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Abstract— Requirements are sensitive to the context in 
which the system-to-be must operate. Where such 
context is well-understood and is static or evolves 
slowly, existing RE techniques can be made to work 
well. Increasingly, however, development projects are 
being challenged to build systems to operate in 
contexts that are volatile over short periods in ways 
that are imperfectly understood. Such systems need to 
be able to adapt to new environmental contexts 
dynamically, but the contextual uncertainty that 
demands this self-adaptive ability makes it hard to 
formulate, validate and manage their requirements. 
Different contexts may demand different requirements 
trade-offs. Unanticipated contexts may even lead to 
entirely new requirements. To help counter this 
uncertainty, we argue that requirements for self-
adaptive systems should be run-time entities that can 
be reasoned over in order to understand the extent to 
which they are being satisfied and to support 
adaptation decisions that can take advantage of the 
systems’ self-adaptive machinery. We take our 
inspiration from the fact that explicit, abstract 
representations of software architectures used to be 
considered design-time-only entities but computational 
reflection showed that architectural concerns could be 
represented at run-time too, helping systems to 
dynamically reconfigure themselves according to 
changing context. We propose to use analogous 
mechanisms to achieve requirements reflection. In this 
paper we discuss the ideas that support requirements 
reflection as a means to articulate some of the 
outstanding research challenges.  

Keywords- Requirements, reflection, run-time, self-
adaptive systems  

I.  INTRODUCTION  
At the heart of orthodox requirements engineering 

(RE) is the need to understand the problem domain in 
order to formulate the system-to-be’s requirements model, 
comprising goals, domain assumptions and requirements. 

Implicit in this is the assumption that the environmental 
context is reasonably static and can be understood 
sufficiently well to permit the requirements model for a 
workable solution to be formulated with confidence. In 
practice, environmental contexts are seldom static over 
long periods, and their sheer scale sometimes inhibits 
understanding. Nevertheless, RE offers a range of 
techniques capable of mitigating or avoiding these 
problems provided change happens slowly enough to 
allow developers to evaluate the implications and take 
appropriate action. 

Increasingly, however, systems are being 
commissioned for problem contexts that are subject to 
change over short periods and in ways that are poorly 
understood. In part, this is because the machinery of self-
adaptation has improved, providing a means for systems to 
respond at run-time to changing context. For example, 
adaptive middleware systems allow software components 
providing different functionality or quality of service to be 
substituted at run-time. Such compositional adaptivity [41] 
has made it technically and economically feasible to 
engineer systems, such as smart routers [40] that are able 
to optimize their behaviour to prevailing conditions such 
as network loads.  Complementing the bottom-up driver 
for self-adaptive systems provided by improved software 
technology, is a problem-driven motivation driven by a 
range of pressing real-world problems such as disaster 
planning and smart energy management. The common 
factor in each of these problem domains is the potential for 
rapidly-changing, hard-to-understand environmental 
contexts. It seems likely, therefore, that self-adaptivity, 
once considered the preserve of robotics research, will 
become an increasingly required system property.  

However, for this to become true, it is crucial that it is 
possible to discover, reason about and manage 
requirements for systems that, at run-time, will encounter 
environmental contexts about which significant 
uncertainty exists at design-time. One key contribution to 
the achievement of this has been work on requirements 
monitoring, pioneered by the seminal work of Fickas and 
Feather [11]. 

Requirements monitoring is necessary because 
deviations between the system’s run-time behaviour and 
the requirements model may trigger the need for a system 



  

modification [9]. Such deviation needs to be correlated 
with the state of the environment so that the reasons can be 
diagnosed and appropriate adaptation performed. Where 
systems have the need to adapt dynamically in order to 
maintain satisfaction of their goals, requirements 
engineering ceases to be a purely static, off-line activity, 
but a run-time one too. This is because design-time 
decisions about the requirements need to be made on 
incomplete and uncertain knowledge about the application 
domain and the stakeholders’ goals. There are clear 
benefits to being able to revise these decisions at run-time 
when more information can be acquired by observing the 
system in use. Our argument in this paper, which is an 
expansion of the initial ideas presented in [54], is that to 
support run-time RE, requirements for self-adaptive 
systems need to be run-time entities that can be reasoned 
over at run-time.  

