement, we developed a ranking scheme for the 

precision of performance requirements based on the 

Performance Refinement and Evolution Model (PREM) 

[9, 10].  We categorized performance requirements 

based on their precision level using this ranking 

scheme.  Then we compared the NaP occurrence rates 



for the defect reports related to the performance 

requirements in different precision levels.   

We conducted a case study to answer the following 

research questions: 1. What is the cost of investigating 

NaPs compared to confirmed defects?  2.  Are 

performance-related defects more likely to be 

designated as NaPs than non-performance-related 

defects?  3. Do performance requirements specified 

with higher precision levels have lower NaP occurrence 

rates?  The subject of this case study is a real-time 

embedded control module from ABB Inc.  We 

collected the documented requirements and defect 

reports from a firmware development project for this 

module.  Reducing the NaP occurrence rate can 

improve the efficiency of the development team by 

saving the time and resources spent on analyzing these 

defect reports.  In this paper, we present the results 

from this case study, and share our findings of NaP 

occurrence rate comparisons. 

The rest of this paper is organized as follows.  

Section 2 provides the related work for this study; 

Section 3 presents PREM and the performance 

requirements precision ranking scheme; Section 4 gives 

the data collection criteria and the analysis method we 

used in the case study; Section 5 shows the context of 

the case study; Section 6 provides the results and 

discussions of the case study; we conclude this paper 

and share the lesson learned in Section 7. 

 

2. Related work 
 

This section provides the related work for this study, 

including defect analysis, effects of requirements 

quality, and software performance requirements 

specification. 

 

2.1. Defect analysis 
 

A defect report describes anomalies found in a 

software system.  Defect analysis can provide us 

insights into the problems of the software development 

process. In the Orthogonal Defect Classification (ODC) 

[5] approach, the analysis of the defect attributes shows 

the progress of a software project and the effectiveness 

and completeness of the verification process. 

Defect analysis can also be used to improve 

requirements specifications.  Wasson et al. [21] use the 

failure reports created by testers to identify problematic 

phrases that occur in requirements documents.  In our 

previous work [11], we demonstrate a process to 

improve performance requirements specifications from 

failure reports.  Lutz and Mikulski [15] use an adapted 

ODC approach to analyze how requirements discovery 

is resolved in testing and operations.   The findings of 

their work suggest that requirements misunderstandings 

resolved during testing are often related to 

communication difficulties and subtle interface issues.  

Additionally, a false-positive defect report, which is a 

defect report that is resolved without any change in the 

software, provides potential information for 

requirements misunderstanding during operation.  In 

our work, a NaP may result from requirements 

misunderstandings during software development.  We 

examine how precise performance requirements can 

reduce the occurrence of NaPs. 

 

2.2. Effects of requirements quality 
 

Kamata and Tamai [14] examined the effect of 

requirements quality on project success and failure for 

32 projects.  In their work, the requirements quality 

was evaluated by the software quality assurance team 

based on the structure of IEEE Recommended Practice 

for Software Requirements Specifications [13].  The 

results of their study show that project success is 

related to requirements specifications.  In particular, if 

the purpose, overview, and general context are well 

written, the project tends to finish on time and within 

budget.  El Emam and Madhavji [7] propose to use the 

quality of requirements architecture and the quality of 

cost/benefits analysis, including 14 measures, in the 

requirements documents as the measure for successful 

requirements engineering process.  However, they do 

not explore how the quality of requirements affects the 

overall software quality.  In our work, we focus on the 

precision of each requirement rather than the quality of 

the overall requirements specification.  Instead of 

project success, we examine relationships between 

requirements precision and NaP. 

 

2.3. Performance requirements specification 
 

Performance requirements can be specified 

qualitatively or quantitatively.  Basili and Musa 

advocate that quantitative specification for the 

attributes of a final software product will lead to better 

software quality [4].  For performance requirements, 

Nixon suggests that both qualitative and quantitative 

specifications are needed, but different aspects are 

emphasized at different stages of development [16].   

A performance meta-model describes the elements 

of a performance concept.  Cortellessa [6] provides an 

overview of three performance meta-models, including 

UML Profile for Schedulability, Performance, and 

Time [17], Core Scenario Model [18], and Software 

Performance Engineering meta-model [19].  From 



these three meta-models, Cortellessa generalizes a 

software performance concept into three areas: 

software behavior, workload data, and resources data.  

Adapted from Cortellessa’s generalization, we rank the 

precision of performance requirements from four 

factors: subject, measure, environment, and workload.  

Section 3.2 provides the detail information for the 

ranking scheme. 

 

3. Performance requirements precision 

ranking scheme 
 

To compare the precision levels of performance 

requirements, we create a ranking scheme for 

performance requirements precision based on 

Performance Refinement and Evolution Model 

(PREM).  In this section, we introduce PREM and the 

performance requirements precision ranking scheme 

used in this study. 

