
Examining the Relationships between Performance Requirements and

“Not a Problem” Defect Reports

Chih-Wei Ho
1
, Laurie Williams

2
, Brian Robinson

3

1,2
Department of Computer Science, North Carolina State University

1
dright@acm.org,

2
williams@csc.ncsu.edu

3
ABB Inc.

brian.p.robinson@us.abb.com

Abstract

Missing or imprecise requirements can lead

stakeholders to make incorrect assumptions. A “Not a

Problem” defect report (NaP) describes a software

behavior that a stakeholder regards as a problem

while the developer believes this behavior is

acceptable and chooses not to take any action. As a

result, a NaP wastes the time of the development team

because resources are spent analyzing the problem but

the quality of the software is not improved.

Performance requirements specification and analysis

are instance-based. System performance can change

based upon the execution environment or usage

patterns. To understand how the availability and

precision of performance requirements can affect NaP

occurrence rate, we conducted a case study on an

embedded control module. We applied the

Performance Refinement and Evolution Model to

examine the relationship between each factor in the

performance requirements and the corresponding NaP

occurrence rate. Our findings show that precise

specification of subjects or workloads lowers the

occurrence rate of NaPs. Precise specification of

measures or environments does not lower the

occurrence rate of NaPs. Finally, the availability of

performance requirements does not affect NaP

occurrence rate in this case study.

1. Introduction

Missing or imprecise requirements can lead

stakeholders to make a variety of assumptions about

the correct behaviors of the system. A defect
1
 report

describes a software behavior that a stakeholder

1 A defect is a product anomaly [12].

regards as an anomaly. However, the development

team may consider this software behavior acceptable

and choose not to take any action. The development

team designates such a defect report as “Not a

Problem.” Such decisions are usually made by

management, who determine the features to be included

in the software product, after discussions among the

different stakeholders involved in the development

project. A “Not a Problem” defect report, henceforth

NaP, wastes the time of the development team and

other key stakeholders since resources are spent on

analyzing the problem but, in the end, the quality of the

software is not improved.

The specification and analysis for performance

requirements, such as response time, throughput, and

resource consumption, is instance-based [17]. The

performance described in requirements documents

typically applies to the specified workloads and

computation environment. Exhausting all possible

conditions for performance requirements is nearly

impossible and infeasible. A defect report may

describe the system performance under conditions that

are different from those specified in the requirements.

In this situation, the development team can only decide

whether such a defect report is a NaP based on

experience. With complete and precise requirements,

the defect submitter could avoid reporting a NaP

entirely.

Our objective is to examine how missing or

imprecise performance requirements affect the

occurrence rate of NaPs related to software

performance. To assess the precision level of a

requirement, we developed a ranking scheme for the

precision of performance requirements based on the

Performance Refinement and Evolution Model (PREM)

[9, 10]. We categorized performance requirements

based on their precision level using this ranking

scheme. Then we compared the NaP occurrence rates

for the defect reports related to the performance

requirements in different precision levels.

We conducted a case study to answer the following

research questions: 1. What is the cost of investigating

NaPs compared to confirmed defects? 2. Are

performance-related defects more likely to be

designated as NaPs than non-performance-related

defects? 3. Do performance requirements specified

with higher precision levels have lower NaP occurrence

rates? The subject of this case study is a real-time

embedded control module from ABB Inc. We

collected the documented requirements and defect

reports from a firmware development project for this

module. Reducing the NaP occurrence rate can

improve the efficiency of the development team by

saving the time and resources spent on analyzing these

defect reports. In this paper, we present the results

from this case study, and share our findings of NaP

occurrence rate comparisons.

The rest of this paper is organized as follows.

Section 2 provides the related work for this study;

Section 3 presents PREM and the performance

requirements precision ranking scheme; Section 4 gives

the data collection criteria and the analysis method we

used in the case study; Section 5 shows the context of

the case study; Section 6 provides the results and

discussions of the case study; we conclude this paper

and share the lesson learned in Section 7.

2. Related work

This section provides the related work for this study,

including defect analysis, effects of requirements

quality, and software performance requirements

specification.

2.1. Defect analysis

A defect report describes anomalies found in a

software system. Defect analysis can provide us

insights into the problems of the software development

process. In the Orthogonal Defect Classification (ODC)

[5] approach, the analysis of the defect attributes shows

the progress of a software project and the effectiveness

and completeness of the verification process.

Defect analysis can also be used to improve

requirements specifications. Wasson et al. [21] use the

failure reports created by testers to identify problematic

phrases that occur in requirements documents. In our

previous work [11], we demonstrate a process to

improve performance requirements specifications from

failure reports. Lutz and Mikulski [15] use an adapted

ODC approach to analyze how requirements discovery

is resolved in testing and operations. The findings of

their work suggest that requirements misunderstandings

resolved during testing are often related to

communication difficulties and subtle interface issues.