The essence of our idea is that a self-adaptive system 
should be requirements-aware. A requirements-aware 
system should be able to introspect about its requirements 
in the same way that reflective middleware-based systems 
permit introspection about their architectural configuration 
[2]. Indeed, since reflective middleware provides an 
elegant mechanism for the achievement of compositional 
adaptation, requirements reflection would represent a 
logical extension of the same principle. Implicit in the 
ability for a system to introspect on its requirements model 
is the representation of that model at run-time. Recently, 
several authors have made important steps in the direction 
of requirements-aware systems.  Sutcliffe et al. [55] with 
their PC-RE method allows requirements to change over 
time in the face of contextual uncertainty. Epifani et al. 
[50] proposed a run-time methodology to use a feedback 
control loop between models of non-functional properties 
and implementations. At run-time, the executing system 
provides information as feedback that is used to update a 
model to increase its correspondence with reality. Analysis 
of the updated model at run-time makes it possible to 
detect if a desired property (such as performance and 
reliability) is violated, causing automatic reconfigurations 
or recovery actions aimed at guaranteeing the desired 
goals. Where our ideas differ from the above is our explicit 
use of computational reflection to serve as the primary 
means to achieve requirements-awareness. This means that 
there exists a run-time representation of the requirements 
models that is causally connected to the executing system. 

We identify five key challenges that need to be 
addressed for requirements to become useful run-time 
entities and for self-adaptive systems capable of operating 
resiliently in volatile and poorly-understood environments 
to become a reality. These challenges represent a research 
agenda that we believe to be necessary in order for RE to 
remain relevant for an important and radically different 
new class of systems. 

The rest of the paper is structured as follows. In 
Section II we elaborate on the argument above to motivate 
the need for requirements-aware systems, concluding by 
enumerating five key challenges. Sections III, IV, V, VI 
and VII provide our rationale for each challenge and 

pointers to ways in which we believe progress can be 
made. Section VIII concludes the paper. 

II. BACKGROUND AND MOTIVATION 
There are two primary drivers for self-adaptive 

systems; improved capability, which is making self-
adaptive systems easier to implement, and the emergence 
of problems for which self-adaptation offers the most 
viable solution.  

Improved capability means that programmers now 
have access to programming frameworks and run-time 
infrastructures that support self-adaptation. These include 
adaptive architectures [15] such as OpenCom [5] Rainbow 
[42] and the work of Peyman et al. [43]. OpenCom, for 
example, provides a component model and a set of open 
component libraries. A programmer can define the 
architecture and compose it using a set of substitutable 
components from the component libraries. Policy rules 
define the circumstance under which components can be 
substituted, while the architecture is constrained to ensure 
that only valid component configurations are created. 
Using this model, adaptive applications such as GridStix 
can be constructed. GridStix [43] is a sensor grid that 
adapts dynamically as the river it monitors changes state. 
Hence, for example, the system can switch between 
components that implement Bluetooth, IEEE 802.11b or 
GPRS communications technologies according to the 
demands imposed by battery health, water depth and 
resilience. 

While the machinery of self-adaptation has improved, 
self-adaptation has emerged as a design strategy to 
mitigate maintenance costs in systems where factors such 
as complexity, mission-criticality or remoteness make off-
line adaptation impractical. Such systems range from 
enterprise systems where scale and complexity are the 
main drivers for self-adaptation, to embedded systems 
where remoteness and inaccessibility drive the choice of 
design strategy. Where these drivers are combined with 
uncertainty about the environmental context, self-
adaptation may offer the only feasible solution.  

Self-adaptation presupposes that a system is able to 
sense its environment, detect changes and react 
accordingly. If the environment is well-enough understood 
the appropriate action to take can be determined because 
the relationship between environment and system 
behaviour can be determined at design-time. Where the 
environment is poorly understood, however, that 
relationship cannot be known with certainty and so the 
decision of how to react is hard to make. To remedy this, it 
is insufficient to merely sense the environment. It is 
necessary to monitor to discover when the system 
behaviour deviates from its requirements model. 
Monitoring requirements’ satisfaction is hard. The 
requirements themselves may be imprecise “softgoals” or 
non-functional requirements, and they may not be 
measurable directly. For example, while individual web-
service response times may be measurable, the end-to-end 
quality of service of a composed web service subject to 



  

network latency and uneven user demand may be much 
harder to determine on-the-fly.  

