

Requirements-Aware Systems
A research agenda for RE for self-adaptive systems

Pete Sawyer, Nelly Bencomo, Jon Whittle
Computing Department

Lancaster University
Lancaster, UK

e-mail: [sawyer,nelly, whittle]@comp.lancs.ac.uk

Emmanuel Letier, Anthony Finkelstein
Department of Computer Science

University College London
London, UK

e-mail: [e.letier , a.finkelstein]@cs.ucl.ac.uk

Abstract— Requirements are sensitive to the context in
which the system-to-be must operate. Where such
context is well-understood and is static or evolves
slowly, existing RE techniques can be made to work
well. Increasingly, however, development projects are
being challenged to build systems to operate in
contexts that are volatile over short periods in ways
that are imperfectly understood. Such systems need to
be able to adapt to new environmental contexts
dynamically, but the contextual uncertainty that
demands this self-adaptive ability makes it hard to
formulate, validate and manage their requirements.
Different contexts may demand different requirements
trade-offs. Unanticipated contexts may even lead to
entirely new requirements. To help counter this
uncertainty, we argue that requirements for self-
adaptive systems should be run-time entities that can
be reasoned over in order to understand the extent to
which they are being satisfied and to support
adaptation decisions that can take advantage of the
systems’ self-adaptive machinery. We take our
inspiration from the fact that explicit, abstract
representations of software architectures used to be
considered design-time-only entities but computational
reflection showed that architectural concerns could be
represented at run-time too, helping systems to
dynamically reconfigure themselves according to
changing context. We propose to use analogous
mechanisms to achieve requirements reflection. In this
paper we discuss the ideas that support requirements
reflection as a means to articulate some of the
outstanding research challenges.

Keywords- Requirements, reflection, run-time, self-
adaptive systems

I. INTRODUCTION
At the heart of orthodox requirements engineering

(RE) is the need to understand the problem domain in
order to formulate the system-to-be’s requirements model,
comprising goals, domain assumptions and requirements.

Implicit in this is the assumption that the environmental
context is reasonably static and can be understood
sufficiently well to permit the requirements model for a
workable solution to be formulated with confidence. In
practice, environmental contexts are seldom static over
long periods, and their sheer scale sometimes inhibits
understanding. Nevertheless, RE offers a range of
techniques capable of mitigating or avoiding these
problems provided change happens slowly enough to
allow developers to evaluate the implications and take
appropriate action.

Increasingly, however, systems are being
commissioned for problem contexts that are subject to
change over short periods and in ways that are poorly
understood. In part, this is because the machinery of self-
adaptation has improved, providing a means for systems to
respond at run-time to changing context. For example,
adaptive middleware systems allow software components
providing different functionality or quality of service to be
substituted at run-time. Such compositional adaptivity [41]
has made it technically and economically feasible to
engineer systems, such as smart routers [40] that are able
to optimize their behaviour to prevailing conditions such
as network loads. Complementing the bottom-up driver
for self-adaptive systems provided by improved software
technology, is a problem-driven motivation driven by a
range of pressing real-world problems such as disaster
planning and smart energy management. The common
factor in each of these problem domains is the potential for
rapidly-changing, hard-to-understand environmental
contexts. It seems likely, therefore, that self-adaptivity,
once considered the preserve of robotics research, will
become an increasingly required system property.

However, for this to become true, it is crucial that it is
possible to discover, reason about and manage
requirements for systems that, at run-time, will encounter
environmental contexts about which significant
uncertainty exists at design-time. One key contribution to
the achievement of this has been work on requirements
monitoring, pioneered by the seminal work of Fickas and
Feather [11].

Requirements monitoring is necessary because
deviations between the system’s run-time behaviour and
the requirements model may trigger the need for a system

modification [9]. Such deviation needs to be correlated
with the state of the environment so that the reasons can be
diagnosed and appropriate adaptation performed. Where
systems have the need to adapt dynamically in order to
maintain satisfaction of their goals, requirements
engineering ceases to be a purely static, off-line activity,
but a run-time one too. This is because design-time
decisions about the requirements need to be made on
incomplete and uncertain knowledge about the application
domain and the stakeholders’ goals. There are clear
benefits to being able to revise these decisions at run-time
when more information can be acquired by observing the
system in use. Our argument in this paper, which is an
expansion of the initial ideas presented in [54], is that to
support run-time RE, requirements for self-adaptive
systems need to be run-time entities that can be reasoned
over at run-time.

The essence of our idea is that a self-adaptive system
should be requirements-aware. A requirements-aware
system should be able to introspect about its requirements
in the same way that reflective middleware-based systems
permit introspection about their architectural configuration
[2]. Indeed, since reflective middleware provides an
elegant mechanism for the achievement of compositional
adaptation, requirements reflection would represent a
logical extension of the same principle. Implicit in the
ability for a system to introspect on its requirements model
is the representation of that model at run-time. Recently,
several authors have made important steps in the direction
of requirements-aware systems. Sutcliffe et al. [55] with
their PC-RE method allows requirements to change over
time in the face of contextual uncertainty. Epifani et al.
[50] proposed a run-time methodology to use a feedback
control loop between models of non-functional properties
and implementations. At run-time, the executing system
provides information as feedback that is used to update a
model to increase its correspondence with reality. Analysis
of the updated model at run-time makes it possible to
detect if a desired property (such as performance and
reliability) is violated, causing automatic reconfigurations
or recovery actions aimed at guaranteeing the desired
goals. Where our ideas differ from the above is our explicit
use of computational reflection to serve as the primary
means to achieve requirements-awareness. This means that
there exists a run-time representation of the requirements
models that is causally connected to the executing system.