Additionally, a false-positive defect report, which is a

defect report that is resolved without any change in the

software, provides potential information for

requirements misunderstanding during operation. In

our work, a NaP may result from requirements

misunderstandings during software development. We

examine how precise performance requirements can

reduce the occurrence of NaPs.

2.2. Effects of requirements quality

Kamata and Tamai [14] examined the effect of

requirements quality on project success and failure for

32 projects. In their work, the requirements quality

was evaluated by the software quality assurance team

based on the structure of IEEE Recommended Practice

for Software Requirements Specifications [13]. The

results of their study show that project success is

related to requirements specifications. In particular, if

the purpose, overview, and general context are well

written, the project tends to finish on time and within

budget. El Emam and Madhavji [7] propose to use the

quality of requirements architecture and the quality of

cost/benefits analysis, including 14 measures, in the

requirements documents as the measure for successful

requirements engineering process. However, they do

not explore how the quality of requirements affects the

overall software quality. In our work, we focus on the

precision of each requirement rather than the quality of

the overall requirements specification. Instead of

project success, we examine relationships between

requirements precision and NaP.

2.3. Performance requirements specification

Performance requirements can be specified

qualitatively or quantitatively. Basili and Musa

advocate that quantitative specification for the

attributes of a final software product will lead to better

software quality [4]. For performance requirements,

Nixon suggests that both qualitative and quantitative

specifications are needed, but different aspects are

emphasized at different stages of development [16].

A performance meta-model describes the elements

of a performance concept. Cortellessa [6] provides an

overview of three performance meta-models, including

UML Profile for Schedulability, Performance, and

Time [17], Core Scenario Model [18], and Software

Performance Engineering meta-model [19]. From

these three meta-models, Cortellessa generalizes a

software performance concept into three areas:

software behavior, workload data, and resources data.

Adapted from Cortellessa’s generalization, we rank the

precision of performance requirements from four

factors: subject, measure, environment, and workload.

Section 3.2 provides the detail information for the

ranking scheme.

3. Performance requirements precision

ranking scheme

To compare the precision levels of performance

requirements, we create a ranking scheme for

performance requirements precision based on

Performance Refinement and Evolution Model

(PREM). In this section, we introduce PREM and the

performance requirements precision ranking scheme

used in this study.

3.1. Performance Refinement and Evolution

Model

PREM is a guideline for evolutionary performance

requirements refinement. A development team may use

PREM to specify simple performance requirements

early in the software lifecycle, and add more details in

the performance requirements when the team gains

more knowledge of the system performance. PREM is

designed for the specification of three categories of

requirements: response time, throughput, and resource

consumption. PREM defines four levels of detail for a

performance requirement. The levels are summarized

in Table 1.

In PREM, the specification of a performance

requirement starts at PREM-0, with a qualitative

description. The qualitative descriptions point out the

performance focus in the software. They serve as the

starting points for requirements. The stakeholders will

refine or evolve the requirements to more precise

specifications throughout the software development

lifecycle.

The development team refines a PREM-0

requirement to the PREM-1 level by including a

quantitative measure. The performance measure needs

to be meaningful and obvious to the customer. After

quantitative requirements are specified, the

development team can discuss with the customer

whether the specified performance is feasible and

acceptable.

In the PREM-2 level, more factors that can affect

the performance are added to the requirements

specification. Such factors include workload and

execution environment. These factors can vary greatly

in different deployment sites. Furthermore, the

workload can be unpredictable before the system is put

in the real world [20], making the decision of

computation resources difficult. After the precise

requirements are specified, they can be verified with

performance prediction models such as a queueing

network model. If the performance expectation of a

requirement is not feasible, the development team

needs to negotiate with the customer for a more

reasonable and practical requirement.

Once the software system is in early release, such as

a beta testing phase, continuously monitoring the

performance can help us understand the workload of

the system and how the workload affects the

performance. The performance requirements in the

PREM-3 level describe the actual workload and

execution environment in the production environment.

Experiences show that usually two to twelve months

are required to collect representative workload data [3].

Even though PREM-3 requirements may be available

late in the software development cycle, these

requirements provide useful information if the software

is going into a new release or is deployed in a new

environment.

3.2. Performance requirements precision

ranking scheme

Cortellesa generalizes a performance concept into

three areas: software behavior, resources, and workload

[6]. We adapted Cortellessa’s generalization, and rank

the performance requirements precision from four

factors.

 Subject for which a performance requirement is

specified, e.g. the elapsed time for online upgrade.

