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Abstract

This paper reports on our experience of investigat-
ing the role of software systems in the power black-
out that affected parts of the United States and Canada
on 14 August 2003. Based on a detailed study of the
official report on the blackout, our investigation has
aimed to bring out requirements engineering lessons
that can inform development practices for dependable
software systems. Since the causes of failures are typ-
ically rooted in the complex structures of software sys-
tems and their world contexts, we have deployed and
evaluated a framework that looks beyond the scope of
software and into its physical context, directing atten-
tion to places in the system structures where failures
are likely to occur. We report that (i) Problem Frames
were effective in diagnosing the causes of failures and
documenting the causes in a schematic and accessible
way, and (ii) errors in addressing the concerns of bid-
dable domains, model building problems, and monitor-
ing problems had contributed to the blackout.

1 Introduction
In mature branches of engineering, failures and “the

role played by reaction to and anticipation of fail-
ure” are regarded as essential for achieving design suc-
cess [11]. Identification of the causes of past system
failures, organisation and documentation of them in a
way accessible by engineers within an engineering com-
munity, and application of knowledge of failures when
designing future systems, all play a central role in es-
tablishing “normal design” practices [15]. Although
there have been several excellent reports on high-profile
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system failures involving software systems [5, 7, 9], de-
velopment practices for dependable systems have not
exploited input from incident or accident investigations
in a systematic way [2]. This work is a small step in
the direction to address the gap.

Requirements Engineering (RE) is concerned with
defining the behaviour of required systems, and any
error introduced or prevented early in the development
significantly contributes to the system dependability.
In this respect, RE has a valuable role to play in sys-
tematising and documenting causes of past failures,
and utilising this systematised knowledge in the devel-
opment of future systems. In the same way that system
failures can be attributed to programming, design, and
human/operational errors, it is possible to attribute
certain failures to RE errors. RE errors may be due
to missing requirements, incorrect assumptions about
the problem context, weak formulation of requirements
and unexpected interactions between requirements.

Although the broader context—such as the or-
ganisational settings, regulatory regimes and market
forces—often plays an important role in failures, we
deliberately focus on the role of the software system in
its physical context in order to bring out clear lessons
for requirements engineers. Therefore, a framework is
needed for investigating failures, which looks beyond
the scope of software and into its physical context,
and directs attention to places in the system structures
where failures are likely to occur.

In this paper, we report on our experience of using
Problem Frames [4] to identify, organise and document
knowledge about the causes of past system failures.
In the Problem Frames framework, potential causes of
failures—known as “concerns”—are named and asso-
ciated with a specific pattern of problem structure, a
style of problem composition, a type of problem world
domain, the requirement and the specification. An in-
stantiation of a pattern, for instance, will immediately
raise the need to address certain concerns in the sys-
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tem structures. This is, in a sense, similar to gener-
ating “verification conditions” for a program in order
to prove its correctness with respect to the specifica-
tion [1]. In this case, concerns raised will have to be
discharged by requirements engineers, perhaps in col-
laboration with other stakeholders.

The rest of the paper is organised as follows. Sec-
tion 2 gives an overview of the power blackout case
study, the methodology used in the investigation, and
some of the key principles of Problem Frames. The role
of the software systems in the blackout is described and
analysed in Section 3. Related work is discussed in Sec-
tion 4. Section 5 summarises the findings.

2 Preliminaries
This section provides an overview of our case study,

the research methodology used to investigate the fail-
ures, the conceptual framework of Problem Frames,
and the expected outcome of our study.

2.1 2003 US-Canada Electricity Blackout
The electricity blackout that occurred on 14 Au-

gust, 2003 in large parts of the Midwest and Northeast
United States and Ontario, Canada, affected around 50
million people, according to the official report by the
U.S.–Canada Power System Outage Task Force [14].
The outage began around 16:00 EDT (Eastern Day-
light Time), and power was not fully restored for sev-
eral days in some parts of the United States. The ef-
fect of the outage could be seen in satellite images of
North America, whilst financial losses reportedly ran
into billions of US dollars. The official report concluded
that “this blackout could have been prevented”, and
software failures leading to the operator’s reliance on
outdated information was identified as one of the two
“most important causes” of the blackout [14, p. 46].