We identify five key challenges that need to be
addressed for requirements to become useful run-time
entities and for self-adaptive systems capable of operating
resiliently in volatile and poorly-understood environments
to become a reality. These challenges represent a research
agenda that we believe to be necessary in order for RE to
remain relevant for an important and radically different
new class of systems.

The rest of the paper is structured as follows. In
Section II we elaborate on the argument above to motivate
the need for requirements-aware systems, concluding by
enumerating five key challenges. Sections III, IV, V, VI
and VII provide our rationale for each challenge and

pointers to ways in which we believe progress can be
made. Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION
There are two primary drivers for self-adaptive

systems; improved capability, which is making self-
adaptive systems easier to implement, and the emergence
of problems for which self-adaptation offers the most
viable solution.

Improved capability means that programmers now
have access to programming frameworks and run-time
infrastructures that support self-adaptation. These include
adaptive architectures [15] such as OpenCom [5] Rainbow
[42] and the work of Peyman et al. [43]. OpenCom, for
example, provides a component model and a set of open
component libraries. A programmer can define the
architecture and compose it using a set of substitutable
components from the component libraries. Policy rules
define the circumstance under which components can be
substituted, while the architecture is constrained to ensure
that only valid component configurations are created.
Using this model, adaptive applications such as GridStix
can be constructed. GridStix [43] is a sensor grid that
adapts dynamically as the river it monitors changes state.
Hence, for example, the system can switch between
components that implement Bluetooth, IEEE 802.11b or
GPRS communications technologies according to the
demands imposed by battery health, water depth and
resilience.

While the machinery of self-adaptation has improved,
self-adaptation has emerged as a design strategy to
mitigate maintenance costs in systems where factors such
as complexity, mission-criticality or remoteness make off-
line adaptation impractical. Such systems range from
enterprise systems where scale and complexity are the
main drivers for self-adaptation, to embedded systems
where remoteness and inaccessibility drive the choice of
design strategy. Where these drivers are combined with
uncertainty about the environmental context, self-
adaptation may offer the only feasible solution.

Self-adaptation presupposes that a system is able to
sense its environment, detect changes and react
accordingly. If the environment is well-enough understood
the appropriate action to take can be determined because
the relationship between environment and system
behaviour can be determined at design-time. Where the
environment is poorly understood, however, that
relationship cannot be known with certainty and so the
decision of how to react is hard to make. To remedy this, it
is insufficient to merely sense the environment. It is
necessary to monitor to discover when the system
behaviour deviates from its requirements model.
Monitoring requirements’ satisfaction is hard. The
requirements themselves may be imprecise “softgoals” or
non-functional requirements, and they may not be
measurable directly. For example, while individual web-
service response times may be measurable, the end-to-end
quality of service of a composed web service subject to

network latency and uneven user demand may be much
harder to determine on-the-fly.

Despite these difficulties, significant progress has been
made on requirements monitoring [11][20][52]. However,
on the closely-related issue of how to take corrective
action to reconcile system behaviour with the requirements
model when monitoring detects deviancy, research is still
in its infancy. Some progress has been made in the domain
of web services [50], where infrastructure standards help
service discovery and dynamic (re-)binding. But even a
well-defined web service infrastructure where service
specifications can be queried on-line doesn’t help with
reasoning over the requirements model for a composed
service. For example, switching to a functionally
equivalent web service as an alternative to one whose
response time has become unacceptable may impact on
other requirements such as those relating to cost or
security. Such issues can be resolved off-line, particularly
if the monitoring data helps resolve some of the
environmental uncertainty, but only because the
developers have access to the full requirements models
over which they can reason and reach informed resolution
decisions.

To be able to fully exploit requirements monitoring
and realize our vision of a requirements-aware system it
will be necessary to hold the requirements models in
memory in a form that permits the running system itself to
evaluate goal satisfaction in real-time and to propagate the
effects of (e.g.) falsified domain assumptions.
Introspection on requirements models needs to be coupled
with identification of alternative solution strategies. The
system therefore needs to be aware of the capabilities of its
own adaptive machinery and this awareness needs to be
coupled with the requirements models. When the system
behaviour deviates from the requirements models and
triggers a search for suitable corrective action, the range of
available adaptations (perhaps in the form of component
substitutions) can be evaluated and their different trade-
offs balanced to find the most suitable of the available
solutions. Once identified, the adaptation can be enacted
and monitored to evaluate its effect on system behaviour.

To make this work, the requirements model must be
able to tolerate uncertainty. Of course, the monitoring,
reasoning and adaptive capabilities of the system help
tolerate uncertainty, but the requirements models also need
an explicit representation of where uncertainty exists to
know which requirements can be traded off in favour of
critical requirements, and under what circumstances. In all
of this, there will be conflicts as every adaptive strategy
may involve a different set of trade-offs. The adaptive
reasoning mechanism needs to be capable of dealing with
these conflicts, and of reasoning with imperfect
knowledge.

Finally, self-adaptive capabilities do not mean that
traditional, off-line adaptive or corrective maintenance will
not be necessary. Developers will therefore need to be able
to analyse the system’s performance and in particular trace
triggering events, the consequential adaptations and the
reasoning that selected them. Users too, may need access

to explanations for system behaviour in order to build trust
in them.

There are therefore complementary and inter-linked
areas needing research to realize requirements-aware
systems:

1. Run-time representations of requirements
2. Evolution of the requirements model and its

synchronization with the architecture
3. Dealing with uncertainty
4. Multi-objective decision-making
5. Self-explanation
Research challenges for each of these are developed in

more detail over the next five sections.