Table 1. The goals of PREM at each level

Level Goal

PREM-0  Identify the performance focus.

PREM-1

 Specify and verify the

quantitative performance

measures.

PREM-2

 Specify the execution

environment.

 Estimate the workloads.

 Verify the quantitative

measures.

PREM-3

 Collect execution environment

and workload information from

the field.

 Adjust the performance

requirements.

 Measure that describes the expectation for the

performance of the software, e.g. 30 seconds.

 Environment that describes the computational

resources available in the runtime environment, e.g.

the recommended hardware configuration.

 Workload that specifies the demand intensity for the

software, e.g. 20 devices that send 10 messages per

second.

For each factor, we define several non-overlapped

precision ranks based on PREM. We also assign a

score for each rank. Table 2 shows the precision ranks,

scores, and associated PREM levels for each factor.

In the ranking scheme, a subject can be a scenario, a

function, or a scope. A scenario is a linear series of

events [2] that leads to specified performance. A

function is functionality the software system provides.

A scope can be any subset of the software system and

may including the whole system. A scenario describes

a sequence of user actions or software behaviors. For

example, “load the testing project in the controller →

start the testing project → start the upgrade program

from the in-field computer.” A function describes one

or more software behaviors or user/software

interactions, e.g. “upgrading the firmware in the

controller.” A scope is a software component used in

the system, e.g. “the firmware upgrade program.” The

whole system, if used as the subject of a requirement, is

considered as a scope.

 We rank a measure in two levels: quantitative and

qualitative. A quantitative measure is specified with a

number or a range of numbers with a measurement unit.

A qualitative measure is a textual description of the

performance. We consider the measure of a

comparative requirement, such as “as fast as the last

version,” as qualitative.

We rank the environment factor based on its

availability. The environment of a comparative

requirement is categorized as not specified.

For the workload factor, the rank is based on

whether a quantitative specification is available. If a

qualitative workload is specified, the defect reporter

still needs to make assumptions on the workload

information as with unspecified workloads. Therefore,

we rank qualitative and unspecified workloads with the

same precision level. We categorize the workload for a

comparative requirement as qualitative.

One may rank a comparative requirement based on

its related requirement from an earlier version.

However, the requirement from an earlier version may

not be available. Additionally the development team

may not be able to use the same performance

measurement approach on an earlier release. Therefore,

we rank comparative requirements as low precision in

our scheme.

4. Case study

In this section, we provide details for the data

collection and analysis steps used in this case study.

4.1. Data collection details and limitations

We collected and examined the defect reports from

the case study subject. The source of the defect reports

included test failures, customer-reported problems,

manager requests, and team tasks. Due to the purpose

of the study, we did not include the defect reports that

were unrelated to the behaviors of the software under

development. For example, in this case study, the

development team used the defect tracking system for

task planning. A defect report might describe the tasks

the team planned to do, including features to add and

updates to make. We do not include such defect

reports in our analysis, as they did not describe any

anomalous behavior of the system.

We cannot be sure whether a defect report is a NaP

before it is closed, so we only included closed defect

reports in the analysis. A development team might

defer the resolution for a defect report due to lack of

information, resource constraints, or release time

pressure. Therefore, we cannot determine whether a

deferred defect report is a NaP, and do not include

these reports in our analysis.

We classified a defect report as performance-related

and non-performance-related. We determine whether a

defect is performance-related based on the symptom

described in the defect report. If a defect report

describes a symptom of unsatisfactory response time,

throughput, or resource consumption, we consider it as

performance-related. A non-performance-related defect

may be caused by performance-related issues. For

Table 2. PR precision ranking scheme

Factor
Precision Ranks

(Score)

PREM

Levels

Subject

Scenario (2)

Function (1)

Scope (0)

Measure
Quantitative (1) 1 and above

Qualitative (0) 0

Environment
Specified (1) 2 and above

Unspecified (0) 0 – 1

Workload

Quantitative (1) 2 and above

Qualitative or

unspecified (0)
0 – 1

example, an operation may fail because a dependent

device does not respond in time. Such a defect is

manifested as a functional problem. Therefore, we do

not consider the defect as performance–related. The

only exception is an unexpected program stop caused

by insufficient memory. If a defect report states that

insufficient memory caused an unexpected crash, we

consider the defect as performance-related.

4.2. Analysis steps

Our analysis requires information on the traceability

of defects to requirements. The NaP occurrence rate

for a set of defect reports is calculated by dividing the

number of NaP by the number of defect reports in the

set. The confirmed rate of the same set of defect

reports is (1 – NaP occurrence rate). We then apply a

chi-square test to examine whether the effect of

requirements availability is significant. To protect

proprietary information, we only report proportional

results in this paper. However, actual numbers were

used in the statistical analysis.