 

3.1. Performance Refinement and Evolution 

Model 
 

PREM is a guideline for evolutionary performance 

requirements refinement.  A development team may use 

PREM to specify simple performance requirements 

early in the software lifecycle, and add more details in 

the performance requirements when the team gains 

more knowledge of the system performance.  PREM is 

designed for the specification of three categories of 

requirements: response time, throughput, and resource 

consumption.  PREM defines four levels of detail for a 

performance requirement.  The levels are summarized 

in Table 1. 

In PREM, the specification of a performance 

requirement starts at PREM-0, with a qualitative 

description.  The qualitative descriptions point out the 

performance focus in the software.  They serve as the 

starting points for requirements.  The stakeholders will 

refine or evolve the requirements to more precise 

specifications throughout the software development 

lifecycle. 

The development team refines a PREM-0 

requirement to the PREM-1 level by including a 

quantitative measure.  The performance measure needs 

to be meaningful and obvious to the customer.  After 

quantitative requirements are specified, the 

development team can discuss with the customer 

whether the specified performance is feasible and 

acceptable. 

In the PREM-2 level, more factors that can affect 

the performance are added to the requirements 

specification.  Such factors include workload and 

execution environment.  These factors can vary greatly 

in different deployment sites.  Furthermore, the 

workload can be unpredictable before the system is put 

in the real world [20], making the decision of 

computation resources difficult.  After the precise 

requirements are specified, they can be verified with 

performance prediction models such as a queueing 

network model.  If the performance expectation of a 

requirement is not feasible, the development team 

needs to negotiate with the customer for a more 

reasonable and practical requirement. 

Once the software system is in early release, such as 

a beta testing phase, continuously monitoring the 

performance can help us understand the workload of 

the system and how the workload affects the 

performance.  The performance requirements in the 

PREM-3 level describe the actual workload and 

execution environment in the production environment.  

Experiences show that usually two to twelve months 

are required to collect representative workload data [3].  

Even though PREM-3 requirements may be available 

late in the software development cycle, these 

requirements provide useful information if the software 

is going into a new release or is deployed in a new 

environment. 

 

3.2. Performance requirements precision 

ranking scheme 
 

Cortellesa generalizes a performance concept into 

three areas: software behavior, resources, and workload 

[6].  We adapted Cortellessa’s generalization, and rank 

the performance requirements precision from four 

factors. 

 Subject for which a performance requirement is 

specified, e.g. the elapsed time for online upgrade. 

Table 1. The goals of PREM at each level 

Level Goal 

PREM-0  Identify the performance focus. 

PREM-1 

 Specify and verify the 

quantitative performance 

measures. 

PREM-2 

 Specify the execution 

environment. 

 Estimate the workloads. 

 Verify the quantitative 

measures. 

PREM-3 

 Collect execution environment 

and workload information from 

the field. 

 Adjust the performance 

requirements. 

 



 Measure that describes the expectation for the 

performance of the software, e.g. 30 seconds. 

 Environment that describes the computational 

resources available in the runtime environment, e.g. 

the recommended hardware configuration. 

 Workload that specifies the demand intensity for the 

software, e.g. 20 devices that send 10 messages per 

second. 

For each factor, we define several non-overlapped 

precision ranks based on PREM.  We also assign a 

score for each rank.  Table 2 shows the precision ranks, 

scores, and associated PREM levels for each factor. 

In the ranking scheme, a subject can be a scenario, a 

function, or a scope.  A scenario is a linear series of 

events [2] that leads to specified performance.  A 

function is functionality the software system provides.  

A scope can be any subset of the software system and 

may including the whole system.  A scenario describes 

a sequence of user actions or software behaviors.  For 

example, “load the testing project in the controller → 

start the testing project → start the upgrade program 

from the in-field computer.”  A function describes one 

or more software behaviors or user/software 

interactions, e.g. “upgrading the firmware in the 

controller.”  A scope is a software component used in 

the system, e.g. “the firmware upgrade program.”   The 

whole system, if used as the subject of a requirement, is 

considered as a scope. 

 We rank a measure in two levels: quantitative and 

qualitative.  A quantitative measure is specified with a 

number or a range of numbers with a measurement unit.  

A qualitative measure is a textual description of the 

performance.  We consider the measure of a 

comparative requirement, such as “as fast as the last 

version,” as qualitative. 

We rank the environment factor based on its 

availability.  The environment of a comparative 

requirement is categorized as not specified.   

For the workload factor, the rank is based on 

whether a quantitative specification is available.  If a 

qualitative workload is specified, the defect reporter 

still needs to make assumptions on the workload 

information as with unspecified workloads.  Therefore, 

we rank qualitative and unspecified workloads with the 

same precision level.  We categorize the workload for a 

comparative requirement as qualitative. 