III. RUN-TIME REPRESENTATIONS OF REQUIREMENTS
Architectural reflection [5][19] offers a pointer to how

requirements may become run-time artifacts. Architectural
reflection allows introspection of the underlying
component-based structures. An architecture meta-model
can be used to get the current architecture information to
determine the next valid step in the execution of the
system. Specifically, the architecture meta-model provides
access to the component graph where components are
nodes and bindings are arcs. Inspection is achieved by
traversing the graph, and adaptation/extension is realized
by inserting or removing nodes or arcs. Such extensions
and changes will be reflected on the systems during run-
time. Crucially, this meta-model supports reasoning about
the architecture of the system. We argue that the same
principles can be applied to allow introspection and
reasoning based on (meta-) models of requirements at run-
time. The mechanisms for achieving this are explored in
the next section. In this section, we focus on run-time
requirements representations in a form suitable for
introspection and adaptation. Introspection would offer the
ability of a run-time requirements entity to reveal
information about itself and hence allow the system to
reason about its requirements.

RE is concerned with the identification of the goals to
be achieved by the system, the operationalization of such
goals as specifications of services and their constrains, and
the assignment of responsibilities for services among
agents [23] (i.e. human, physical, and software
components) forming the system. Goals can be
operationalized in many different ways and the RE process
allows us to explore the choices, detect conflicts between
requirements and select the preferred choice by the
assessment of the effects on the system and its context.
The selection of an appropriate set of choices is essential
to the success of a system. However, inherent uncertainty
about the environment and behavior may make it
impossible to anticipate all the exceptional circumstances.
In contrast to assumptions made during the specification of
the system, the conditions of execution may change
unexpectedly manifesting unforeseen obstacles [56]. As a
result, the selection of the right set of choices, in the case
of self-adaptive systems, may need to be delayed until run-
time when the system can reason to make choices

informed by concrete data sensed from the environment
[11].

Dynamic assessments and reasoning about
requirements imply a run-time representation of system
requirements (i.e. its run-time requirements model [1]) that
is rich enough to support the wide range of run-time
analyses concerning stakeholders’ goals, software
functional and non-functional requirements, alternative
choices, domain assumptions, scenarios, risks, obstacles,
and conflicts. Such run-time representation will drive the
way a system can reason and assess requirements during
run-time and crucially will underpin the four challenges
described in the following sections. To support such
dynamic assessment of requirements, language features
found in goal-oriented requirements modeling languages
KAOS [23] and i* [27] hold particular promise. KAOS is
particularly useful here as it integrates the intentional,
structural, functional, and behavioral aspects of a system,
and offers formal semantics that would allow automated
reasoning over goals.

One way to achieve a run-time representation of
requirements would be to base it on goal-based RE. and,
particularly, to provide language support for representing,
traversing and manipulating instances of a metamodel for
goal modeling, for example based on the KAOS meta-
model [6]. The meta-model could be provided as a set of
built-in constructs to a programming language, or
alternatively be provided in the form of (e.g.) a library.
Crucial, the meta-model must provide a way to represent
and maintain relationships between requirements and
agents and the inter-relationships between requirements, to
dynamically reassign the goals to different agents or to
move to alternative goals in the goal tree. In other words
and in contrast to previous work [6], we envision that this
representation must take place in such a way that is not
only readily understandable by humans but also easily
manipulable by the system itself. This will allow the
persons responsible for maintaining software to query the
software (as opposed to externally stored documentation)
to determine requirements-relevant information, such as:
What are the sub-goals of a goal? Which agents are
responsible for achieving the goal? What assumptions are
associated with a goal? In some cases, the software itself
would also be able to use this information to guide its own
adaptation. The fact that humans would be able to query
the requirements model and its relation to the run-time
behavior may be more important than just letting the
software do so. The benefits of being able to easily
maintain and retrieve up-to-date requirements models go
beyond self-adaptation.

To reason about requirements relationships we also
need to model the inter-requirement relationships. The
right associations between such requirements models and
the implementation artefacts should also be taken into
account to maintain the run-time traceability needed.
Therefore, the run-time representation should enable the
definition of run-time-traceable dependencies of
requirements specifications. Hence, tracing becomes a run-
time activity.

IV. EVOLUTION OF THE REQUIREMENTS MODEL AND ITS
SYNCHRONIZATION WITH THE ARCHITECTURE

Requirements reflection enables self-adaptive systems
to revise and re-evaluate design-time decisions at run-time
when more information can be acquired about these by
observing their own behaviour. We therefore see two
research issues here. One is the evolution of the
requirements models themselves and the maintenance of
consistency between the different views during this
evolution. In order to do this it is necessary to specify how
the system’s requirements can evolve dynamically and to
specify the abstract adaptation thresholds that allow for
uncertainty and unanticipated environmental conditions
[53][4]. Unfortunately, to our knowledge none of the
existing techniques deal with this degree of evolution,
incomplete information, or uncertainty.