We examine the effect of performance requirements

precision on the occurrence rate of NaP from four

factors: subject, measure, environment, and workload.

To analyze the effect of each factor, we categorize the

requirements based on their precision levels. We use

the chi-square test to examine the significance of the

relationship between NaP occurrence and the precision

of each performance factor. To analyze the effect of

multiple factors, we also use the summation of the

precision scores from these factors as an overall

precision score. We use a linear-by-linear association

test to examine the relationship between the NaP

occurrence rate and the overall performance

requirements precision levels.

One should use appropriate statistical analysis

approach based on the case study data to draw

conclusions. The data in this case study is categorical

in nature. Agresti provides extensive review of

categorical data analysis methods in his book [1].

5. Case Study Context

We conducted a case study on a firmware

development project for a real-time embedded control

module from ABB Inc. This firmware supports a line

of controllers with different computation and memory

capacities. A controller is a processing unit that can

control other devices, e.g. motors or turbines, and

overall processes, e.g. power generation. A controller

is highly configurable and is capable of running a large

variety of processes, from small factories to large

power plants.

The firmware was implemented as a hybrid of

procedurally designed C code and object-oriented

designed C++ code. The development team consisted

of approximately eighty developers and twenty testers.

The development and testing departments are

distributed around the world.

This controller module has been used in the field for

almost ten years. When we started this case study, the

firmware had been through five major releases. We

collected the defects that were found on the fifth major

release.

In this case study, the source of the defect reports

includes management, globally distributed testing

teams, and customer failure reports. Many internal

stakeholders are involved within the development team

in this case study. Before a defect report is designated

as a NaP, developers, management, and testers may

participate in the investigation. However, the final

decision makers are product line management and the

main influence of their decision is the development

department.

6. Results and Discussion

In August 2007, we collected the defect reports and

documented requirements for a real-time embedded

control module from ABB Inc. We analyzed more than

1,500 defect reports in this study. We also collected 33

documented performance requirements. In this section,

we present and discuss the results of the analysis.

6.1. NaP and confirmed defect reports

Within the collected defects, 21.20% were

designated as NaP. In this section, we explore the

differences between NaP and confirmed defect reports,

from the perspectives of communication, defect

resolution time, and defect severity. We cannot

measure the exact amount of communication solely

from defect reports. Therefore, we use the number of

informational notes added to a defect report as a

surrogate measure of the amount of communication that

occurred concerning the defect. The approximation is

reasonable, as many of the notes represented weekly or

monthly status update meetings by key internal

stakeholders throughout the development project. We

also cannot measure the defect resolution time solely

from defect reports. We use the elapsed time that the

defect remained unresolved to demonstrate the defect

report resolution time. Defect severity is ranked from

five to one with five being the highest level. Table 3

summarizes the differences between NaP and

confirmed defect reports in this study.

6.1.1. Communication. When the development team

analyzed a defect report, team members added notes to

the defect report to exchange opinions and ideas with

each other while product management added notes to

accept, reject, or comment on key issues. While we

cannot measure the exact amount of communication the

development team used to resolve each defect, we use

the number of notes the team members added to the

defect report as an approximation for this measure.

The results show that, on average, developers use more

notes in confirmed defect reports than in NaPs. We

choose Wilcoxon-Mann-Whitney test to examine the

distribution difference between NaP and Confirmed

defect reports. The result shows that the difference

between NaPs and confirmed defect reports, in terms of

the number of notes, is statically significant (P = 0.01).

To estimate the magnitude of difference, we use

Hodges-Lehmann Estimation. However, the

confidence interval on the magnitude of difference is

0.00, indicating that the sample variation is too high to

make a good estimate. Therefore, we cannot estimate

the difference between the numbers of notes used in

NaPs and confirmed reports.

6.1.2. Resolution time. To estimate the amount of

time needed to resolve a defect report, we use the

elapsed time for the defect report from the submission

of the report to the time it was disposed. We only

include reports with severity levels four and five, and

with an elapsed time of less than 60 days. The reason

for only including these reports is that low severity

defects were often ignored to provide timely response

to more critical defects. Additionally, if a defect

remained open for more than 60 days, either the

priority for fixing the defect was low or the defect was

not easily repeatable. In either case, the defect elapsed

time does not accurately reflect the defect resolution

time. In this case study, the average resolution time for

a confirmed defect report is longer than that for a NaP.

However, the elapsed time for a confirmed defect also

includes the time to validate whether the defect has

been fixed. For a NaP, because the developers do not

change the software, detailed validation is unnecessary

and only product management agreement is required.