One may rank a comparative requirement based on 

its related requirement from an earlier version.  

However, the requirement from an earlier version may 

not be available.  Additionally the development team 

may not be able to use the same performance 

measurement approach on an earlier release.  Therefore, 

we rank comparative requirements as low precision in 

our scheme.  

 

4. Case study 
 

In this section, we provide details for the data 

collection and analysis steps used in this case study. 

 

4.1. Data collection details and limitations 
 

We collected and examined the defect reports from 

the case study subject.  The source of the defect reports 

included test failures, customer-reported problems, 

manager requests, and team tasks.  Due to the purpose 

of the study, we did not include the defect reports that 

were unrelated to the behaviors of the software under 

development.  For example, in this case study, the 

development team used the defect tracking system for 

task planning.  A defect report might describe the tasks 

the team planned to do, including features to add and 

updates to make.  We do not include such defect 

reports in our analysis, as they did not describe any 

anomalous behavior of the system. 

We cannot be sure whether a defect report is a NaP 

before it is closed, so we only included closed defect 

reports in the analysis.  A development team might 

defer the resolution for a defect report due to lack of 

information, resource constraints, or release time 

pressure.  Therefore, we cannot determine whether a 

deferred defect report is a NaP, and do not include 

these reports in our analysis. 

We classified a defect report as performance-related 

and non-performance-related.  We determine whether a 

defect is performance-related based on the symptom 

described in the defect report.  If a defect report 

describes a symptom of unsatisfactory response time, 

throughput, or resource consumption, we consider it as 

performance-related. A non-performance-related defect 

may be caused by performance-related issues.  For 

Table 2. PR precision ranking scheme 

Factor 
Precision Ranks 

(Score) 

PREM 

Levels 

Subject 

Scenario (2) 

Function (1) 

Scope (0) 

 

 

 

Measure 
Quantitative (1) 1 and above 

Qualitative (0) 0 

Environment 
Specified (1) 2 and above 

Unspecified (0) 0 – 1 

Workload 

Quantitative (1) 2 and above 

Qualitative or 

unspecified (0) 
0 – 1 

 



example, an operation may fail because a dependent 

device does not respond in time.  Such a defect is 

manifested as  a functional problem. Therefore, we do 

not consider the defect as performance–related.  The 

only exception is an unexpected program stop caused 

by insufficient memory.  If a defect report states that 

insufficient memory caused an unexpected crash, we 

consider the defect as performance-related. 

 

4.2. Analysis steps 
 

Our analysis requires information on the traceability 

of defects to requirements.  The NaP occurrence rate 

for a set of defect reports is calculated by dividing the 

number of NaP by the number of defect reports in the 

set.  The confirmed rate of the same set of defect 

reports is (1 – NaP occurrence rate).  We then apply a 

chi-square test to examine whether the effect of 

requirements availability is significant.  To protect 

proprietary information, we only report proportional 

results in this paper.  However, actual numbers were 

used in the statistical analysis. 

We examine the effect of performance requirements 

precision on the occurrence rate of NaP from four 

factors: subject, measure, environment, and workload.  

To analyze the effect of each factor, we categorize the 

requirements based on their precision levels.  We use 

the chi-square test to examine the significance of the 

relationship between NaP occurrence and the precision 

of each performance factor.  To analyze the effect of 

multiple factors, we also use the summation of the 

precision scores from these factors as an overall 

precision score.  We use a linear-by-linear association 

test to examine the relationship between the NaP 

occurrence rate and the overall performance 

requirements precision levels. 

One should use appropriate statistical analysis 

approach based on the case study data to draw 

conclusions.  The data in this case study is categorical 

in nature.  Agresti provides extensive review of 

categorical data analysis methods in his book [1]. 

 

5. Case Study Context 
 

We conducted a case study on a firmware 

development project for a real-time embedded control 

module from ABB Inc.  This firmware supports a line 

of controllers with different computation and memory 

capacities.  A controller is a processing unit that can 

control other devices, e.g. motors or turbines, and 

overall processes, e.g. power generation.  A controller 

is highly configurable and is capable of running a large 

variety of processes, from small factories to large 

power plants. 

The firmware was implemented as a hybrid of 

procedurally designed C code and object-oriented 

designed C++ code.  The development team consisted 

of approximately eighty developers and twenty testers.  

The development and testing departments are 

distributed around the world. 

This controller module has been used in the field for 

almost ten years.  When we started this case study, the 

firmware had been through five major releases.  We 

collected the defects that were found on the fifth major 

release. 