The second research issue is the need to maintain the
synchronization of the run-time requirements model and
the software architecture as either the requirements are
changed from above or the architecture is changed from
below. Current work on computational reflection offers a
potential way to structure the run-time relationship
between the requirements model and the architecture.
Traditionally, reflective architectures are organized into
two causally-connected layers [5]– the base layer, which
consists of the actual running architecture – and the meta-
layer, which consists of meta-objects, accessible through a
meta-object protocol (MOP), for dynamically
manipulating the running architecture. We envision a
similar strategy for achieving requirements reflection: a
base layer consisting of run-time requirements objects (i.e.
the requirements models) and a meta-layer allowing
dynamic access and manipulation of requirements objects
(i.e. stakeholders’ goals, goal refinements, alternative
choices, domain assumptions, etc.). This way of
structuring requirements reflection therefore leads to two
strata – one for requirements and one for architecture –
each encompassing a causally-connected base and meta-
layer. As in the case of the traditional architecture meta-
model (which offers operations over components and
connectors), we can define primitives for the goal-based
requirements meta-model that allows the meta-level to
modify the base-level for the case of the requirements
stratum. These primitives might include add_requirement,
delete_requirement, replace_requirement, add_goal,
delete_goal, replace_goal, obtain_agent_from_goal,
assign_agent_to_goal. A library of requirements model
transformation operators, in the spirit of [45], would then
be defined on top of these primitive operations. The rich
catalogue of model transformation patterns for goal
refinement, conflict resolution and obstacle resolution
associated with the KAOS language [23] may provide the
basis for defining this library. It would also be
complemented with operators for resolving inconsistencies
between multiple views in the spirit of Xlinkit [46] or
techniques for automatically fixing inconsistencies in
UML models [47]. Figure 1 summarizes the proposed
structure.

Figure 1. Synchronization between run-time requirements and the

architecture

The structures in Figure 1 would require coordination
between the upper requirements stratum and the lower
architecture stratum. As a simple example, if a goal is
changed in the upper stratum, then the running system may
identify a set of components in the architecture to replace.
Put more simply, changes in the software architecture
should be monitored to ensure that the requirements are
not broken; and changes to the requirements at run-time
should be reflected in the running system through dynamic
generation of changes to the software architecture.. For
this to be possible there needs to be a tight semantic
integration between requirements and architecture models.
While there are many similarities between requirements
engineering models and architecture description
languages, subtle semantic differences between existing
languages make the relation between the two models
complex [48]. Integration between requirements and
architecture is already an urgent area for research. It is
particularly important for requirements-aware systems that
progress is made.

V. DEALING WITH UNCERTAINTY
A key challenge when developing self-adaptive

systems is how to tame uncertainty about the environment.
It is important to understand that uncertainty and change
are related, but distinct concepts. An environment that
changes, but for which the nature of those changes is
known, can be handled using standard development
techniques such as defining adaptation trigger conditions.
In such cases, requirements awareness is not strictly
necessary. More interesting, however, are cases where the
environment changes in ways that cannot be predicted. In
this situation, it is not adequate to define adaptation
triggers because the correct triggering conditions cannot be
anticipated at design-time. An alternative solution is
therefore required: either one that learns new triggering
conditions at run-time, or, as proposed in this paper, a
higher-level adaptation mechanism in which requirements
themselves are represented at run-time, monitored, and
traded-off against each other, if necessary, when
unexpected contextual changes take place.

 Handling uncertainty depends of course on how
uncertain a phenomenon is. Although uncertainty can be
measured on a variety of different scales, at different
levels of granularity, a useful 4-level classification is
provided by Courtney [28]:
• Level one: general confidence about the shape of the

future, but some key variables do not have precise
values. It is possible to make some estimates and to
establish a range of possible outcomes.

• Level two: there are a variety of possible future
scenarios but it is possible to list them and they are
mutually exclusive and exhaustive.

• Level three: it is feasible to construct future scenarios
but these are mere possibilities and are unlikely to be
exhaustive.

• Level four: it is not even possible to frame possible
future scenarios. Any scenario is likely to be just a
wish list and may have little bearing on reality.

Although taken from business theory, this
classification can be applied to self-adaptive systems.
Level one corresponds to the fact that change is known to
happen, but that there is little or no uncertainty about the
change. Standard trigger conditions could be used to
implement solutions in this case. Level two is a little more
complex because it requires designers to take into account
the full range of possible scenarios. A possible
development solution in this case is provided by
techniques such as dynamic software product lines that
enumerate all alternative environmental conditions and
design adaptations accordingly. Level four is beyond the
scope of this paper since the uncertainty level is too high
to expect any kind of self-adaptation. However, level three
is where we feel requirements awareness can be effective.

In the short term, we believe that RE should consider a
move away from binary satisfaction conditions for
requirements to more nuanced notions of requirements
conformance. As an example why this is necessary,
consider a self-adaptive system with two overarching
requirements: to perform a given task well and to perform
it efficiently. A naïve approach to requirements monitoring
might attach thresholds as to what constitutes “well” and
“efficiently”. The problem with this is that a slight change
in efficiency or “wellness” will trigger an adaptation when
it may in fact not be necessary.

A second consideration is that, for self-adaptive
systems, not all requirements have equal standing. If the
environment changes unexpectedly, for instance, it may
be wise temporarily not to satisfy a non-critical
requirement if it means that a critical requirement will
continue to be satisfied.

To address such issues, we call for research into how
existing requirements languages and methodologies can
be extended so that self-adaptive systems have run-time
flexibility to temporarily ignore some requirements in
favour of others – that is, we envisage run-time trade-offs
of requirements being made as the environment changes.

As a first step, we have developed the RELAX
requirements language for adaptive systems [26][4][49].
RELAX defines a vocabulary for specifying varying
levels of uncertainty in natural language requirements and
has a formal semantics defined in terms of fuzzy
branching temporal logic. This allows a requirements
engineer to specify ideal cases but leaves a self-adaptive
system the flexibility to trade-off requirements at run-time
as environmental conditions change – i.e., certain
requirements can be temporarily RELAX-ed.

As a very simple example, consider a protocol that
synchronizes various computing devices in a smart office
environment. One requirement for such a system might
be:

The synchronization process SHALL be initiated when the
device owner enters the room and at 30 minute intervals
thereafter.