We use Hodges-Lehmann Estimation to examine the

difference of the time difference for confirmed and

NaP defect resolution. The result shows that, at 95%

confidence level, confirmed defect report elapsed time

is one to seven days longer than NaP elapsed time.

6.1.3. Defect severity. In this case study, the average

severity of a NaP defect is lower than that of a

confirmed defect (z-test,  = 0.05). When a defect

report shows higher severity, the development team

tends to be more conservative before designating the

defect report as NaP. Therefore, we expected that the

average severity level for NaP to be lower than that for

confirmed defect reports. The results from this case

study show the same trend.

6.1.4. Summary. The results from this case study

show that the amount of resolution time is reasonably

at the same level as confirmed defect reports, even

though the average severity of NaP is lower,.

Furthermore, designating a defect report as a NaP,

which account for 21.20% of defect reports, did not

help the team improve the overall software quality.

The efficiency of the development team can be

improved if we lower the NaP occurrence rate.

6.2. Performance and non-performance defects

In the case study, only 2.6% of defect reports are

related to performance. Table 4 summarizes the

comparison between performance and non-

performance defect reports. In this case study, the

average number of notes used in performance defect

reports is higher than in non-performance defect

reports. The difference is statistically significant

(Wilcoxon-Mann-Whitney test, P < 0.01). The

observed average elapsed time for performance defect

reports is longer than for non-performance defect

Table 3. NaP and confirmed defects comparison

 NaP Confirmed

Communication

(as # of Notes)

Avg. 2.52 2.92

Var. 4.41 6.11

Resolution Time

(as Elapsed Time, Days)

Avg. 11.01 14.54

Var. 230.88 206.02

Defect Severity
Avg. 2.53 2.73

Var. 0.78 0.74

Table 4. Performance and non-performance defect

comparison

 Performance Non-Perf

Communication

(as # of Notes)

Avg. 4.62 2.85

Var. 15.79 5.72

Resolution

Time

(as Elapsed

Time, Days)

Avg. 21.35 13.61

Var. 394.86 207.46

Defect Severity
Avg. 2.96 2.68

Var. 0.41 0.76

NaP Rate 36.69% 20.75%

reports. However, the difference is not statistically

significant (Wilcoxon-Mann-Whitney test, P = 0.17).

The average severity level of performance defect

reports is higher than of non-performance defect

reports (z-test,  = 0.05). The NaP occurrence rate is

also statistically higher for performance defect reports

(chi-square test,  = 0.05).

The control module in this case study is used in real-

time systems. Responsive performance is required for

the module to function properly. The higher average

severity level reflects the team’s emphasis on

performance. The result also shows that performance

defect report resolution required more time and team

communication. Therefore, a performance defect

report is likely more expensive to resolve than a non-

performance defect report. The development team

could have saved a lot of resources if the NaP

occurrence rate were lower for performance defect

reports.

6.3. Performance requirements availability

and NaP occurrence rates

We could only identify the source of requirements

documents for 50% of the performance defects. Table

5 shows the NaP occurrence rates for performance

defects reports with and without documented

requirements. For this analysis, the explanatory

variable is the availability of requirements, and the

response variables are the numbers of NaP and

confirmed defect reports. The defects with specified

requirements have a higher NaP occurrence rate in this

case study. The difference is not statistically

significant (chi-square test,  = 0.05).

We expected the NaP occurrence rate to be lower

for defects that are traceable to documented

requirements. However, the results show the opposite

trend, although not statistically significant. In this case

study, the higher NaP occurrence rate for performance

defects with specified requirements can be explained

with two reasons. First, the subject of the case study is

a mature product. The development team knew the

reasonable performance for the control module. When

a stakeholder reports a performance defect,

documented and implicit performance requirements

play equally important roles. Second, the documented

requirements did not provide enough precision.

Therefore, a stakeholder may file a defect report based

on a wrong assumption. We discuss the effect of

performance requirements precision in the next

subsection.

6.4. Performance requirements precision and

NaP occurrence rates

We analyzed the relationship between the

performance requirements precision and NaP

occurrence rate with two approaches using the ranking

scheme described in Section 3.2. First, we analyzed

the effect of each factor in the ranking scheme to see

how each performance factor affects NaP occurrence

rate. Second, we analyzed the effect of combined

factors to show how combined factors affect NaP

occurrence rate.

6.4.1. Single factor analysis. For the performance

defects with related, documented requirements, we

calculated their NaP occurrence rates based on the

precision of the related requirements. We rank the

precision of performance requirements from four

factors: subject, measure, environment, and workload.

In this analysis, the explanatory variables are the

precision ranks for each factor, and the response

variables are the numbers of NaP and confirmed defect

reports. Table 6 shows the NaP occurrence rates for

defects reported against the different ranks of

requirements precisions, grouped by performance

factors. Workload shows a statistically significant

effect of requirements precision on the NaP occurrence

rate (chi-square test,  = 0.05). The effects of the other

three factors are not statistically significant.