Despite these difficulties, significant progress has been 
made on requirements monitoring [11][20][52]. However, 
on the closely-related issue of how to take corrective 
action to reconcile system behaviour with the requirements 
model when monitoring detects deviancy, research is still 
in its infancy. Some progress has been made in the domain 
of web services [50], where infrastructure standards help 
service discovery and dynamic (re-)binding. But even a 
well-defined web service infrastructure where service 
specifications can be queried on-line doesn’t help with 
reasoning over the requirements model for a composed 
service. For example, switching to a functionally 
equivalent web service as an alternative to one whose 
response time has become unacceptable may impact on 
other requirements such as those relating to cost or 
security. Such issues can be resolved off-line, particularly 
if the monitoring data helps resolve some of the 
environmental uncertainty, but only because the 
developers have access to the full requirements models 
over which they can reason and reach informed resolution 
decisions.  

To be able to fully exploit requirements monitoring 
and realize our vision of a requirements-aware system it 
will be necessary to hold the requirements models in 
memory in a form that permits the running system itself to 
evaluate goal satisfaction in real-time and to propagate the 
effects of (e.g.) falsified domain assumptions. 
Introspection on requirements models needs to be coupled 
with identification of alternative solution strategies. The 
system therefore needs to be aware of the capabilities of its 
own adaptive machinery and this awareness needs to be 
coupled with the requirements models. When the system 
behaviour deviates from the requirements models and 
triggers a search for suitable corrective action, the range of 
available adaptations (perhaps in the form of component 
substitutions) can be evaluated and their different trade-
offs balanced to find the most suitable of the available 
solutions. Once identified, the adaptation can be enacted 
and monitored to evaluate its effect on system behaviour.  

To make this work, the requirements model must be 
able to tolerate uncertainty. Of course, the monitoring, 
reasoning and adaptive capabilities of the system help 
tolerate uncertainty, but the requirements models also need 
an explicit representation of where uncertainty exists to 
know which requirements can be traded off in favour of 
critical requirements, and under what circumstances. In all 
of this, there will be conflicts as every adaptive strategy 
may involve a different set of trade-offs. The adaptive 
reasoning mechanism needs to be capable of dealing with 
these conflicts, and of reasoning with imperfect 
knowledge.  

Finally, self-adaptive capabilities do not mean that 
traditional, off-line adaptive or corrective maintenance will 
not be necessary. Developers will therefore need to be able 
to analyse the system’s performance and in particular trace 
triggering events, the consequential adaptations and the 
reasoning that selected them. Users too, may need access 

to explanations for system behaviour in order to build trust 
in them. 

There are therefore complementary and inter-linked 
areas needing research to realize requirements-aware 
systems: 

1. Run-time representations of requirements 
2. Evolution of the requirements model and its 

synchronization with the architecture 
3. Dealing with uncertainty 
4. Multi-objective decision-making 
5. Self-explanation 
Research challenges for each of these are developed in 

more detail over the next five sections. 

III. RUN-TIME REPRESENTATIONS OF REQUIREMENTS 
Architectural reflection [5][19] offers a pointer to how 

requirements may become run-time artifacts. Architectural 
reflection allows introspection of the underlying 
component-based structures. An architecture meta-model 
can be used to get the current architecture information to 
determine the next valid step in the execution of the 
system. Specifically, the architecture meta-model provides 
access to the component graph where components are 
nodes and bindings are arcs. Inspection is achieved by 
traversing the graph, and adaptation/extension is realized 
by inserting or removing nodes or arcs. Such extensions 
and changes will be reflected on the systems during run-
time. Crucially, this meta-model supports reasoning about 
the architecture of the system. We argue that the same 
principles can be applied to allow introspection and 
reasoning based on (meta-) models of requirements at run-
time. The mechanisms for achieving this are explored in 
the next section. In this section, we focus on  run-time 
requirements representations in a form suitable for 
introspection and adaptation. Introspection would offer the 
ability of a run-time requirements entity to reveal 
information about itself and hence allow the system to 
reason about its requirements.  

RE is concerned with the identification of the goals to 
be achieved by the system, the operationalization of such 
goals as specifications of services and their constrains, and 
the assignment of responsibilities for services among 
agents [23] (i.e. human, physical, and software 
components) forming the system. Goals can be 
operationalized in many different ways and the RE process 
allows us to explore the choices, detect conflicts between 
requirements and select the preferred choice by the 
assessment of the effects on the system and its context. 
The selection of an appropriate set of choices is essential 
to the success of a system. However, inherent uncertainty 
about the environment and behavior may make it 
impossible to anticipate all the exceptional circumstances. 
In contrast to assumptions made during the specification of 
the system, the conditions of execution may change 
unexpectedly manifesting unforeseen obstacles [56]. As a 
result, the selection of the right set of choices, in the case 
of self-adaptive systems, may need to be delayed until run-
time when the system can reason to make choices 



  

informed by concrete data sensed from the environment 
[11]. 