RELAX provides a process that assists a requirements

engineer to make a decision whether a requirement should
be RELAX-ed. In this case, s/he might decide that the hard
thresholds are not crucial and RELAX the requirement to:

The synchronization process SHALL be initiated AS
EARLY AS POSSIBLE AFTER the device enters the room
and AS CLOSE AS POSSIBLE TO 30 minute intervals
thereafter.

Given a set of RELAX-ed requirements, they can be

traded-off at run-time. For example, critical requirements
would not be RELAX-ed, whereas less critical ones would
be; in this case, the self-adaptive system can autonomously
decide to temporarily not fully satisfy such requirements.
RELAX provides a set of well-defined operators (e.g., AS
EARLY AS POSSIBLE, AFTER above) which can be
used to construct flexible requirements in a well-defined
way. It also offers a way to model the key properties of the
environment that will affect adaptation. Although there is a
formal semantics, in terms of fuzzy logic, for RELAX,
there is not as yet an implementation that actually monitors
RELAX-ed requirements at run-time. This therefore is a
clear avenue for immediate research.

Fuzzy logic is not the only formalism that could be
used to reason about uncertainty in the environment, of
course. Numerous mathematical and logical frameworks
exist for reasoning about uncertainty [13]. For example,
probabilistic model checkers have been used to specify
and analyse properties of probabilistic transition systems
[16] and Bayesian networks enable reasoning over
probabilistic causal models [10]. However, only limited
attention has been shown so far to the treatment of
uncertainty in requirements engineering models. Our
ongoing work has the objective to develop extensions to
goal-oriented requirements modeling languages to support
modeling and reasoning about uncertainty in design-time
and run-time models.

In the longer term, self-adaptive systems, and RE in
particular, needs a theory of uncertainty. Given such a
theory, requirements for self-adaptive systems could be
related to the uncertainty in the environment and could be
monitored or adapted according to that uncertainty. Other
fields of study offer possible starting points for such a
theory – for example, risk analysis for possible security
issues in software-intensive systems [29], risk assessments
in engineering disciplines [30], the economics of
uncertainty [31], and uncertainty in management theory
[28], as well as well-known mathematical models of
uncertainty such as Bayesian networks. All of these fields
have developed theories for dealing with uncertainty in
their respective domains. An interesting longer-term
research question is to distill some of this thinking and
incorporate it into requirements engineering for self-
adaptive systems.

VI. MULTI-OBJECTIVE DECISION-MAKING
Because of the nature of conflicting requirements, run-

time resolutions of uncertainty inherently involve multi-
objective decision making. In software engineering, multi-
objective decision making techniques most often rely on
constructing a utility function, defined as the weighted
sum of the different objectives. However, this approach
suffers from a number of drawbacks. Firstly, it is well
known that correctly identifying the weight of each goal is
a major difficulty. Secondly, the approach hides conflicts
between multiple goals under a single aggregate objective
function rather than truly exposing the conflicts and
reasoning about them.

We argue, in contrast, that users must be involved in
the decision making process in an interactive fashion.
Consider a smart energy management system based on
mobile energy monitors placed within a household that can
sense both energy usage and household activity. The
system can adjust heating levels in different rooms
according to the presence or absence of inhabitants or, it
might override pre-set heating controls to respond to
sudden weather changes. The system thus needs to be
adaptive to respond to contextual changes and changes in
people’s behaviour. The system’s decision-making must of
necessity be multi-objective with comfort of the users,
economy and the needs of individuals within a household
potentially in tension. At run-time we need to understand
the current behaviour of the system and cope with future
behaviour. Such an approach provides more flexibility
than predefined utility functions as it would allow the
relative importance of goals to be discovered and modified
at run-time. By engaging users in the decision making
process, it would also increase their trust and
understanding of the system’s adaptive behaviour. The
core technical challenge here is to integrate and adapt
existing interactive multi-criteria decision approaches to
the problem of making run-time decisions about
alternatives in goal models. We envisage a mathematical
framework that supports decision making about
requirements alternatives; the parameters used in the
decision model should be measurable so that they can be

related to the data collected during system monitoring; and
the computational complexity of the decision model should
be such that it can be evaluated efficiently at run-time.
Such a framework can build on existing outranking and
interactive approaches to multi-criteria decision-making
[21] [51] as well as on research on evaluating alternatives
[18] and dealing with conflicts in goal models [24].

VII. SELF-EXPLANATION
A well-known problem with self-adaptive systems is

that users may not understand or trust them. Such a lack of
intelligibility can mean that users may cease to use a self-
adaptive system [36]. One well-studied approach to
addressing this problem is to provide human-readable
explanations of adaptive behaviour. The intuition is that if
a user can query the system’s decisions, s/he is less likely
to abandon it and, indeed, may accept the system’s choices
over his/her own, which may not be based on a full
understanding of the system and the context.

The provision of understandable explanations of
system behaviour has been studied in a number of research
fields: principally, in knowledge-based systems [35][38],
intelligent tutoring systems [32], context-aware systems
[37][34], and debugging [39]. Depending on the
application, a range of information and a range of
interaction styles can be supported in explanations. Lim et
al [37] provide a useful classification of explanation types
as follows:

• What: What did the system do?
• Why: Why did the system do it?
• Why not: Why did the system not do something

else?
• What if: What would the system do in a

hypothetical scenario?
• How to: How can the system be forced to do

something, given the current context?
Interestingly, Lim et al report on a controlled experiment
comparing the effectiveness of the last four of these
explanation types on user understanding and trust of the
system. Perhaps surprisingly, although why and why not
explanations show a significant improvement in user trust
and understanding, as compared to no explanation, what if
and how to provide no improvement in their study. This
may suggest that, when designing self-explanation
capabilities, designers should focus resources on why and
why not.