In this case study, the source of the defect reports 

includes management, globally distributed testing 

teams, and customer failure reports.  Many internal 

stakeholders are involved within the development team 

in this case study.  Before a defect report is designated 

as a NaP, developers, management, and testers may 

participate in the investigation.  However, the final 

decision makers are product line management and the 

main influence of their decision is the development 

department. 

 

6. Results and Discussion 
 

In August 2007, we collected the defect reports and 

documented requirements for a real-time embedded 

control module from ABB Inc.  We analyzed more than 

1,500 defect reports in this study.  We also collected 33 

documented performance requirements.  In this section, 

we present and discuss the results of the analysis. 

 

6.1. NaP and confirmed defect reports 
 

Within the collected defects, 21.20% were 

designated as NaP.  In this section, we explore the 

differences between NaP and confirmed defect reports, 

from the perspectives of communication, defect 

resolution time, and defect severity.  We cannot 

measure the exact amount of communication solely 

from defect reports. Therefore, we use the number of 

informational notes added to a defect report as a 

surrogate measure of the amount of communication that 

occurred concerning the defect.  The approximation is 

reasonable, as many of the notes represented weekly or 

monthly status update meetings by key internal 

stakeholders throughout the development project.  We 

also cannot measure the defect resolution time solely 

from defect reports.  We use the elapsed time that the 

defect remained unresolved to demonstrate the defect 

report resolution time.  Defect severity is ranked from 

five to one with five being the highest level.  Table 3 



summarizes the differences between NaP and 

confirmed defect reports in this study. 

 

6.1.1. Communication.  When the development team 

analyzed a defect report, team members added notes to 

the defect report to exchange opinions and ideas with 

each other while product management added notes to 

accept, reject, or comment on key issues.  While we 

cannot measure the exact amount of communication the 

development team used to resolve each defect, we use 

the number of notes the team members added to the 

defect report as an approximation for this measure.  

The results show that, on average, developers use more 

notes in confirmed defect reports than in NaPs.  We 

choose Wilcoxon-Mann-Whitney test to examine the 

distribution difference between NaP and Confirmed 

defect reports.  The result shows that the difference 

between NaPs and confirmed defect reports, in terms of 

the number of notes, is statically significant (P = 0.01).  

To estimate the magnitude of difference, we use 

Hodges-Lehmann Estimation.  However, the 

confidence interval on the magnitude of difference is 

0.00, indicating that the sample variation is too high to 

make a good estimate.  Therefore, we cannot estimate 

the difference between the numbers of notes used in 

NaPs and confirmed reports. 

 

6.1.2. Resolution time.  To estimate the amount of 

time needed to resolve a defect report, we use the 

elapsed time for the defect report from the submission 

of the report to the time it was disposed.  We only 

include reports with severity levels four and five, and 

with an elapsed time of less than 60 days.  The reason 

for only including these reports is that low severity 

defects were often ignored to provide timely response 

to more critical defects.  Additionally, if a defect 

remained open for more than 60 days, either the 

priority for fixing the defect was low or the defect was 

not easily repeatable.  In either case, the defect elapsed 

time does not accurately reflect the defect resolution 

time.  In this case study, the average resolution time for 

a confirmed defect report is longer than that for a NaP.  

However, the elapsed time for a confirmed defect also 

includes the time to validate whether the defect has 

been fixed.  For a NaP, because the developers do not 

change the software, detailed validation is unnecessary 

and only product management agreement is required.  

We use Hodges-Lehmann Estimation to examine the 

difference of the time difference for confirmed and 

NaP defect resolution.  The result shows that, at 95% 

confidence level, confirmed defect report elapsed time 

is one to seven days longer than NaP elapsed time. 

 

6.1.3. Defect severity.  In this case study, the average 

severity of a NaP defect is lower than that of a 

confirmed defect (z-test,  = 0.05).  When a defect 

report shows higher severity, the development team 

tends to be more conservative before designating the 

defect report as NaP.  Therefore, we expected that the 

average severity level for NaP to be lower than that for 

confirmed defect reports.  The results from this case 

study show the same trend. 

 

6.1.4. Summary.  The results from this case study 

show that the amount of resolution time is reasonably 

at the same level as confirmed defect reports, even 

though the average severity of NaP is lower,.  

Furthermore, designating a defect report as a NaP, 

which account for 21.20% of defect reports, did not 

help the team improve the overall software quality.  

The efficiency of the development team can be 

improved if we lower the NaP occurrence rate. 