If, in a performance factor, the NaP occurrence rate

is lower for the higher precision rank, the precision of

documented requirements plays an important role when

the development team decides whether a defect report

is NaP. In this case study, only the subject and

workload factors demonstrated this trend. The

development team could lower the NaP rate by

Table 5. Availability of PR and NaP occurrence

rates
 NaP Confirmed

With Req 36.36% 63.64%

Without Req 34.78% 65.22%

Total 35.56% 64.44%

Table 6. PR precision and NaP occurrence rates

Factor Precision NaP Confirmed

Subject
Function 25.00% 75.00%

Scope 50.00% 50.00%

Measure
Quantitative 44.44% 55.56%

Qualitative 30.77% 69.23%

Environment
Specified 33.33% 66.67%

NA 38.46% 61.54%

Workload
Quantitative 0% 100.00%

NA 47.06% 52.94%

specifying more precise specifications for these two

factors. On the other hand, the precise specification of

measure and environment factors did not lower the NaP

occurrence rate. The decision of whether a defect

report is a NaP might have come from resources other

than the requirements. In this case study, some testing

documents provided very detailed description of the

testing environment. Without documented

requirements for the runtime environment, the team

could still use the information from the testing

documents to determine whether a defect report is NaP.

6.4.2. Cross-factor analysis. We use the summation

of the precision scores from the four factors to quantify

the overall precision of a performance requirement, and

find out the NaP occurrence rate for each overall

precision level. Additionally, we calculated the

precision score for a performance requirement from the

two important factors identified in the single factor

analysis. In this analysis, the explanatory variables are

the precision scores, and the response variables are the

number of NaP and confirmed defect reports. The

results are shown in Table 7. A higher overall

precision score lowers the NaP occurrence rate.

However, the effect is not statistically significant

(linear-by-linear association test,  = 0.05). A higher

precision score from the subject and workload factors

also lowers the NaP occurrence rate for the related

defect reports. This effect is statistically significant

(linear-by-linear association test,  = 0.05). The

results again show that, for this case study,

specification of precise subject and workload

information with performance requirements is

statistically related to a lower NaP occurrence rate.

6.4.3. Threats to validity. Construct validity involves

establishing the measures for the concepts being

measured [22]. We use a coarse-grained ranking

scheme to evaluate the precision levels of performance

requirements. In each performance factor, we only

define two or three precision levels. Therefore, even if

two requirements specify a particular performance

factor at the same level, they may provide different

amounts of details. A finer-grained ranking scheme

can yield more detailed information on the

requirements precision than the ranking scheme

proposed in this paper. However, we believe a finer-

grained ranking scheme needs to be domain-specific.

The benefit of the ranking scheme proposed in this

paper is the wide applicability. Any performance

requirement can be evaluated with the precision

ranking scheme.

Internal validity in this case study concerns the

degree of cause-effect relationship between the

precision levels of a requirement and the related NaPs.

The cause of NaPs can be very complicated. Factors

such as implicit knowledge and lexical correctness of

requirements specification may also cause NaPs. We

only analyzed the effect of performance requirement

preciseness in this case study. The results also suggest

that factors other than requirements preciseness played

an important role for the cause of NaPs. We will need

further investigations to find out other causes of NaPs

and their effects on NaP occurrence rate.

External validity is the degree to which this case

study can be generalized. The case study discussed in

this paper is the sixth release from the same

organization. We believe we can find similar results

from earlier releases. However, we do not know if

ABB software systems are representative of all

industrial systems. Other organizations may use the

results reported in this paper as a starting point for their

own investigations. Although the effect of

performance requirements precision on NaP occurrence

rates may vary among development teams, the degree

of the effect provides information on performance

requirements improvement. We are developing an

approach to improve performance requirements based

on the degrees of the effects of performance

requirement precision on NaP occurrence rates.

6.5. Additional observations

The customer is the ultimate judge of the software

quality [8]. In this case study, only 1.45% of the defect

reports were submitted by the customer. The customer

reported only one performance-related defect. The low

number of performance defect reported by the

customer showed the high maturity of this software

product in the regard of performance. Furthermore,

this performance defect was not related to any defect

that the development team designated as NaP during

development.

