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Abstract— Trace links between requirements and code are 
essential for many software development and maintenance 
activities. Despite significant advances in traceability research, 
creating links remains a human-intensive activity and surpri-
singly little is known about how humans perform basic tracing 
tasks. We investigate fundamental research questions regard-
ing the effort and quality of recovering traces between re-
quirements and code. Our paper presents two exploratory 
experiments conducted with 100 subjects (half with industrial 
experience, the other half without) who recovered trace links 
for two open source software systems in a controlled environ-
ment and cast over 125.000 votes. In the first experiment, sub-
jects recovered trace links between the two systems’ require-
ments and implementation classes. In the second experiment 
trace links were established between requirements and imple-
mentation methods. In order to assess the validity of the trace 
links cast by subjects, key developers of the two software sys-
tems participated in our research and provided benchmarks. 
Our study yields surprising observations: trace capture is sur-
prisingly fast and can be done within minutes even for larger 
classes; the quality of the captured trace links, while good, does 
not improve with higher trace effort; it is not harder though 
slightly more expensive to recover the trace links for larger, 
more complex classes; and, trace capture should be performed 
by multiple engineers because “hard-to-do” traces differed per 
subject and were not uniform to certain parts of code. These 
findings open interesting possibilities for future research. 
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I. INTRODUCTION 

Trace links between requirements and code identify 
where requirements are implemented. They are important for 
many success-critical development and maintenance activi-
ties. Requirements traceability is not a new field of research 
and there is a general consensus among practitioners and 
researchers that trace links are vital for understanding soft-
ware systems and for supporting many critical software en-
gineering activities. For instance, trace links are required to 
determine the impact of changes to requirements during 
maintenance, to perform coverage analyses, or to check the 
consistency of arbitrary development artifacts [19, 24, 33]. 
Traceability is generally considered most beneficial in long-
living software systems [34] when engineers are no longer 
familiar with the source code [31]. Traceability is nowadays 
mandated by standards and prescribed in development me-

thods. The existence of trace links is assumed by many exist-
ing research approaches [1, 11, 38].  

However, little is known on the cost-effectiveness of tra-
ceability between requirements and code. In domains where 
system failure implies loss of life or massive economic loss, 
the question on cost-effectiveness is secondary. In such do-
mains, trace capture is state of the practice. However, for the 
vast majority of other systems, the economic benefits are 
unclear and, as a result, trace capture is rarely done in indus-
trial practice [34]. To understand the cost effectiveness of 
traceability, the economic benefits of using traces must out-
weigh the cost of trace capture and maintenance. While stu-
dies exist that explore the economic benefits of traces 
[7,10,11,14,24,34] to the best of our knowledge no studies 
have explored the cost of trace capture and maintenance.  

This paper aims to provide this vital missing link. There 
are many factors that affect the cost of trace capture: the de-
gree of familiarly with a system, the level of automation (for 
code understanding or trace capture), the availability of do-
cumentation, etc. It is clearly impossible to consider all these 
factors in a study. We thus focus on understanding the worst 
case, i.e., fully manual trace recovery by subjects without 
system familiarity, without automated support in identifying 
traces, and without additional documentation about the sys-
tem. We will show that even in this extreme scenario, trace 
capture is reasonably quick with surprisingly good quality. 
This worst-case assessment allows researchers to reason 
about the cost effectiveness of traceability from a conserva-
tive point of view – that is, if traceability is cost effective 
compared to the worst-case cost of trace capture then it can 
be argued that traceability is cost effective under all circums-
tances (and more so under better circumstances)! This work 
thus provides a foundation for assessing the economic bene-
fits of traceability for practitioners and researchers alike: 

 

 for assessing the savings of trace capture automation or 
the expected cost of their manual overheads  

 for assessing whether or not a particular use of traces 
is cost effective by comparing the savings with cost 

 for simply better understanding the economics of trace 
capture which are not known 
 