The level of complexity of providing explanations
depends crucially on the technology used to implement
adaptation. Basic context-aware systems, for example, use
rules to identify a situation and change behaviour
accordingly. Much of the work in intelligibility of context-
aware systems does not consider interactions between
rules and, in such cases, providing explanations is fairly
straightforward since a rule Context → Change, can be
handled by keeping track of which rule triggered a change
and then presenting, in a user-friendly way, the contextual
condition which enabled the rule. Chains of rules can be
handled using backward chaining or abduction.

At the other extreme, self-adaptive systems based on
machine learning or AI techniques (e.g., Support Vector
Machines or Neural Networks) are black boxes that are not
inherently interpretable. Although there has been some
work on extracting rules from such technical solutions
(e.g., [33]), which can then be used to derive explanations,
explaining such systems will remain a major challenge for
the foreseeable future.

In the context of requirements reflection, as described
in this paper, the technique for self-adaptation is based on
a run-time goal model and qualitative and quantitative
reasoning about how the organisation of the goal model
changes over time. The tree-based structure of goal models
means that existing techniques for explanations in context-
aware systems based on decision trees (e.g., [37]) are
immediately applicable. However, there are additional
challenges which will have to be addressed, namely:

1. How to explain the interaction of multiple
conflicting goals and their corresponding
adaptations? The majority of existing work has
tackled only one adaptation rule at a time and has
not considered how to explain, in an
understandable way, the interplay between
multiple rules, e.g., why one requirement has been
traded-off against another.

2. How to explain the link between requirements and
architecture? Although some end-users may not
wish to see explanations in terms of architectural
elements, for more advanced users (e.g.,
developers or extenders of a self-adaptive system),
it will be important to understand how a change in
the goal model is reflected in a change in the run-
time architecture model. Explaining such links
requires synchronization between goals and
architecture, as discussed in Section III, and
requires that this synchronization is adequately
conveyed to the user.

3. How to explain fuzzy behaviour? Soft computing
is likely to be a key component of many self-
adaptive systems and, as noted above, the
complexity of the explanation mechanism depends
heavily on the complexity of the adaptation
implementation technique. In our own case, as
highlighted in Section IV, one of the techniques
we are investigating is fuzzy temporal logic. This
clearly presents challenges in terms of how to
interpret and present decisions based on fuzzy
boundary conditions – e.g., will the user
understand why a key adaptation decision was
taken based on reaching a “rough” threshold?

An additional research challenge worth exploring is in
how best to present explanations, which essentially consist
of a trace of system behaviour (in our case, a sequence of
operations applied to the run-time requirements and/or
architecture models), in an intuitive way which is easy and
quick for users to grasp. The best method of presentation,
of course, depends on the type of user, but one potential
method from software engineering is the use of scenarios
as a presentation technique. Scenarios are well-known in

the requirements engineering community as a
representation that is easy to understand by a variety of
different stakeholder groups, and we therefore posit that
they could be effectively used within a self-explaining
adaptive system.

VIII. CONCLUSIONS
We have argued that self-adaptive systems should be

requirements-aware systems. Our motivation for
advocating requirements-awareness is that
self-adaptive systems are increasingly being tasked with
operating in volatile and poorly-understood environments.
At design-time, sufficient uncertainty about the
environment exists that requirements engineers can only
hypothesize about the states and events that the
system may encounter at run-time. Because so much is
based on conjecture, the systems need the ability to self-
adapt to cope with unforeseen or partly-understood events
if it is to be adequately resilient to unanticipated
environmental contexts.

A number of advances have been made in RE that
support this vision; notably work on requirement
monitoring and more recent work that builds upon
monitoring to maintain run-time
requirements representations [11][20][49][54]. However,
our manifesto is framed in terms of requirements
reflection; that we need to extend the principles that allow
advanced reflective systems and reflective middleware
platforms to introspect about their architecture, upwards
into the requirements level. This will provide the means to
observe how the system’s behaviour matches that
predicted in its requirements models. This in turn requires
that the requirements models cease to be strictly off-line,
passive entities and become run-time objects that can be
queried and manipulated to (e.g.) re-assign goal
satisfaction responsibility between different agents as the
needs of the fluctuating environmental context dictate.

Implicit in requirements reflection is that the system’s
architecture and requirements models are synchronized
since different architectural configurations often imply
different trade-offs, particularly in terms of soft goal
satisfaction. Such trade-offs often necessitate
the resolution of conflicting goals. Uncertainty and the
scale of the possible solution space preclude enumeration
and resolution of such conflicts at design-time, so the
necessary resolution reasoning needs to occur at run-time.
Underpinning these principles is a need to be able to
express the uncertainty that exists in terms of what it
is that is uncertain and the boundaries of what is
acceptable in terms of goal satisficement when
unanticipated events occur and conflicting goals need to be
traded-off. Finally, a self-adaptive system is likely to
exhibit emergent behaviour. Developers need to be able to
trace the origin of this behaviour and users need to be gain
confidence in the system. These both require an ability for
the system to account for its behaviour in some appropriate
form.

The machinery for self-adaptation already exists and is
increasingly being deployed in systems with limited
context-awareness and reconfigurability capabilities. RE
has a critical role to play if future self-adaptive systems are
to reach the point where they can be developed and
deployed with confidence in their ability to survive
and deliver their intended service. The research agenda set
out in this paper will, we believe, help achieve this.

Acknowledgements: Thanks to Gordon S. Blair and

Paul Grace for their discussion on the ideas presented in
this paper.