 

6.2. Performance and non-performance defects 
 

In the case study, only 2.6% of defect reports are 

related to performance.  Table 4 summarizes the 

comparison between performance and non-

performance defect reports.  In this case study, the 

average number of notes used in performance defect 

reports is higher than in non-performance defect 

reports.  The difference is statistically significant 

(Wilcoxon-Mann-Whitney test, P < 0.01).  The 

observed average elapsed time for performance defect 

reports is longer than for non-performance defect 

Table 3. NaP and confirmed defects comparison 

 NaP Confirmed 

Communication 

( as # of Notes) 

Avg. 2.52 2.92 

Var. 4.41 6.11 

Resolution Time 

(as Elapsed Time, Days) 

Avg. 11.01 14.54 

Var. 230.88 206.02 

Defect Severity 
Avg. 2.53 2.73 

Var. 0.78 0.74 

 

Table 4. Performance and non-performance defect 

comparison 

 Performance Non-Perf 

Communication 

( as # of Notes) 

Avg. 4.62 2.85 

Var. 15.79 5.72 

Resolution 

Time 

(as Elapsed 

Time, Days) 

Avg. 21.35 13.61 

Var. 394.86 207.46 

Defect Severity 
Avg. 2.96 2.68 

Var. 0.41 0.76 

NaP Rate  36.69% 20.75% 

 



reports.  However, the difference is not statistically 

significant (Wilcoxon-Mann-Whitney test, P = 0.17).  

The average severity level of performance defect 

reports is higher than of non-performance defect 

reports (z-test,  = 0.05).  The NaP occurrence rate is 

also statistically higher for performance defect reports 

(chi-square test,  = 0.05). 

The control module in this case study is used in real-

time systems.  Responsive performance is required for 

the module to function properly.  The higher average 

severity level reflects the team’s emphasis on 

performance.  The result also shows that performance 

defect report resolution required more time and team 

communication.  Therefore, a performance defect 

report is likely more expensive to resolve than a non-

performance defect report.  The development team 

could have saved a lot of resources if the NaP 

occurrence rate were lower for performance defect 

reports.  

 

6.3. Performance requirements availability 

and NaP occurrence rates 
 

We could only identify the source of requirements 

documents for 50% of the performance defects.  Table 

5 shows the NaP occurrence rates for performance 

defects reports with and without documented 

requirements.  For this analysis, the explanatory 

variable is the availability of requirements, and the 

response variables are the numbers of NaP and 

confirmed defect reports.  The defects with specified 

requirements have a higher NaP occurrence rate in this 

case study.  The difference is not statistically 

significant (chi-square test,  = 0.05).  

We expected the NaP occurrence rate to be lower 

for defects that are traceable to documented 

requirements.  However, the results show the opposite 

trend, although not statistically significant.  In this case 

study, the higher NaP occurrence rate for performance 

defects with specified requirements can be explained 

with two reasons.  First, the subject of the case study is 

a mature product.  The development team knew the 

reasonable performance for the control module.  When 

a stakeholder reports a performance defect, 

documented and implicit performance requirements 

play equally important roles.  Second, the documented 

requirements did not provide enough precision.  

Therefore, a stakeholder may file a defect report based 

on a wrong assumption.  We discuss the effect of 

performance requirements precision in the next 

subsection. 

 

6.4. Performance requirements precision and 

NaP occurrence rates  
 

We analyzed the relationship between the 

performance requirements precision and NaP 

occurrence rate with two approaches using the ranking 

scheme described in Section 3.2.  First, we analyzed 

the effect of each factor in the ranking scheme to see 

how each performance factor affects NaP occurrence 

rate.  Second, we analyzed the effect of combined 

factors to show how combined factors affect NaP 

occurrence rate. 

 

6.4.1. Single factor analysis.  For the performance 

defects with related, documented requirements, we 

calculated their NaP occurrence rates based on the 

precision of the related requirements.  We rank the 

precision of performance requirements from four 

factors: subject, measure, environment, and workload.  

In this analysis, the explanatory variables are the 

precision ranks for each factor, and the response 

variables are the numbers of NaP and confirmed defect 

reports.  Table 6 shows the NaP occurrence rates for 

defects reported against the different ranks of 

requirements precisions, grouped by performance 

factors.  Workload shows a statistically significant 

effect of requirements precision on the NaP occurrence 

rate (chi-square test,  = 0.05).  The effects of the other 

three factors are not statistically significant. 

If, in a performance factor, the NaP occurrence rate 

is lower for the higher precision rank, the precision of 

documented requirements plays an important role when 

the development team decides whether a defect report 

is NaP.  In this case study, only the subject and 

workload factors demonstrated this trend.  The 

development team could lower the NaP rate by 

Table 5. Availability of PR and NaP occurrence 

rates 
 NaP Confirmed 

With Req 36.36% 63.64% 

Without Req 34.78% 65.22% 

Total 35.56% 64.44% 

 

Table 6. PR precision and NaP occurrence rates 

Factor Precision NaP Confirmed 

Subject 
Function 25.00% 75.00% 

Scope 50.00% 50.00% 

Measure 
Quantitative 44.44% 55.56% 

Qualitative 30.77% 69.23% 

Environment 
Specified 33.33% 66.67% 

NA 38.46% 61.54% 

Workload 
Quantitative 0% 100.00% 

NA 47.06% 52.94% 

 



specifying more precise specifications for these two 

factors.  On the other hand, the precise specification of 

measure and environment factors did not lower the NaP 

occurrence rate.  The decision of whether a defect 

report is a NaP might have come from resources other 

than the requirements.  In this case study, some testing 

documents provided very detailed description of the 

testing environment.  Without documented 

requirements for the runtime environment, the team 

could still use the information from the testing 

documents to determine whether a defect report is NaP. 