Dynamic assessments and reasoning about 
requirements imply a run-time representation of system 
requirements (i.e. its run-time requirements model [1]) that 
is rich enough to support the wide range of run-time 
analyses concerning stakeholders’ goals, software 
functional and non-functional requirements, alternative 
choices, domain assumptions, scenarios, risks, obstacles, 
and conflicts. Such run-time representation will drive the 
way a system can reason and assess requirements during 
run-time and crucially will underpin the four challenges 
described in the following sections. To support such 
dynamic assessment of requirements, language features 
found in goal-oriented requirements modeling languages 
KAOS [23] and i* [27] hold particular promise. KAOS is 
particularly useful here as it integrates the intentional, 
structural, functional, and behavioral aspects of a system, 
and offers formal semantics that would allow automated 
reasoning over goals. 

One way to achieve a run-time representation of 
requirements would be to base it on goal-based RE. and, 
particularly, to provide language support for representing, 
traversing and manipulating instances of a metamodel for 
goal modeling, for example based on the KAOS meta-
model [6]. The meta-model could be provided as a set of 
built-in constructs to a programming language, or 
alternatively be provided in the form of (e.g.) a library. 
Crucial, the meta-model must provide a way to represent 
and maintain relationships between requirements and 
agents and the inter-relationships between requirements, to 
dynamically reassign the goals to different agents or to 
move to alternative goals in the goal tree. In other words 
and in contrast to previous work [6], we envision that this 
representation must take place in such a way that is not 
only readily understandable by humans but also easily 
manipulable by the system itself.  This will allow the 
persons responsible for maintaining software to query the 
software (as opposed to externally stored documentation) 
to determine requirements-relevant information, such as: 
What are the sub-goals of a goal? Which agents are 
responsible for achieving the goal? What assumptions are 
associated with a goal? In some cases, the software itself 
would also be able to use this information to guide its own 
adaptation.  The fact that humans would be able to query 
the requirements model and its relation to the run-time 
behavior may be more important than just letting the 
software do so. The benefits of being able to easily 
maintain and retrieve up-to-date requirements models go 
beyond self-adaptation. 

To reason about requirements relationships we also 
need to model the inter-requirement relationships. The 
right associations between such requirements models and 
the implementation artefacts should also be taken into 
account to maintain the run-time traceability needed. 
Therefore, the run-time representation should enable the 
definition of run-time-traceable dependencies of 
requirements specifications. Hence, tracing becomes a run-
time activity. 

IV. EVOLUTION OF THE REQUIREMENTS MODEL AND ITS  
SYNCHRONIZATION WITH THE ARCHITECTURE 

Requirements reflection enables self-adaptive systems 
to revise and re-evaluate design-time decisions at run-time 
when more information can be acquired about these by 
observing their own behaviour. We therefore see two 
research issues here. One is the evolution of the 
requirements models themselves and the maintenance of 
consistency between the different views during this 
evolution. In order to do this it is necessary to specify how 
the system’s requirements can evolve dynamically and to 
specify the abstract adaptation thresholds that allow for 
uncertainty and unanticipated environmental conditions 
[53][4]. Unfortunately, to our knowledge none of the 
existing techniques deal with this degree of evolution, 
incomplete information, or uncertainty.    