2.2 Methodology
Investigating real-life system failures is difficult not

least because of the size and complexity of these sys-
tems and limited availability of verifiable information
about the failures and the systems involved [5]. Even
when it is possible to master these difficulties, it is
still a challenge to locate exactly when in the develop-
ment an error was introduced [10]. The official report
makes clear that factors such as the sagging of power
lines, overgrown trees, poor communication, and lack
of personnel training all contributed to the blackout.

Since our interest was to learn RE lessons, our
methodology for investigating failures examined the
chain of events leading up to the failure, and isolated
the role of software systems in the failure. We ascer-
tained what the components of the system did, what

a CM:CM!{CMAction} a CD:CD!{CDBehaviour, CDProperty}

b O:O!{OInput} a O:O!{OCommand}

Figure 1. The Commanded Behaviour Frame

they should have done, and how it would have been
possible to identify the causes at the RE stage. There-
fore, a framework was needed that allowed us to struc-
ture the potential causes of failures in a schematic way.

2.3 Problem Frames
The Problem Frames framework [4] is based on cer-

tain principles, four of which are relevant to the discus-
sion. First, the framework encourages a systematic sep-
aration of descriptions into requirements, problem world
context and specifications. For example, Figure 1 shows
a high-level description of a type of software problem
known as Commanded Behaviour Frame. In this prob-
lem, a software system, Control Machine, is required to
apply control on a domain in the physical world, the
Controlled Domain, according to the commands of a hu-
man agent, the Operator. Exactly how the Controlled

Domain should behave, or what property it must have,
when the Operator issues commands is described by
the Commanded Behaviour Requirement. Therefore the
requirement states the relationship between the oper-
ator command OCommand at the interface a O, and
the behaviour and property of the controlled domain
CDBehaviour and CDProperty at the interface a CD.

Description of the operator behaviour is concerned
with the relationship between OInput at the interface
b O and OCommand at the interface a O, namely what
input the operator produces when a command is is-
sued. Similarly, description of the Controlled Domain is
concerned with the relationship between CMAction at
the interface a CM and CDBehaviour and CDProperty

at the interface a CD, namely what behaviour or prop-
erty the controlled domain produces when machine ac-
tions are performed. The Operator and the Controlled

Domain constitutes the problem world context of the
Control Machine. The specification, description of the
Control Machine, is concerned with the relationship be-
tween OInput at the interface b O and CMAction at the
interface a CM, namely what actions the machine must
perform when operator input is observed.

The operator may be a lift user and the controlled
domain, a lift. The requirement will state how the lift
should behave when the lift user issues commands. The
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specification will state what operations the lift con-
troller will perform when the operator input is received.

Second, this framework emphasises the need to un-
derstand the physical structure of the problem world
context, and the behaviour of the domains involved.
Third, the framework is based on recurring patterns
of software problems, called frames. Each frame cap-
ture “concerns” of a certain type of software problems.
For instance, the main concern of the “Commanded
Behaviour” frame is to ensure that the system obeys
the operator commands in imposing control on the be-
haviour of the system. An instantiation of a frame
implies generation of certain conditions that need to
be discharged.

Fourth, the framework provides a rich scheme for
categorising and recording causes of failures. For in-
stance, there are concerns specific to problem world do-
mains, such as reliability, identity and breakage; there
are frame concerns such as that of the required be-
haviour frame; and there are composition concerns such
as conflict, consistency and synchronisation.

Therefore, we hypothesised that the Problem
Frames framework provides an appropriate foundation
for diagnosing failures involving software systems.

2.4 Expected Outcomes
There were two expected outcomes of this study.

First, to establish whether Problem Frames are appro-
priate for investigating systems failures in terms of (i)
locating causes of failure in the system structures, and
(ii) recording them in a schematic way accessible by en-
gineers within a community. Second, to identify causes
of the blackout and either confirm them as known con-
cerns or expand the repertoire of existing concerns by
recording them schematically.

3 The Case Study
We now discuss two software-related failures that

contributed significantly to the blackout. We briefly
recount the chain of events leading to the blackout be-
fore discussing how Problem Frames were applied to
diagnose the causes of failures and record the causes of
failures.