The worst-case assessment of trace capture is done through 
two exploratory experiments [36] conducted in a controlled 
environment on recovering trace links between requirements 



and code. The subjects chosen for the experiments were mas-
ter-level computer science students of Vienna University of 
Technology and Johannes Kepler University Linz. About 
half of them had 2 years or more of industrial experience in 
software development and the skills and experience of those 
subjects is certainly representative of industrial settings. The 
other half of the subjects had less than two years of industrial 
experience and their skills are representative of new people 
joining companies. Both groups of subjects had no a-priori 
knowledge of the systems used. Our study thus aims at iden-
tifying to what degree experienced and inexperienced sub-
jects unfamiliar with the code can still recover correct traces. 
This problem is highly relevant in industry because engi-
neers may understand the bigger picture of the source code 
and its domain [10, 31] but they often do not understand the 
purpose of individual classes. Since our study aims at identi-
fying the worst case cost of trace capture, the choice of stu-
dents as subjects is ideal: these students are nearly finished in 
their studies and represent soon-to-be software engineers in 
companies. As a benchmark for evaluating the subjects’ 
work, we relied on two key developers who wrote the soft-
ware systems in the studies and thus were highly familiar 
with its implementation. Their data allowed us to assess the 
correctness of the trace links cast by the subjects.  

Our study shows that subjects needed in average only 1-2 
minutes for recovering the trace link for a class. While the 
cost of trace recovery increases slightly with code size, we 
did not find a strong correlation between code size and the 
quality of the trace links recovered. Almost all subjects, al-
though unfamiliar with the systems, managed to recover 
mostly correct traceability (80-90%). However, for the 
201.480 traces necessary to completely describe require-
ments-to-method traces for the first open source system used, 
15% incorrectness still amounts to 30.000 errors! Surprising 
was that subjects were performing at peak efficiency after 
only 20 minutes after the start of the experiments, with a 
noticeable exhaustion after 90 minutes. Trace recovery 
should thus be done incrementally. More experienced sub-
jects did perform slightly better than less experienced sub-
jects but at the expense of higher effort. But our assumption, 
that subjects who investigated a class longer than others 
would also recover better quality traces was wrong: we 
found that the more detailed requirement-to-method traces 
were 3-6 times more costly to recover than requirements-to-
class traces. Surprisingly, however, the correctness of finer 
grained method traces was not superior to class traces. Trace 
recovery was more likely correct if the recovery was fast. 
This suggests that subjects either quickly had the correct 
intuition about a class’ traceability or they did not. While the 
effort of trace recovery correlated strongly with class size 
and complexity, quality had only a weak correlation with 
size/complexity. 

 
Practical Implications: The findings are important for practi-
tioners for better understanding the worst-case cost and qual-
ity of trace capture. The findings are also important for re-
searchers to better quantify the cost/benefit of research ap-
proaches that rely on the existence of trace links. 

II. RELATED WORK 

Trace recovery represents a massive re-engineering effort 
not unlike architecture recovery. To date, the research com-
munity has focused largely on automated approaches to re-
cover trace links [5, 12, 13, 23, 35]. Despite successes in this 
field, adequate automation has never been achieved and trace 
recovery remains a human-intensive activity. Indeed, re-
searchers have pointed out that it is risky to neglect humans 
in the traceability loop [20]. Nevertheless, only little is 
known on how people without system knowledge recover 
trace links and no data is available on the effort, quality, and 
complexity of basic trace recovery tasks. Although trace re-
covery relies heavily on human expertise to our knowledge 
so far no experiments have been conducted to better under-
stand manual trace recovery for large-scale software systems. 

Nonetheless, research on traceability has progressed sig-
nificantly and researchers have been developing automated 
approaches that go far beyond simple “recording and replay-
ing” of trace links (which is still the level of support in many 
commercial tools). Approaches exist today that support re-
covery of different types of trace links such as code and 
models [2, 16, 28], code and documentation [25], architec-
ture and test cases [27], architecture and code [29], or fea-
tures and code [8]. Researchers have proposed various tech-
niques and heuristics to support the automation of trace re-
covery. Examples include event-based approaches [6], in-
formation retrieval [5, 12], feature location techniques [23], 
process-oriented approaches [32], scenario-based techniques 
[13], or rule-based methods [35]. Although advances have 
been made to automatically recover links, trace acquisition 
remains a human-intensive activity with high initial cost as 
also reported in case studies on industrial processes and tra-
ceability experiences [3, 18, 24, 30, 34].  