The second research issue is the need to maintain the 
synchronization of the run-time requirements model and 
the software architecture as either the requirements are 
changed from above or the architecture is changed from 
below. Current work on computational reflection offers a 
potential way to structure the run-time relationship 
between the requirements model and the architecture. 
Traditionally, reflective architectures are organized into 
two causally-connected layers [5]– the base layer, which 
consists of the actual running architecture – and the meta-
layer, which consists of meta-objects, accessible through a 
meta-object protocol (MOP), for dynamically 
manipulating the running architecture. We envision a 
similar strategy for achieving requirements reflection: a 
base layer consisting of run-time requirements objects (i.e. 
the requirements models) and a meta-layer allowing 
dynamic access and manipulation of requirements objects 
(i.e. stakeholders’ goals, goal refinements, alternative 
choices, domain assumptions, etc.). This way of 
structuring requirements reflection therefore leads to two 
strata – one for requirements and one for architecture – 
each encompassing a causally-connected base and meta-
layer. As in the case of the traditional architecture meta-
model (which offers operations over components and 
connectors), we can define primitives for the goal-based 
requirements meta-model that allows the meta-level to 
modify the base-level for the case of the requirements 
stratum. These primitives might include add_requirement, 
delete_requirement, replace_requirement, add_goal, 
delete_goal, replace_goal, obtain_agent_from_goal, 
assign_agent_to_goal.  A library of requirements model 
transformation operators, in the spirit of [45], would then 
be defined on top of these primitive operations. The rich 
catalogue of model transformation patterns for goal 
refinement, conflict resolution and obstacle resolution 
associated with the KAOS language [23] may provide the 
basis for defining this library. It would also be 
complemented with operators for resolving inconsistencies 
between multiple views in the spirit of Xlinkit [46] or 
techniques for automatically fixing inconsistencies in 
UML models [47]. Figure 1 summarizes the proposed 
structure. 



  

 

 
Figure 1.  Synchronization between run-time requirements and the 

architecture 

The structures in Figure 1 would require coordination 
between the upper requirements stratum and the lower 
architecture stratum. As a simple example, if a goal is 
changed in the upper stratum, then the running system may 
identify a set of components in the architecture to replace. 
Put more simply, changes in the software architecture 
should be monitored to ensure that the requirements are 
not broken; and changes to the requirements at run-time 
should be reflected in the running system through dynamic 
generation of changes to the software architecture.. For 
this to be possible there needs to be a tight semantic 
integration between requirements and architecture models. 
While there are many similarities between requirements 
engineering models and architecture description 
languages, subtle semantic differences between existing 
languages make the relation between the two models 
complex [48]. Integration between requirements and 
architecture is already an urgent area for research. It is 
particularly important for requirements-aware systems that 
progress is made. 

V. DEALING WITH UNCERTAINTY 
A key challenge when developing self-adaptive 

systems is how to tame uncertainty about the environment. 
It is important to understand that uncertainty and change 
are related, but distinct concepts. An environment that 
changes, but for which the nature of those changes is 
known, can be handled using standard development 
techniques such as defining adaptation trigger conditions. 
In such cases, requirements awareness is not strictly 
necessary. More interesting, however, are cases where the 
environment changes in ways that cannot be predicted. In 
this situation, it is not adequate to define adaptation 
triggers because the correct triggering conditions cannot be 
anticipated at design-time. An alternative solution is 
therefore required: either one that learns new triggering 
conditions at run-time, or, as proposed in this paper, a 
higher-level adaptation mechanism in which requirements 
themselves are represented at run-time, monitored, and 
traded-off against each other, if necessary, when 
unexpected contextual changes take place. 

 Handling uncertainty depends of course on how 
uncertain a phenomenon is. Although uncertainty can be 
measured on a variety of different scales, at different 
levels of granularity, a useful 4-level classification is 
provided by Courtney [28]: 
• Level one: general confidence about the shape of the 

future, but some key variables do not have precise 
values. It is possible to make some estimates and to 
establish a range of possible outcomes. 

• Level two: there are a variety of possible future 
scenarios but it is possible to list them and they are 
mutually exclusive and exhaustive. 

• Level three: it is feasible to construct future scenarios 
but these are mere possibilities and are unlikely to be 
exhaustive. 

• Level four: it is not even possible to frame possible 
future scenarios. Any scenario is likely to be just a 
wish list and may have little bearing on reality. 

Although taken from business theory, this 
classification can be applied to self-adaptive systems. 
Level one corresponds to the fact that change is known to 
happen, but that there is little or no uncertainty about the 
change. Standard trigger conditions could be used to 
implement solutions in this case. Level two is a little more 
complex because it requires designers to take into account 
the full range of possible scenarios. A possible 
development solution in this case is provided by 
techniques such as dynamic software product lines that 
enumerate all alternative environmental conditions and 
design adaptations accordingly. Level four is beyond the 
scope of this paper since the uncertainty level is too high 
to expect any kind of self-adaptation. However, level three 
is where we feel requirements awareness can be effective. 

In the short term, we believe that RE should consider a 
move away from binary satisfaction conditions for 
requirements to more nuanced notions of requirements 
conformance. As an example why this is necessary, 
consider a self-adaptive system with two overarching 
requirements: to perform a given task well and to perform 
it efficiently. A naïve approach to requirements monitoring 
might attach thresholds as to what constitutes “well” and 
“efficiently”. The problem with this is that a slight change 
in efficiency or “wellness” will trigger an adaptation when 
it may in fact not be necessary.  