Although not observed in this case study, the

customer may file a problem report that the

development team originally consider as NaP before

release. The NaPs that turn out to be real problems

after release reveal misunderstandings between the

Table 7. Precision scores and NaP occurrence rates

Score
NaP Occurrence Rate

Overall Subject + Workload

0 44.44% 50.00%

1 33.33% 42.86%

2 NA 0%

3 37.50%

4 0%

customer and the development team, and can be

prevented with rigorous requirements elicitation

activities. On the other hand, our focus in this paper is

on requirements misinterpretation within the

development team. The development can use the

results from this case study to prevent such

misinterpretations with more specific requirements.

The development team fixed most of the customer-

reported defects, including the one related to

performance, in service packs. The team designated

16.67% of the customer defect reports as NaPs. We

observed two themes in the customer NaPs. First, the

customer had incorrect expectations due to

misunderstandings of terminologies. For example, a

customer reported that some messages in the “event

list” did not appear in the “event and alarm list.”

However, the event and alarm list was designed to filter

out some particular messages, while the event list

shows all messages. These types of misunderstandings

were resolved with documentation changes. Second,

the customer used an inappropriate configuration in the

control module. For example, a customer reported that

some feature of the control module did not work with

their customized program. After investigation, the

development team found out that the customized

program was the cause of the problem. These types of

customer defects are resolved by customer support.

Among the performance defect reports with

traceable requirements we collected in this case study,

we found that 45% of defects were opened against the

requirements that used scopes to specify their subjects,

which accounted for 14.81% of the total performance

requirements. A requirement specified with a scope is

more general than a requirement specified with a more

precise subject. However, if a defect is opened against

a requirement with a lower precision subject, the defect

is more prone to be designated as a NaP, as shown in

the case study results. In this case study, 62.50% of the

NaPs were designated as NaPs because the subject

described in the defect report is more precise than

specified in the related requirements. The development

team closed such NaPs because they were

“exceptions,” as stated in some notes in the defect

reports. However, those NaPs could have been

avoided if the “exceptions” were specified in the

requirements. In our previous work [11], we present a

systematic approach to integrate such information into

the requirements for future software releases.

7. Conclusion and lessons learned

In this paper, we explore the relationships between

the quality of performance requirements and NaP

occurrence rate. We examined defect reports in this

case study, and found out that a NaP was as expensive

to resolve as a confirmed defect report. Additionally,

the NaP occurrence rate was significantly higher for

performance-related defect reports than for non-

performance-related defect reports. Designating a

defect report as NaP does not improve the software

quality. Therefore, reducing the NaP occurrence rate

can save the team the time required to resolving such

defect reports. With complete and precise

requirements, the defect submitter can avoid reporting

the NaP at all.

We first examined the effect of the availability of

performance requirements. The results show that the

NaP occurrence rate was similar for the defects with

and without traceable performance requirements.

Although the availability of performance requirements

did not lower the NaP occurrence rate, this result

suggests that the specified requirements were not

precise enough for the team to determine whether a

defect report is a NaP.

We then used a performance requirements precision

ranking scheme based on PREM to quantify the

precision of the performance requirements. This case

study shows that the performance requirements

specified with quantitative workloads had significantly

lower NaP occurrence rate than those without.

Performance requirements with a function description

also had lower NaP occurrence rate than those

specified with just a scope, although the difference was

not statistically significant. A cross-factor analysis

shows that the NaP occurrence rate had a lowering

trend when the performance requirements were more

precise. If we only consider the precision of the

subject and workload, the effect of performance

requirements precision on NaP occurrence rate was

statistically significant.

In this case study, the precision for some

performance factors did not show statistically

significant effects on NaP occurrence rate. However,

comparing the NaP occurrence rates for the

requirements with a variety of precisions shows a

direction for requirements process improvement.

Documented requirements specification is not the only

source for the development team to determine whether

a defect report is a NaP. If a development team

depends on the experience more than documented

requirements to determine whether a defect report is

NaP, we might observe a low NaP occurrence rate of

the defect reports related to requirements specified with

a low precision level. Incorrectly designed testing

environment or a wrong testing tool may lead to

erroneous testing results, and the tester might create

defect reports that describe false-positive problems.

Therefore, an overall high NaP occurrence rate may

also indicate a deficiency in the information available

to testing teams.

Our previous work [11] provides a systematic

approach to integrate failure reports from the customer

into requirements specifications. In this paper, we

focus on the analysis of the defects during development.

We believe the investigation of NaPs can improve the

communications with the customer. However, we do

not have the data related to customer communication in

this case study. We will continue our work in two

directions. First, we have collected data from several

industrial software projects. We will apply similar

analysis on these projects. Second, the NaP occurrence

rate comparison presented in this paper also shows the

direction for requirements improvement. We will build

and validate a requirements improvement framework

based on NaP occurrence rate comparison.

8. References

[1] Agresti, A., Categorical Data Analysis 2nd Edition,

New York, NY, Wiley Inter-Science, 2002.