Researchers have also conducted case studies and expe-
riments to determine the effectiveness of traceability ap-
proaches. For instance, Hayes et al. report on a case study 
that investigates the effectiveness of information retrieval 
techniques to create trace links between high-level and low-
level requirements [21]. Bianchi et al. present an exploratory 
case study evaluating the relationship between the granulari-
ty of the traceability model adopted and the effectiveness of 
the maintenance process [4]. De Lucia et al. describe a con-
trolled experiment [10] on the combined use of traceability 
links with information retrieval techniques to give hints re-
garding the similarity of source code elements.  

Despite these advances and available heuristics, captur-
ing trace links remains difficult and unreliable. A better un-
derstanding of how people recover trace links is essential for 
researchers aiming at improving their existing techniques, 
needed by tool developers providing trace recovery features, 
and by practitioners facing the challenges of planning and 
managing trace recovery activities in industrial practice. Al-
so, all current automated approach requires some human 
intervention. Our studies aim at a more correct assessment on 
the cost of this human intervention – say, if information re-
trieval recovers 60% of traces then the remaining 40% still 
need to be recovered manually and the cost of the manual 
recovery should not be worse than our worst case. 



III. RESEARCH QUESTIONS 

Our research is meant to provide worst-case data on ef-
fort and quality of trace recovery. This is ensured by using 
subjects not familiar with a system and providing no mea-
ningful automation aside of basic reading technologies. We 
explore five research questions derived from our literature 
survey and our industrial experiences to better understand the 
human nature of trace recovery: 

RQ1. Does code complexity impact trace recovery effort? 
We explored whether the amount of code engineers have to 
read and the code’s complexity have an impact on trace ef-
fort. Our basic assumption was that code of higher complexi-
ty is harder to understand and we expect that code complexity 
increases effort. We investigate this research question in 
experiment 1. 

RQ2. Does code complexity impact the correctness of 
trace links? We investigated to what degree the size and 
complexity of the source code engineers have to read im-
pacts trace quality. Our expectation is that larger size and 
higher complexity negatively impact trace link quality. We 
investigate this research question in experiment 1. 

RQ3. What is the impact of trace granularity on effort? 
Maximizing the benefits of traceability techniques by apply-
ing them in different forms or combinations is a hard re-
search challenge [7]. In earlier research we explored the 
trade-off between trace granularity and quality [14, 17]. 
While fine-grained traces (e.g., requirements to methods in-
stead of requirements to classes) increase the possibilities for 
trace utilization, in many cases their creation is more costly. 
Based on these earlier results we predict that fine-grained 
traces require more effort. We investigate this question in 
experiment 2. 

RQ4. What is the impact of trace granularity on quality? 
One could assume that fine grained traces are more precise 
and correct as engineers must investigate each method indi-
vidually leading to a deeper, more intricate understanding of 
a class. Our expectation was that finer granularity positively 
impacts trace recovery quality. We investigate this research 
question in experiment 2. 

RQ5. Does the correctness of trace links increase with 
higher tracing effort? We expect that more effort implies 
better quality which reflects the general belief that people 
will achieve higher quality if they devote more time. This 
research question is investigated in experiment 1. 

IV. RESEARCH DESIGN 

The goals of the exploratory experiments were to recover 
the trace links of two systems, to validate the correctness of 
the trace links, and to investigate the effort needed to recover 
requirements-to-class and requirements-to-method traces. 
We explore the five research questions on the two open 
source systems GanttProject (GP) and ReactOS (RO) as 
shown in Table I. 