A second consideration is that, for self-adaptive 
systems, not all requirements have equal standing. If the 
environment changes unexpectedly, for instance, it may 
be wise temporarily not to satisfy a non-critical 
requirement if it means that a critical requirement will 
continue to be satisfied. 

To address such issues, we call for research into how 
existing requirements languages and methodologies can 
be extended so that self-adaptive systems have run-time 
flexibility to temporarily ignore some requirements in 
favour of others – that is, we envisage run-time trade-offs 
of requirements being made as the environment changes.    



  

As a first step, we have developed the RELAX 
requirements language for adaptive systems [26][4][49]. 
RELAX defines a vocabulary for specifying varying 
levels of uncertainty in natural language requirements and 
has a formal semantics defined in terms of fuzzy 
branching temporal logic. This allows a requirements 
engineer to specify ideal cases but leaves a self-adaptive 
system the flexibility to trade-off requirements at run-time 
as environmental conditions change – i.e., certain 
requirements can be temporarily RELAX-ed.  

As a very simple example, consider a protocol that 
synchronizes various computing devices in a smart office 
environment. One requirement for such a system might 
be: 
 
The synchronization process SHALL be initiated when the 
device owner enters the room and at 30 minute intervals 
thereafter. 

 
RELAX provides a process that assists a requirements 

engineer to make a decision whether a requirement should 
be RELAX-ed. In this case, s/he might decide that the hard 
thresholds are not crucial and RELAX the requirement to: 
 
The synchronization process SHALL be initiated AS 
EARLY AS POSSIBLE AFTER the device enters the room 
and AS CLOSE AS POSSIBLE TO 30 minute intervals 
thereafter. 

 
Given a set of RELAX-ed requirements, they can be 

traded-off at run-time. For example, critical requirements 
would not be RELAX-ed, whereas less critical ones would 
be; in this case, the self-adaptive system can autonomously 
decide to temporarily not fully satisfy such requirements. 
RELAX provides a set of well-defined operators (e.g., AS 
EARLY AS POSSIBLE, AFTER above) which can be 
used to construct flexible requirements in a well-defined 
way. It also offers a way to model the key properties of the 
environment that will affect adaptation. Although there is a 
formal semantics, in terms of fuzzy logic, for RELAX, 
there is not as yet an implementation that actually monitors 
RELAX-ed requirements at run-time. This therefore is a 
clear avenue for immediate research. 

Fuzzy logic is not the only formalism that could be 
used to reason about uncertainty in the environment, of 
course. Numerous mathematical and logical frameworks 
exist for reasoning about uncertainty [13]. For example, 
probabilistic model checkers have been used to specify 
and analyse properties of probabilistic transition systems 
[16] and Bayesian networks enable reasoning over 
probabilistic causal models [10]. However, only limited 
attention has been shown so far to the treatment of 
uncertainty in requirements engineering models. Our 
ongoing work has the objective to develop extensions to 
goal-oriented requirements modeling languages to support 
modeling and reasoning about uncertainty in design-time 
and run-time models.  

In the longer term, self-adaptive systems, and RE in 
particular, needs a theory of uncertainty. Given such a 
theory, requirements for self-adaptive systems could be 
related to the uncertainty in the environment and could be 
monitored or adapted according to that uncertainty. Other 
fields of study offer possible starting points for such a 
theory – for example, risk analysis for possible security 
issues in software-intensive systems [29], risk assessments 
in engineering disciplines [30], the economics of 
uncertainty [31], and uncertainty in management theory 
[28], as well as well-known mathematical models of 
uncertainty such as Bayesian networks. All of these fields 
have developed theories for dealing with uncertainty in 
their respective domains. An interesting longer-term 
research question is to distill some of this thinking and 
incorporate it into requirements engineering for self-
adaptive systems.  

VI. MULTI-OBJECTIVE DECISION-MAKING 
Because of the nature of conflicting requirements, run-

time resolutions of uncertainty inherently involve multi-
objective decision making. In software engineering, multi-
objective decision making techniques most often rely on 
constructing a utility function, defined as the weighted 
sum of the different objectives. However, this approach 
suffers from a number of drawbacks. Firstly, it is well 
known that correctly identifying the weight of each goal is 
a major difficulty. Secondly, the approach hides conflicts 
between multiple goals under a single aggregate objective 
function rather than truly exposing the conflicts and 
reasoning about them. 