REFERENCES
[1] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Models@

run.time. IEEE Computer, 42(10):22–27, 2009.
[2] L. Capra, G. Blair, C. Mascolo, W. Emmerich, and P. Grace.

Exploiting reflection in mobile computing middleware. ACM
SIGMOBILE Mobile Computing and Communications Review,
6(4):34–44, 2002.

[3] Betty H. C. Cheng, Holger Giese, Paola Inverardi, Jeff Magee, and
Rogerio de Lemos. Software engineering for self-adaptive systems:
A research road map. In Software Engineering for Self-Adaptive
Systems. Springer, 2008. LNCS, 5525.

[4] Betty H.C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle.
Goal-based modeling approach to develop requirements for
adaptive systems with environmental uncertainty. In MODELS
2009, 2009.

[5] G. Coulson, G.S. Blair, P. Grace, A. Joolia, K. Lee, J. Ueyama,
and T. Sivaharan. A generic component model for building
systems software. ACM Trans. on Comp. Syst, 2008.

[6] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Sci. Comput. Program., 20(1-
2):3–50, 1993.

[7] A. Dingwall-Smith. Run-Time Monitoring of Goal-Oriented
Requirements Specifications. PhD thesis, UCL, UK, 2006.

[8] S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe,
F. Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A
survey of autonomic communications. ACM Trans. on Auton. and
Adapt. Systems, 2:223–259, 2006.

[9] M.S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard.
Reconciling system requirements and run-time behavior.
Workshop Software Specification and Design, 1998.

[10] N. Fenton and M. Neil. Making decisions: using bayesian nets and
mcda. Knowl.-Based Syst., 14(7):307–325, 2001.

[11] S. Fickas and M.S. Feather. Requirements monitoring in dynamic
environments. In RE Conf., 1995.

[12] Heather J. Goldsby, Pete Sawyer, Nelly Bencomo, Danny Hughes,
and Betty H.C. Cheng. Goal-based modeling of dynamically
adaptive system requirements. In IEEE ECBS Conf., 2008.

[13] Joseph Y. Halpern. Reasoning about Uncertainty. The MIT Press,
October 2003.

[14] Fabio Kon, Fabio Costa, Gordon Blair, and Roy Campbell. The
case for reflective middleware. Communications of the ACM,
45(6):33–38, 2002.

[15] Jeff Kramer and Jeff Magee. Self-managed systems: an
architectural challenge. In FOSE '07: 2007 Future of Software
Engineering, pages 259–268. IEEE Computer Society, 2007.

[16] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
Probabilistic symbolic model checking with prism: A hybrid
approach. In TACAS, pages 52–66, 2002.

[17] Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and
Yijun Yu. Towards requirements-driven autonomic systems
design. In DEAS Workshop, 2005.

[18] Emmanuel Letier and Axel van Lamsweerde. Reasoning about
partial goal satisfaction for requirements and design engineering.
In Symposium on Foundations of software engineering, pages 53–
62, NY, USA, 2004. ACM.

[19] P. Maes. Computional reflection. PhD thesis, Vrije Universiteit,
1987.

[20] William N. Robinson. A requirements monitoring framework for
enterprise systems. Requir. Eng., 11(1):17–41, 2006.

[21] B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer
Academic, Dordrecht, 1996.

[22] George Spanoudakis and Khaled Mahbub. Requirements
monitoring for service-based systems: Towards a framework based
on event calculus. In ASE, pages 379–384, 2004.

[23] Axel van Lamsweerde. Requirements Engineering: From System
Goals to UML Models to Software Specifications. John Wiley &
Sons, 2009.

[24] Axel van Lamsweerde, Robert Darimont, and Emmanuel Letier.
Managing conflicts in goal-driven requirements engineering. IEEE
Trans. Sof. Eng., 24(11):908–926, 1998.

[25] Yiqiao Wang, Sheila A. McIlraith, Yijun Yu, and John
Mylopoulos. Monitoring and diagnosing software requirements.
Autom. Softw. Eng., 16(1):3–35, 2009.

[26] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H.C. Cheng, and
Jean-Michel Bruel. Relax: Incorporating uncertainty into the
specification of self-adaptive systems". In RE Conf., 2009.

[27] E. Yu. Towards modeling and reasoning support for early-phase
requirements engineering. In RE Conf., USA, 1997.

[28] H. Courtney. 20/20 Foresight: Crafting Strategy in an Uncertain
World, Harvard Business School Press, 2001.

[29] T. Peltier, Information Security Risk Analysis, Auerbach
Publications, 2010.

[30] M. Stewart and R. Melchers. Probabilistic Risk Assessment of
Engineering Systems, Springer 1997.

[31] C. Gollier. The Economics of Risk and Time, MIT Press, 2001.
[32] J.R. Anderson, A.T. Corbett, K.R. Koedinger, and R. Pelletier,

Cognitive Tutors: Lessons Learned, Journal of the Learning
Sciences, 4(2), 167-207, 1995.

[33] R. Andrews, J. Diederich, and A.Tickle, A Survey and Critique of
Techniques for Extracting Rules from Trained Artificial Neural
Networks. Knowledge-Based Systems, 8, 373-389, 1995.

[34] V. Bellotti and W.K. Edwards, Intelligibility and Accountability:
Human Considerations in Context-Aware Systems, Human-
Computer Interaction, 16(2-4), 193-212, 2001.

[35] S. Gregor and I. Benbasat, Explanations from Intelligent Systems:
Theoretical Foundations and Implications for Practice. MIS
Quarterly, 23(4), 497-530, 1999.

[36] B.Muir, Trust in Automation: Part I, Theoretical Issues in the
Study of Trust and Human Intervention in Automated Systems.
Ergonomics, 37(11), 1905-1922, 1994.