[2] Alspaugh, T. A., A. I. Antón, T. Barnes, and B. W.

Mott, "An Integrated Scenario Management Strategy,"

in Proceedings of the 1999 International Symposium

on Requirements Engineering, pp. 142-149, Ireland,

Jun 1999.

[3] Avritzer, A., J. Kondek, D. Liu, and E. J. Weyuker,

"Software Performance Testing Based on Workload

Characterization," in Proceedings of the 3rd

International Workshop on Software and Performance,

pp. 17-24, Rome, Italy, Jul 2002.

[4] Basili, V. R. and J. D. Musa, "The Future Engineering

of Software: A Management Perspective," IEEE

Computer, vol. 24, no. 9, pp. 90-96, Sep 1991.

[5] Chillarege, R., I. S. Bhandari, J. K. Chaar, M. J.

Halliday, D. S. Moebus, B. K. Ray, and M.-Y. Wong,

"Orthogonal Defect Classification -- A Concept for In-

Process Measurements," IEEE Transactions on

Software Engineering, vol. 18, no. 11, pp. 943-956,

Nov 1992.

[6] Cortellessa, V., "How Far Are We from the Definition

of a Common Software Performance Ontology," in

Proceedings of the 5th International Workshop on

Software and Performance, pp. 195-204, Illes Balears,

Spain, Jul 2005.

[7] El Eman, K. and N. H. Madhavji, "Measuring the

Success of Requirements Engineering Processes," in

Proceedings of the 2nd International Symposium on

Requirements Engineering, pp. 204-211, York, UK,

Mar 1995.

[8] Fox, C. and W. Frakes, "The Quality Approach: Is It

Delivering?," Communications of the ACM, vol. 40, no.

6, pp. 24-29, Jun 1997.

[9] Ho, C.-W. and L. Williams, "Deriving Performance

Requirements and Test Cases with the Performance

Refinement and Evolution Model (PREM),"

Department of Computer Science, North Carolina State

University Technical Report No. TR-2006-30, Nov

2006.

[10] Ho, C.-W. and L. Williams, "Developing Software

Performance with the Performance Refinement and

Evolution Model," in Proceedings of the 6th

International Workshop on Software and Performance,

pp. 133-136, Buenos Aires, Argentina, Feb 2007.

[11] Ho, C.-W., L. Williams, and A. I. Antón, "Improving

Performance Requirements Specifications from Field

Failure Reports," in Proceedings of the 15th

International Requirements Engineering Conference,

pp. 79-88, New Delhi, India, Oct 2007.

[12] IEEE, IEEE Std. 982.2-1988: IEEE Guide for the Use

of IEEE Standard Dictionary of Measures to Produce

Reliable Software, 1988.

[13] IEEE, IEEE Std 830-1998: IEEE Recommended

Practice for Software Requirements Specifications,

1998.

[14] Kamata, M. I. and T. Tamai, "How Does Requirements

Quality Relate to Project Success or Failure?," in

Proceedings of the 15th International Requirements

Engineering Conference, pp. 69-78, New Delhi, India,

Oct 2007.

[15] Lutz, R. R. and I. C. Mikulski, "Resolving

Requirements Discovery in Testing and Operations," in

Proceedings of the 11th IEEE International

Requirements Engineering Conference, pp. 33-41,

Monterey Bay, CA, Sep 2003.

[16] Nixon, B. A., "Managing Performance Requirements

for Information Systems," in Proceedings of the 1st

International Workshop on Software and Performance,

pp. 131-144, Santa Fe, NM, Oct 1998.

[17] OMG, UML Profile for Schedulability, Performance,

and Time Version 1.1, 2005.

[18] Petriu, D. B. and M. Woodside, "A Metamodel for

Generating Performance Models from UML," in

Proceedings of the 7th International Conference of the

UML, pp. 41-53, Lisbon, Portugal, Oct 2004.

[19] Smith, C. U. and C. M. Lladó, "Performance Model

Interchange Format (PMIF 2.0): XML Definition and

Implementation," in Proceedings of the 1st

International Conference on the Quantitative

Evaluation of Systems, pp. 38-47, Enschede, The

Netherlands, Sep 2004.

[20] Trott, B., "Victoria's Secret for Webcasts Is IP

Multicasting," InfoWorld, Aug 1999.

[21] Wasson, K. S., K. N. Schmid, R. R. Lutz, and J. C.

Knight, "Using Occurrence Properties of Defect Report

Data to Improve Requirements," in Proceedings of the

13th International Requirements Engineering

Conference, pp. 253-262, Paris, France, Aug 2005.

[22] Yin, R. K., Case Study Research: Design and Method,

3rd Edition, Sage Publications, 2003.