We argue, in contrast, that users must be involved in 
the decision making process in an interactive fashion. 
Consider a smart energy management system based on 
mobile energy monitors placed within a household that can 
sense both energy usage and household activity. The 
system can adjust heating levels in different rooms 
according to the presence or absence of inhabitants or, it 
might override pre-set heating controls to respond to 
sudden weather changes. The system thus needs to be 
adaptive to respond to contextual changes and changes in 
people’s behaviour. The system’s decision-making must of 
necessity be multi-objective with comfort of the users, 
economy and the needs of individuals within a household 
potentially in tension. At run-time we need to understand 
the current behaviour of the system and cope with future 
behaviour. Such an approach provides more flexibility 
than predefined utility functions as it would allow the 
relative importance of goals to be discovered and modified 
at run-time. By engaging users in the decision making 
process, it would also increase their trust and 
understanding of the system’s adaptive behaviour. The 
core technical challenge here is to integrate and adapt 
existing interactive multi-criteria decision approaches to 
the problem of making run-time decisions about 
alternatives in goal models. We envisage a mathematical 
framework that supports decision making about 
requirements alternatives; the parameters used in the 
decision model should be measurable so that they can be 



  

related to the data collected during system monitoring; and 
the computational complexity of the decision model should 
be such that it can be evaluated efficiently at run-time. 
Such a framework can build on existing outranking and 
interactive approaches to multi-criteria decision-making 
[21] [51] as well as on research on evaluating alternatives 
[18] and dealing with conflicts in goal models [24]. 

VII. SELF-EXPLANATION 
A well-known problem with self-adaptive systems is 

that users may not understand or trust them. Such a lack of 
intelligibility can mean that users may cease to use a self-
adaptive system [36]. One well-studied approach to 
addressing this problem is to provide human-readable 
explanations of adaptive behaviour. The intuition is that if 
a user can query the system’s decisions, s/he is less likely 
to abandon it and, indeed, may accept the system’s choices 
over his/her own, which may not be based on a full 
understanding of the system and the context.  

The provision of understandable explanations of 
system behaviour has been studied in a number of research 
fields: principally, in knowledge-based systems [35][38], 
intelligent tutoring systems [32], context-aware systems 
[37][34], and debugging [39]. Depending on the 
application, a range of information and a range of 
interaction styles can be supported in explanations. Lim et 
al [37] provide a useful classification of explanation types 
as follows: 

• What: What did the system do? 
• Why: Why did the system do it? 
• Why not: Why did the system not do something 

else? 
• What if: What would the system do in a 

hypothetical scenario? 
• How to: How can the system be forced to do 

something, given the current context? 
Interestingly, Lim et al report on a controlled experiment 
comparing the effectiveness of the last four of these 
explanation types on user understanding and trust of the 
system. Perhaps surprisingly, although why and why not 
explanations show a significant improvement in user trust 
and understanding, as compared to no explanation, what if 
and how to provide no improvement in their study. This 
may suggest that, when designing self-explanation 
capabilities, designers should focus resources on why and 
why not.  

The level of complexity of providing explanations 
depends crucially on the technology used to implement 
adaptation. Basic context-aware systems, for example, use 
rules to identify a situation and change behaviour 
accordingly. Much of the work in intelligibility of context-
aware systems does not consider interactions between 
rules and, in such cases, providing explanations is fairly 
straightforward since a rule Context → Change, can be 
handled by keeping track of which rule triggered a change 
and then presenting, in a user-friendly way, the contextual 
condition which enabled the rule. Chains of rules can be 
handled using backward chaining or abduction.  

At the other extreme, self-adaptive systems based on 
machine learning or AI techniques (e.g., Support Vector 
Machines or Neural Networks) are black boxes that are not 
inherently interpretable. Although there has been some 
work on extracting rules from such technical solutions 
(e.g., [33]), which can then be used to derive explanations, 
explaining such systems will remain a major challenge for 
the foreseeable future.  

In the context of requirements reflection, as described 
in this paper, the technique for self-adaptation is based on 
a run-time goal model and qualitative and quantitative 
reasoning about how the organisation of the goal model 
changes over time. The tree-based structure of goal models 
means that existing techniques for explanations in context-
aware systems based on decision trees (e.g., [37]) are 
immediately applicable. However, there are additional 
challenges which will have to be addressed, namely: 

1. How to explain the interaction of multiple 
conflicting goals and their corresponding 
adaptations? The majority of existing work has 
tackled only one adaptation rule at a time and has 
not considered how to explain, in an 
understandable way, the interplay between 
multiple rules, e.g., why one requirement has been 
traded-off against another. 