 

6.4.2. Cross-factor analysis.  We use the summation 

of the precision scores from the four factors to quantify 

the overall precision of a performance requirement, and 

find out the NaP occurrence rate for each overall 

precision level.  Additionally, we calculated the 

precision score for a performance requirement from the 

two important factors identified in the single factor 

analysis.  In this analysis, the explanatory variables are 

the precision scores, and the response variables are the 

number of NaP and confirmed defect reports.  The 

results are shown in Table 7.  A higher overall 

precision score lowers the NaP occurrence rate.  

However, the effect is not statistically significant 

(linear-by-linear association test,  = 0.05).  A higher 

precision score from the subject and workload factors 

also lowers the NaP occurrence rate for the related 

defect reports.  This effect is statistically significant 

(linear-by-linear association test,  = 0.05).  The 

results again show that, for this case study, 

specification of precise subject and workload 

information with performance requirements is 

statistically related to a lower NaP occurrence rate. 

6.4.3. Threats to validity.  Construct validity involves 

establishing the measures for the concepts being 

measured [22].  We use a coarse-grained ranking 

scheme to evaluate the precision levels of performance 

requirements.  In each performance factor, we only 

define two or three precision levels.  Therefore, even if 

two requirements specify a particular performance 

factor at the same level, they may provide different 

amounts of details.  A finer-grained ranking scheme 

can yield more detailed information on the 

requirements precision than the ranking scheme 

proposed in this paper.  However, we believe a finer-

grained ranking scheme needs to be domain-specific.  

The benefit of the ranking scheme proposed in this 

paper is the wide applicability.  Any performance 

requirement can be evaluated with the precision 

ranking scheme. 

Internal validity in this case study concerns the 

degree of cause-effect relationship between the 

precision levels of a requirement and the related NaPs.  

The cause of NaPs can be very complicated.  Factors 

such as implicit knowledge and lexical correctness of 

requirements specification may also cause NaPs.  We 

only analyzed the effect of performance requirement 

preciseness in this case study.  The results also suggest 

that factors other than requirements preciseness played 

an important role for the cause of NaPs.  We will need 

further investigations to find out other causes of NaPs 

and their effects on NaP occurrence rate. 

External validity is the degree to which this case 

study can be generalized.  The case study discussed in 

this paper is the sixth release from the same 

organization.  We believe we can find similar results 

from earlier releases.  However, we do not know if 

ABB software systems are representative of all 

industrial systems.  Other organizations may use the 

results reported in this paper as a starting point for their 

own investigations.  Although the effect of 

performance requirements precision on NaP occurrence 

rates may vary among development teams, the degree 

of the effect provides information on performance 

requirements improvement.  We are developing an 

approach to improve performance requirements based 

on the degrees of the effects of performance 

requirement precision on NaP occurrence rates. 

 

6.5. Additional observations  
 

The customer is the ultimate judge of the software 

quality [8].  In this case study, only 1.45% of the defect 

reports were submitted by the customer.  The customer 

reported only one performance-related defect.  The low 

number of performance defect reported by the 

customer showed the high maturity of this software 

product in the regard of performance.  Furthermore, 

this performance defect was not related to any defect 

that the development team designated as NaP during 

development.   

Although not observed in this case study, the 

customer may file a problem report that the 

development team originally consider as NaP before 

release.  The NaPs that turn out to be real problems 

after release reveal misunderstandings between the 

Table 7. Precision scores and NaP occurrence rates 

Score 
NaP Occurrence Rate 

Overall Subject + Workload 

0 44.44% 50.00% 

1 33.33% 42.86% 

2 NA 0% 

3 37.50%  

4 0%  

 



customer and the development team, and can be 

prevented with rigorous requirements elicitation 

activities.  On the other hand, our focus in this paper is 

on requirements misinterpretation within the 

development team.  The development can use the 

results from this case study to prevent such 

misinterpretations with more specific requirements.  