A. Case Study Systems 

GanttProject (GP) (http://ganttproject.biz/). This open 
source system provides features for project planning and 
tracking. Users can visualize task dependencies using Gantt 

charts and compute the start and finish dates of projects. GP 
supports basic analyses such as critical path computations for 
identifying tasks delaying the entire project. It also allows 
the planning of human resources and their degree of in-
volvement in different tasks to support optimization of staff-
ing. The system was selected as the subjects already had 
basic skills in project management techniques. Also, GP is 
easy to use and its key features are explained in existing lec-
tures on project management. The system is quite large, con-
sisting of 41 KLOC Java code distributed in 516 classes and 
3689 methods. The part of the system selected for the study 
consisted of 85 classes and 788 methods. 

ReactOS (RO) (http://www.reactos.org/). RO is an open 
source implementation of the Windows XP OS. RO aims at 
compatibility to XP applications and device drivers. Fur-
thermore, RO provides a graphical user interface that is high-
ly similar to Windows XP (e.g., a start menu, a taskbar, an 
explorer for performing typical file system operations). 
Again, the subjects were familiar with the basic functionality 
of RO due its similarities to the Windows OS. The systems is 
also quite large, consisting of 34 KLOC C++ code distri-
buted in 245 classes (files) and 3490 methods. The part se-
lected for the study consisted of 123 classes and 544 me-
thods. 

TABLE I.  KEY CHARACTERISTICS OF EXPERIMENTS AND SYSTEMS. 

GanttProject (GP) ReactOS (RO)
Programming Language Java C++

Benchmark for Correctness key developer key developer

Experiment 1  
(RQ1, RQ2, RQ5)  

Requirements-to-Class traces  

20 subjects 
17 requirements 

85 classes 

20 subjects 
16 require-

ments 
123 classes

Experiment 2  
(RQ3, RQ4, RQ5) 

Rqts-to-Method traces 

48 subjects 
17 requirements 

788 methods 

12 subjects 
16 require-

ments 
544 methods

The large size, complexity, and poor documentation 
made trace recovery a non-trivial exercise. The mnemonic 
value of variable and method names was quite good which 
made it fairly intuitive in many cases to guess a trace link. 
However, these systems hardly contained any comments or 
other linguistic cues in the code. Subjects investigated parts 
of the system only and thus were never able to gain system 
knowledge (not even during the experiment). 

B. Experiment Process 

We used a series of measures to gauge correctness and 
completeness. In particular, we used a 3-tiered research de-
sign to assess trace link quality:  

(i) Multiple subjects recovered the traces of any given 
piece of code to ensure redundancy.. 

(ii) We conducted trace recovery independently at two 
different levels of granularity: In experiment 1, 20 subjects 
for GP and 20 more subjects of RO investigated how the 
requirements traced to classes (class traces). In experiment 
2, 48 subjects for GP and 12 more subjects RO investigated 
how the requirements traced to methods (method traces).  

(iii) We validated the correctness of the trace links cast 
by the subjects with the help of two developers of GP and 



RO. Both had significantly contributed to development and 
were highly familiar with the code.  

The subjects participating in the two experiments were 
100 master-level students from Johannes Kepler University 
Linz and Vienna University of Technology. All subjects 
were trained in trace recovery and relevant features of GP 
and RO. As discussed above, our experiments focused on 
subjects without a-priori system knowledge. For this purpose 
the chosen subjects were an ideal choice since roughly half 
of them had between 2-10 years of experience and the other 
half had little to no industrial experience. All subjects were 
of course unfamiliar with the source code or implementation 
details – to fit the scope of this study. 

 

 
Figure 1.  Trace Capture Tool. 

We did not know how many classes or methods a subject 
could recover in a reasonable amount of time as no such 
benchmark existed. We therefore decided on evaluating a 
selected subset of each system and its requirements only as 
shown in Table I. We focused on 17 (GP) / 16 (RO) re-
quirements covering the core functionality of the systems. 
The requirements were selected randomly – in part together 
with the developers. Figure 1 shows some of the require-
ments. The classes were selected based on the requirements. 
Since the larger majority of classes did not implement any of 
the selected requirements, irrelevant classes were eliminated 
(with the help of developers and through testing and profil-
ing [13, 15]). While all selected classes were thus relevant to 
at least one requirement, trace links were still rare (only 
about 10% of the trace matrix had trace links). While our 
selecting process focused on a subset of requirements and 
classes, the average number of requirements per class should 
remain reasonably small even in larger systems with more 
requirements. Our experiment setup was thus quite realistic 
in terms of its low ratio of traces vs. no traces. 