[37] B.Y.Lim, A.K. Dey and D. Avrahami, Why and Why Not
Explanations Improve the Intelligibility of Context-Aware
Intelligent Systems, CHI 2009, 2009.

[38] J. Whittle, J. van Baalen, J. Schumann, P. Robinson, T.
Pressburger, J. Penix, P. Oh, M. Lowry, and G. Brat.
Amphion/NAV: Deductive synthesis of state estimation software.
In Automated Software Engineering, pages 395–399, 2001.

[39] N. Subrahmaniyan, C. Kissinger, K. Rector, D. Inman, J. Kaplan,
L. Beckwith, M. Burnett, Explaining Debugging Strategies to End-
User Programmers. VL/HCC 2007, 127-136, 2007

[40] Schantz, R. E., Loyall, J. P., Rodrigues, C., Schmidt, D. C.,
Krishnamurthy, Y., and Pyarali, I. 2003. Flexible and adaptive
QoS control for distributed real-time and embedded middleware.
In Proceedings of the ACM/IFIP/USENIX 2003 international
Conference on Middleware (Rio de Janeiro, Brazil, June 16 - 20,

2003). M. Endler, Ed. Middleware Conference. Springer-Verlag
New York, New York, NY, 374-393.

[41] Philip K. McKinley and Seyed Masoud Sadjadi and Eric P. Kasten
and Betty H.C. Cheng. 2004. Composing Adaptive Software. IEEE
Computer, 37 (7), 56-64.

[42] David Garlan, Shang-Wen Cheng, An-Cheng Huang, Bradley
Schmerl, and Peter Steenkiste. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. IEEE Computer, 37(10),
46-54, 2004.

[43] Peyman Oreizy, Nenad Medvidovic, and Richard Taylor .; ,
"Architecture-Based Runtime Software Evolution ," In
Proceedings of the 20th international Conference on Software
Engineering (Kyoto, Japan, 1998), IEEE Computer Society Press,
Washigton DC, USA, 177-186.

[44] Hughes, D., Greenwood, P., Coulson, G., and Blair, G. 2006.
GridStix: Supporting Flood Prediction using Embedded Hardware
and Next Generation Grid Middleware. In Proceedings of the 2006
international Symposium on on World of Wireless, Mobile and
Multimedia Networks (June 26 - 29, 2006). International Workshop
on Wireless Mobile Multimedia. IEEE Computer Society,
Washington, DC, 621-626

[45] Johnson, W. L. and Feather, M. 1990. Building an evolution
transformation library. In Proceedings of the 12th international
Conference on Software Engineering (Nice, France, March 26 - 30,
1990). International Conference on Software Engineering. IEEE
Computer Society Press, Los Alamitos, CA, 238-248.

[46] Nentwich, C., Emmerich, W., and Finkelstein, A. 2003.
Consistency management with repair actions. In Proceedings of
the 25th international Conference on Software Engineering
(Portland, Oregon, May 03 - 10, 2003). International Conference
on Software Engineering. IEEE Computer Society, Washington,
DC, 455-464.

[47] Egyed, A. 2007. Fixing Inconsistencies in UML Design Models. In
Proceedings of the 29th international Conference on Software
Engineering (May 20 - 26, 2007). International Conference on
Software Engineering. IEEE Computer Society, Washington, DC,
292-301.

[48] Letier, E., Kramer, J., Magee, J., and Uchitel, S. 2008. Deriving
event-based transition systems from goal-oriented requirements
models. Automated Software Engg. 15, 2 (Jun. 2008), 175-206.

[49] Whittle, J., Sawyer, P., Bencomo, N., Cheng, B., Bruel, J-M.:
“RELAX: A Language to Address Uncertainty in Self-Adaptive
Systems Requirements”, Invited submission to the Requirements
Engineering Journal. Accepted for publication

[50] Epifani, I., Ghezzi, C., Mirandola, R., and Tamburrelli, G. 2009.
Model evolution by run-time parameter adaptation. In Proceedings
of the 2009 IEEE 31st international Conference on Software
Engineering (May 16 - 24, 2009). International Conference on
Software Engineering. IEEE Computer Society, Washington, DC

[51] P. Vincke. Multicriteria Decision-Aid. J. Wiley, New York, 1992.
[52] Baresi, L., Ghezzi, C., and Guinea, S. 2004. Smart monitors for

composed services. In Proceedings of the 2nd international
Conference on Service Oriented Computing (New York, NY,
USA, November 15 - 19, 2004). ICSOC '04. ACM, New York,
NY, 193-202.

[53] Cheng, B. H. and Atlee, J. M. 2007. Research Directions in
Requirements Engineering. In 2007 Future of Software
Engineering (May 23 - 25, 2007). International Conference on
Software Engineering. IEEE Computer Society, Washington, DC,
285-303

[54] Bencomo, N., Whitlle, J., Sawyer, P., Finkelstein, A., Letier, E.
2010. Requirements Reflection: Requirements as Runtime Entities,
In Proceedings of the 2010 IEEE 32nd International Conference on
Software Engineering (May 2 – 8, 2010). International Conference
on Software Engineering. IEEE Computer Society, Washington,
DC

[55] Sutcliffe, A., Fickas, S., and Sohlberg, M. M. 2006. PC-RE: a
method for personal and contextual requirements engineering with
some experience. Requir. Eng. 11, 3 (Jun. 2006), 157-173

[56] van Lamsweerde, A. and Letier, E. 2000. Handling Obstacles in
Goal-Oriented Requirements Engineering. IEEE Trans. Softw.
Eng. 26, 10 (Oct. 2000), 978-1005