3.1 Problem #1: State Estimator and
Real Time Contingency Analysis

The infrastructure of the electric systems are large
and complex, comprising many power generation sta-
tions, transformers, transmission lines, and individual
and industrial customers. Providing reliable electricity
through “real-time assessment, control and coordina-
tion of electricity production at thousands of genera-
tors, moving electricity across an interconnected net-
work of transmission lines, and ultimately delivering

the electricity to millions of customers” is a major tech-
nical challenge [14].

Reliability coordinators and control operators use
complex monitoring systems to collect data about the
status of the power network. In addition, they use a
system called State Estimator (SE) to improve the ac-
curacy of the collected data against the mathematical
model of the power production and usage. When the
divergence between the actual and predicted model of
power production and usage is large, State Estimator
will “produce a solution with a high mismatch”. In-
formation from the improved model is then used by
various software tools, including Real Time Contin-
gency Analysis (RTCA), to evaluate the reliability of
the power system, and alert operators when necessary,
for instance when the power production is critically
low. This evaluation can be done periodically or on
demand of the operator.

“On August 14 at about 12:15 EDT,
MISO’s [Midwest Independent System Oper-
ator] state estimator produced a solution with
a high mismatch [. . . ] To troubleshoot this
problem the analyst had turned off the au-
tomatic trigger that runs the state estimator
every five minutes. After fixing the problem
he forgot to re-enable it [. . . ] Thinking the
system had been successfully restored, the an-
alyst went to lunch. The fact that the state
estimator was not running automatically on
its regular 5-minute schedule was discovered
about 14:40 EDT.”

When the automatic trigger was subsequently re-
enabled, the state estimator produced a solution with
a high mismatch due to further developments on on
the network. The official report assesses the situation
as follows.

“In summary, the MISO state estimator and
real time contingency analysis tools were ef-
fectively out of service between 12:15 EDT
and 16:04 EDT. This prevented MISO from
promptly performing precontingency “early
warning” assessments of power system relia-
bility over the afternoon of August 14.”

3.1.1 Problem Analysis

Based on this information, we constructed several prob-
lem diagrams to analyse relationships between the
problem world domains mentioned in the description.
Figure 2 shows a composite of two problem diagrams.
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a RD:RD!{StatusData} a MM:MM!{Estimates}

a SE:SE!{RevisedData} a RS:RS{StatusMessages}

a IES:IES!{Status} a O:O{Alerted}

Figure 2. High Level Composite Problem Dia-
gram of SE and RTCA systems

The problem of State Estimator is to produce Revised-

Data for the Improved Electrical System Model of the
grid, based on StatusData, and Estimates produced by
the Mathematical Model. In Problem Frames, this type
of problem is known as a “model building problem”.
The problem of RTCA System is to examine Revised-

Data and raise appropriate alerts on the Display Screen

used by the Operator. This type of problem is known
as an “information display problem”.

3.1.2 A Requirements Engineering Error?

On August 14, when the SE could not produce a con-
sistent model, the operator turned off the automatic
trigger of the SE in order to carry out maintenance
work. Figure 3 shows the problem diagram, where the
Maintenance Engineer uses the machine SE Trigger to
turn on or turn off the State Estimator. This problem
fits the Commanded Behaviour Frame shown in Fig-
ure 1. Part of the requirement here is to ensure that
when the engineer issues the command OffNow, the SE
should cease running.

When the maintenance work was done, the engineer
forgot to re-enable the SE, leaving the electrical sys-
tem model which the operators rely on, outdated. The
resulting reliance by the operator on the outdated in-
formation was a significant contributing factor.

Clearly, the maintenance engineer should not have
forgotten to re-engage the monitoring systems, and as
a result, the problem would not have arisen. How-
ever, there is more to the problem than this being a
“human error”. Perhaps the fallibility of human opera-
tors should have been better recognised in the system’s
model of the world context.

a ST:ST!{Start, Stop} a ME:ME!{OnNow, OffNow,

b SE:SE!{Running} OnEvery(X)}

Figure 3. Manage SE Trigger

3.1.3 Naming and Categorising Concerns

A key part of the problem is the requirement that says
that the operator commands always have precedence
over the system actions. This requirement relies on
the world assumption that the biddable domain—i.e.,
a human agent such as the maintenance engineer—
always gives the correct commands. However, the
Commanded Behaviour frame recognises that the op-
erator is a biddable domain, whose behaviour is non-
causal and may not be reliable. Therefore, the oper-
ator always giving the correct command may be too
strong a condition to discharge. This gives rise to two
concerns: one related to the biddable domain and the
other, related to the Commanded Behaviour frame.