The development team fixed most of the customer-

reported defects, including the one related to 

performance, in service packs.  The team designated 

16.67% of the customer defect reports as NaPs.  We 

observed two themes in the customer NaPs.  First, the 

customer had incorrect expectations due to 

misunderstandings of terminologies.  For example, a 

customer reported that some messages in the “event 

list” did not appear in the “event and alarm list.”  

However, the event and alarm list was designed to filter 

out some particular messages, while the event list 

shows all messages.  These types of misunderstandings 

were resolved with documentation changes.  Second, 

the customer used an inappropriate configuration in the 

control module.  For example, a customer reported that 

some feature of the control module did not work with 

their customized program.  After investigation, the 

development team found out that the customized 

program was the cause of the problem.  These types of 

customer defects are resolved by customer support. 

Among the performance defect reports with 

traceable requirements we collected in this case study, 

we found that 45% of defects were opened against the 

requirements that used scopes to specify their subjects, 

which accounted for 14.81% of the total performance 

requirements.  A requirement specified with a scope is 

more general than a requirement specified with a more 

precise subject.  However, if a defect is opened against 

a requirement with a lower precision subject, the defect 

is more prone to be designated as a NaP, as shown in 

the case study results.  In this case study, 62.50% of the 

NaPs were designated as NaPs because the subject 

described in the defect report is more precise than 

specified in the related requirements.  The development 

team closed such NaPs because they were 

“exceptions,” as stated in some notes in the defect 

reports.  However, those NaPs could have been 

avoided if the “exceptions” were specified in the 

requirements.  In our previous work [11], we present a 

systematic approach to integrate such information into 

the requirements for future software releases. 

 

7. Conclusion and lessons learned 
 

In this paper, we explore the relationships between 

the quality of performance requirements and NaP 

occurrence rate.  We examined defect reports in this 

case study, and found out that a NaP was as expensive 

to resolve as a confirmed defect report.  Additionally, 

the NaP occurrence rate was significantly higher for 

performance-related defect reports than for non-

performance-related defect reports.  Designating a 

defect report as NaP does not improve the software 

quality.  Therefore, reducing the NaP occurrence rate 

can save the team the time required to resolving such 

defect reports.  With complete and precise 

requirements, the defect submitter can avoid reporting 

the NaP at all. 

We first examined the effect of the availability of 

performance requirements.  The results show that the 

NaP occurrence rate was similar for the defects with 

and without traceable performance requirements.  

Although the availability of performance requirements 

did not lower the NaP occurrence rate, this result 

suggests that the specified requirements were not 

precise enough for the team to determine whether a 

defect report is a NaP. 

We then used a performance requirements precision 

ranking scheme based on PREM to quantify the 

precision of the performance requirements.  This case 

study shows that the performance requirements 

specified with quantitative workloads had significantly 

lower NaP occurrence rate than those without.  

Performance requirements with a function description 

also had lower NaP occurrence rate than those 

specified with just a scope, although the difference was 

not statistically significant. A cross-factor analysis 

shows that the NaP occurrence rate had a lowering 

trend when the performance requirements were more 

precise.  If we only consider the precision of the 

subject and workload, the effect of performance 

requirements precision on NaP occurrence rate was 

statistically significant. 

In this case study, the precision for some 

performance factors did not show statistically 

significant effects on NaP occurrence rate.  However, 

comparing the NaP occurrence rates for the 

requirements with a variety of precisions shows a 

direction for requirements process improvement.  

Documented requirements specification is not the only 

source for the development team to determine whether 

a defect report is a NaP. If a development team 

depends on the experience more than documented 

requirements to determine whether a defect report is 

NaP, we might observe a low NaP occurrence rate of 

the defect reports related to requirements specified with 

a low precision level.  Incorrectly designed testing 

environment or a wrong testing tool may lead to 

erroneous testing results, and the tester might create 



defect reports that describe false-positive problems.  

Therefore, an overall high NaP occurrence rate may 

also indicate a deficiency in the information available 

to testing teams. 

Our previous work [11] provides a systematic 

approach to integrate failure reports from the customer 

into requirements specifications.  In this paper, we 

focus on the analysis of the defects during development.  

We believe the investigation of NaPs can improve the 

communications with the customer.  However, we do 

not have the data related to customer communication in 

this case study.  We will continue our work in two 

directions.  First, we have collected data from several 

industrial software projects.  We will apply similar 

analysis on these projects.  Second, the NaP occurrence 

rate comparison presented in this paper also shows the 

direction for requirements improvement.  We will build 

and validate a requirements improvement framework 

based on NaP occurrence rate comparison. 

 

8. References 
 
[1] Agresti, A., Categorical Data Analysis 2nd Edition, 

New York, NY, Wiley Inter-Science, 2002. 

[2] Alspaugh, T. A., A. I. Antón, T. Barnes, and B. W. 