2. How to explain the link between requirements and 
architecture? Although some end-users may not 
wish to see explanations in terms of architectural 
elements, for more advanced users (e.g., 
developers or extenders of a self-adaptive system), 
it will be important to understand how a change in 
the goal model is reflected in a change in the run-
time architecture model. Explaining such links 
requires synchronization between goals and 
architecture, as discussed in Section III, and 
requires that this synchronization is adequately 
conveyed to the user. 

3. How to explain fuzzy behaviour? Soft computing 
is likely to be a key component of many self-
adaptive systems and, as noted above, the 
complexity of the explanation mechanism depends 
heavily on the complexity of the adaptation 
implementation technique. In our own case, as 
highlighted in Section IV, one of the techniques 
we are investigating is fuzzy temporal logic. This 
clearly presents challenges in terms of how to 
interpret and present decisions based on fuzzy 
boundary conditions – e.g., will the user 
understand why a key adaptation decision was 
taken based on reaching a “rough” threshold? 

An additional research challenge worth exploring is in 
how best to present explanations, which essentially consist 
of a trace of system behaviour (in our case, a sequence of 
operations applied to the run-time requirements and/or 
architecture models), in an intuitive way which is easy and 
quick for users to grasp. The best method of presentation, 
of course, depends on the type of user, but one potential 
method from software engineering is the use of scenarios 
as a presentation technique. Scenarios are well-known in 



  

the requirements engineering community as a 
representation that is easy to understand by a variety of 
different stakeholder groups, and we therefore posit that 
they could be effectively used within a self-explaining 
adaptive system.  

VIII. CONCLUSIONS 
We have argued that self-adaptive systems should be 

requirements-aware systems. Our motivation for 
advocating requirements-awareness is that  
self-adaptive systems are increasingly being tasked with 
operating in volatile and poorly-understood environments. 
At design-time, sufficient uncertainty about the 
environment exists that requirements  engineers can only 
hypothesize about the states and events that the  
system may encounter at run-time. Because so much is 
based on conjecture, the systems need the ability to self-
adapt to cope with unforeseen or partly-understood events 
if it is to be adequately resilient to unanticipated 
environmental contexts. 

A number of advances have been made in RE that 
support this vision; notably work on requirement 
monitoring and more recent work that builds upon 
monitoring to maintain run-time 
requirements representations [11][20][49][54]. However, 
our manifesto is framed in terms of requirements 
reflection; that we need to extend the principles that allow 
advanced reflective systems and reflective middleware 
platforms to introspect about their architecture, upwards 
into the requirements level. This will provide the means to 
observe how the system’s behaviour matches that  
predicted in its requirements models. This in turn requires 
that the requirements models cease to be strictly off-line, 
passive entities and become run-time objects that can be 
queried and manipulated to (e.g.) re-assign goal 
satisfaction responsibility between different agents as the 
needs of the fluctuating environmental context dictate. 
 
Implicit in requirements reflection is that the system’s 
architecture and requirements models are synchronized 
since different architectural configurations often imply 
different trade-offs, particularly in terms of soft goal 
satisfaction. Such trade-offs often necessitate 
the resolution of conflicting goals. Uncertainty and the 
scale of the possible solution space preclude enumeration 
and resolution of such conflicts at design-time, so the 
necessary resolution reasoning needs to occur at run-time. 
Underpinning these principles is a need to be able to 
express the uncertainty that exists in terms of what it 
is that is uncertain and the boundaries of what is 
acceptable in terms of goal satisficement when 
unanticipated events occur and conflicting goals need to be 
traded-off. Finally, a self-adaptive system is likely to 
exhibit emergent behaviour. Developers need to be able to 
trace the origin of this behaviour and users need to be gain 
confidence in the system. These both require an ability for 
the system to account for its behaviour in some appropriate 
form. 
 

The machinery for self-adaptation already exists and is 
increasingly being deployed in systems with limited 
context-awareness and reconfigurability capabilities. RE 
has a critical role to play if future self-adaptive systems are 
to reach the point where they can be developed and 
deployed with confidence in their ability to survive 
and deliver their intended service. The research agenda set 
out in this paper will, we believe, help achieve this.    
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