We will call the concern related to the biddable do-
main the reminder concern, which raises the following
conditions to discharge: (i) Whenever the biddable do-
main overrides the system operations, which system
domain(s) should be reminded about the override? (ii)
How long should the override last? (iii) What hap-
pens when the length of time expires? In the case of
the blackout, this may be translated into a require-
ment that says (i) whenever the SE has stopped, the
system should remind the operator of the SE status
and how long it has had that status, and (ii) at the
end of a maintenance procedure, the system should re-
mind the engineer of the SE status. Such a reminder
could make the engineer’s behaviour more reliable and
perhaps could have helped prevent the failure.

A concern related to the Commanded Behaviour
frame is whether the system should ignore the operator
commands and take control of the system under certain
circumstances. We will call this the system precedence
concern. This may mean that the system should mon-
itor the actions by the biddable domain, and intervene
when the domain does not seem to be reliable. In that
case, the requirement should be formulated as follows:
Whenever maintenance work is thought to have been
completed, the automatic trigger should be enabled.

Another key part of the problem is related to the
issue of fault-tolerance in information display: What
happens when the input the system receives from the
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analogous model is unexpected? This may be due to
an incorrect data type or an untimely input from the
analogous model. We will call this the outdated in-
formation concern. Pertinent questions in this case
are: 1) Can RTCA know that the Improved Electri-
cal System Model is outdated? 2) What should it do
about it? Had requirements engineers asked such ques-
tions, it could have led to a requirement such as “The
Improved Electrical System Model must have a times-
tamp of when it was last updated successfully” and “If
the Improved Electrical System Model is older than
30 minutes, the RTCA system should alert the opera-
tor that the electrical system model is now outdated”.
This will at least warn the operator not to rely on the
information provided by the improved electrical system
model.

3.2 Problem #2: Alarm and Event Pro-
cessing Routine (AEPR) System

Another significant cause of the blackout was due,
in part, to the Alarm and Event Processing Routine
(AEPR) system, “a key software program that gives
grid operators visual and audible indications of events
occurring on their portion of the grid” [14].

“Alarms are a critical function of an EMS
[Energy Management System], and EMS-
generated alarms are the fundamental means
by which system operators identify events on
the power system that need their attention.
If an EMS’s alarms are absent, but operators
are aware of the situation and the remainder
of the EMS’s functions are intact, the opera-
tors can potentially continue to use the EMS
to monitor and exercise control of their power
system. In the same way that an alarm sys-
tem can inform operators about the failure of
key grid facilities, it can also be set up to warn
them if the alarm system itself fails to per-
form properly. FE’s EMS did not have such
a notification system.”

The problem of alerting the Grid Operator of
the grid status, ascertained from the Grid & Sen-

sors is shown in Figure 4. This problem fits a
type of problem known as the Information Display
Frame. The requirement is to raise a separate
alarm to the operator (GOAlertedGrid) if and only
if there are events on the grid that threaten the sys-
tem reliability (GridOK): ¬GridOK ↔ GOAlertedGrid.
The specification of AEPR could be to raise an
alert (RaiseAlert) if and only if danger is detected
on the grid (DangerDetected): DangerDetected ↔
RaiseAlert. In the case study, the AEPR system

a GO:GO!{GOAlertedGrid} a A:A!{RaiseAlert}

b GS:GS!{DangerDetected} a GS:GS!{GridOK}

Figure 4. Alert Grid Status

b GS:GS!{DangerDetected} a A:A!{RaiseAlert}

b’ AM:AM!{DangerDetected} a GS:GS!{GridOK}

a’ AM:AM!{RaiseAlert, a GO:GO!{GOAlertedGrid}

RaiseSecondaryAlert} GOAlertedAEPR}

Figure 5. Alert AEPR Status

failed silently, leading the operators to continue to rely
on outdated information, and was one of “the most
important causes” of the blackout.