Mott, "An Integrated Scenario Management Strategy," 

in Proceedings of the 1999 International Symposium 

on Requirements Engineering, pp. 142-149, Ireland, 

Jun 1999. 

[3] Avritzer, A., J. Kondek, D. Liu, and E. J. Weyuker, 

"Software Performance Testing Based on Workload 

Characterization," in Proceedings of the 3rd 

International Workshop on Software and Performance, 

pp. 17-24, Rome, Italy, Jul 2002. 

[4] Basili, V. R. and J. D. Musa, "The Future Engineering 

of Software: A Management Perspective," IEEE 

Computer, vol. 24, no. 9, pp. 90-96, Sep 1991. 

[5] Chillarege, R., I. S. Bhandari, J. K. Chaar, M. J. 

Halliday, D. S. Moebus, B. K. Ray, and M.-Y. Wong, 

"Orthogonal Defect Classification -- A Concept for In-

Process Measurements," IEEE Transactions on 

Software Engineering, vol. 18, no. 11, pp. 943-956, 

Nov 1992. 

[6] Cortellessa, V., "How Far Are We from the Definition 

of a Common Software Performance Ontology," in 

Proceedings of the 5th International Workshop on 

Software and Performance, pp. 195-204, Illes Balears, 

Spain, Jul 2005. 

[7] El Eman, K. and N. H. Madhavji, "Measuring the 

Success of Requirements Engineering Processes," in 

Proceedings of the 2nd International Symposium on 

Requirements Engineering, pp. 204-211, York, UK, 

Mar 1995. 

[8] Fox, C. and W. Frakes, "The Quality Approach: Is It 

Delivering?," Communications of the ACM, vol. 40, no. 

6, pp. 24-29, Jun 1997. 

[9] Ho, C.-W. and L. Williams, "Deriving Performance 

Requirements and Test Cases with the Performance 

Refinement and Evolution Model (PREM)," 

Department of Computer Science, North Carolina State 

University Technical Report No. TR-2006-30, Nov 

2006. 

[10] Ho, C.-W. and L. Williams, "Developing Software 

Performance with the Performance Refinement and 

Evolution Model," in Proceedings of the 6th 

International Workshop on Software and Performance, 

pp. 133-136, Buenos Aires, Argentina, Feb 2007. 

[11] Ho, C.-W., L. Williams, and A. I. Antón, "Improving 

Performance Requirements Specifications from Field 

Failure Reports," in Proceedings of the 15th 

International Requirements Engineering Conference, 

pp. 79-88, New Delhi, India, Oct 2007. 

[12] IEEE, IEEE Std. 982.2-1988: IEEE Guide for the Use 

of IEEE Standard Dictionary of Measures to Produce 

Reliable Software, 1988. 

[13] IEEE, IEEE Std 830-1998: IEEE Recommended 

Practice for Software Requirements Specifications, 

1998. 

[14] Kamata, M. I. and T. Tamai, "How Does Requirements 

Quality Relate to Project Success or Failure?," in 

Proceedings of the 15th International Requirements 

Engineering Conference, pp. 69-78, New Delhi, India, 

Oct 2007. 

[15] Lutz, R. R. and I. C. Mikulski, "Resolving 

Requirements Discovery in Testing and Operations," in 

Proceedings of the 11th IEEE International 

Requirements Engineering Conference, pp. 33-41, 

Monterey Bay, CA, Sep 2003. 

[16] Nixon, B. A., "Managing Performance Requirements 

for Information Systems," in Proceedings of the 1st 

International Workshop on Software and Performance, 

pp. 131-144, Santa Fe, NM, Oct 1998. 

[17] OMG, UML Profile for Schedulability, Performance, 

and Time Version 1.1, 2005. 

[18] Petriu, D. B. and M. Woodside, "A Metamodel for 

Generating Performance Models from UML," in 

Proceedings of the 7th International Conference of the 

UML, pp. 41-53, Lisbon, Portugal, Oct 2004. 

[19] Smith, C. U. and C. M. Lladó, "Performance Model 

Interchange Format (PMIF 2.0): XML Definition and 

Implementation," in Proceedings of the 1st 

International Conference on the Quantitative 

Evaluation of Systems, pp. 38-47, Enschede, The 

Netherlands, Sep 2004. 

[20] Trott, B., "Victoria's Secret for Webcasts Is IP 

Multicasting," InfoWorld, Aug 1999. 

[21] Wasson, K. S., K. N. Schmid, R. R. Lutz, and J. C. 

Knight, "Using Occurrence Properties of Defect Report 

Data to Improve Requirements," in Proceedings of the 

13th International Requirements Engineering 

Conference, pp. 253-262, Paris, France, Aug 2005. 

[22] Yin, R. K., Case Study Research: Design and Method, 

3rd Edition, Sage Publications, 2003. 

 

 
  