3.2.1 A Requirements Engineering Error?

The official report is very clear about the fact that
there was a missing requirement “to monitor the sta-
tus of EMS and report it to the system operators.” The
British Standard 5839 on fire detection and fire alarm
systems [12] is also concerned with monitoring systems,
and anticipates such a requirement. Since fire alarms
may fail when electricity is disconnected, the standard
requires that alarms are fitted with a secondary inde-
pendent source of power. In addition, when the source
of power is switched from the primary to secondary
source, the system should raise an alarm.

3.2.2 Naming and Categorising Concerns

The cause of this failure can be called a silent failure
of alarm systems. Addressing this concern could
raise questions such as: What happens if AEPR
fails silently? Is it possible to detect such failures?
What should be done when such failures are detected.
This could have led the designers to the requirement
that the system should monitor the behaviour of
AEPR and raise an additional alarm when AEPR is
thought to have failed. Figure 5 shows a problem
diagram in which a wrapper intercepts the input to
and output from the AEPR and when AEPR fails
to respond as expected, a separate alarm is raised
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(GOAlertedAEPR). The wrapper AEPR Monitor can
pass on danger detection from the grid to AEPR
(DangerDetected@b GS ↔ DangerDetected@b’ AM)
and pass on the alert trigger from AEPR to the grid
operator (RaiseAlert@a A ↔ RaiseAlert@a’ AM).
Then the requirement to alert silent failure
of AEPR is ¬GridOK ∧ ¬GOAlertedGrid ↔
GOAlertedAEPR. The specification for AEPR Monitor

is DetectDanger@b GS ∧ ¬RaiseAlert@a’ AM ↔
RaiseSecondaryAlert@a’ AM. An implementation of
such a specification could have prevented the failure.

4 Related Work
There are many studies of software-related fail-

ures. Leveson, for instance, carried out several stud-
ies of software-related accidents, including those in-
volving Therac-25 [7]. Johnson also has contributed
an extensive literature on system accidents and inci-
dents [5, 6, 2]. However, those studies of system fail-
ure of which we are aware have not been based on a
clear conceptual structure for identifying, classifying,
and recording the lessons learned at the level of detail
appropriate for use by software engineers. For instance,
the software engineering lessons Leveson and Turner [7]
draw from the Therac-25 accidents include: “Docu-
mentation should not be an afterthought”, and “De-
signs should be kept simple”. Johnson investigated this
power blackout in order to “sketch arguments for and
against deregulation as a cause of the black-out” [6]. In
this paper, we have applied a systematic approach to
learning software engineering lessons, structured and
described in ways that software engineers can relate to
specifically.

Several variants of the Failure Modes and Effect
Analysis (FMEA) method have been developed and ap-
plied in the development of dependable systems. Lutz
and Woodhouse [8], for instance, applied a FMEA-
based method to identify critical errors in requirements
documents of two spacecraft systems. Our work is com-
plementary to such methods, in the sense that we are
concerned with identifying, structuring and document-
ing past software failures, which can then be used to
narrow the search space in failure analysis.

5 Summary
Our experience of using Problem Frames to investi-

gate system failures involving software systems showed
that the framework of Problem Frames was appropriate
for identifying causes of system failures and document-
ing the causes in a schematic and accessible way. The
suggestion by the framework that requirements engi-
neers should “look out” into the physical world, rather
than “look into” the software was useful in directing

and focusing the attention, because many of the causes
of failures originated in the physical world context.

The separation of descriptions into requirements,
problem world context and the specification enabled
us to locate sources of failures in specific descriptions.
Some failures were related to the requirements (such
as missing requirements) and others to the problem
world context (such as mismatch between the assumed
and actual behaviour of the problem world domains).
Furthermore, associating concerns to the requirement,
problem world context, frame, domain type, style of
composition, and the specifications provides a good ba-
sis for recording concerns in a schematic way.

In summary, specific lessons learnt from the black-
out case study are: (i) a further specialisation of the
reliability of the biddable domain, called the reminder
concern, (ii) a further specialisation of the concern of
the Commanded Behaviour frame where the system
may have to take precedence over the operator action,
called the system precedence concern, (iii) a further spe-
cialisation of the Information Display frame called the
outdated information concern, and (iv) the silent fail-
ure concern related to the monitoring systems.
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