In the first exploratory experiment, 20 subjects investi-
gated the trace links among the requirements and the 85 se-
lected Java (GP) classes, another 20 subjects worked on the 
123 C++ (RO) classes. In the second experiment the remain-

ing subjects investigated the trace links among those re-
quirements and the 788  (GP) / 544 (RO) methods.  

The subjects used a simple Trace Capture tool to record 
trace links (Figure 1). The tool was purely used for data col-
lection and did not automate any trace recovery step. For 
each subject, the tool provided a randomized list of classes or 
methods (thus presenting a different subset of code to each 
subject). The tool allowed the subjects to view the source 
code of any class or method. The tool also provided basic 
navigation features we considered as most relevant for trace 
recovery. Most significantly, the tool revealed the callers and 
callees of classes and methods. The subjects could navigate 
and view the source code; and the tool also provided infor-
mation on parent and child classes. This information was 
determined through prior static and dynamic analysis of the 
source code. Initially, all requirement-to-code traces were set 
to undefined. The subjects could change this setting to trace 
or no trace. We also advised the subjects to only vote in cas-
es of certainty – or otherwise bypass a vote by leaving it un-
defined. The tool determined trace recovery effort devoted to 
different code elements by measuring the time span between 
selecting the code element, voting on its traceability, and 
selecting the next one. If a subject returned to a piece of code 
at a later time then the additional time spent was added. 

C. Definitions for Data Analyses 

Recovering the trace links for the 85 GP classes and 17 
requirements in experiment 1 requires 17x85=1445 trace/no 
trace votes. For the 788 GP methods in experiment 2, 
17x788=13396 votes are necessary. In the limited time avail-
able, each subject managed to cast a portion of these votes 
only. For instance, the 20 GP subjects recovering class traces 
combined cast 13350 votes with a redundancy of 9 votes per 
requirement and class. The remaining 48 subjects cast 80432 
method votes with a redundancy of 6 votes per requirement 
and method. The low redundancy is explained by the expe-
riment duration of 90 min per subject. Even the subset of the 
systems was too large for a subject to cover it entirely. A 
redundancy of 6 per class for 48 subjects (all subjects were 
given that same classes but in different order) implies that 
subject managed to complete 12% of the assignment in aver-
age only. This was intended and important for the experi-
ment context because we wanted to avoid learning effects 
(recall that the experiment investigates the worst case which 
is only possible if the subjects are not familiar with the sys-
tem nor gain sufficient familiarity with the system during the 
experiment). In order to still draw statistically significant 
conclusions, we thus used on many subjects. 

Most votes were no trace votes (93%); the remaining 7% 
were trace votes (we ignored votes that subjects left at unde-
fined). The overwhelming vote in favor of no trace was not 
surprising given that most classes implement few require-
ments only. Trace links are thus expected to be rare com-
pared to no traces. For traceability both the effort of traces 
and no traces are relevant. During trace recovery, all classes 
of a system must be investigated and thus the combined ef-
fort of all classes is important (whether it traces to a given 
requirement or it does not). It would thus be invalid to dis-
card no trace votes from this study.  



The subjects exploring the RO traces also managed to 
cast a portion of all trace votes of the system in the given 
time. The 20 subjects who recovered traces to the C++ 
classes cast 20.073 trace/no trace votes with a redundancy of 
5 votes per requirement and class. The remaining 12 subject 
cast 14.104 votes with a redundancy of 3 votes on a random 
subset per class. Even though the RO system received fewer 
votes in average, the large number of classes/methods cov-
ered was sufficient to draw statistically significant conclu-
sions. Indeed, the high redundancy of GP is not necessary 
but since the GP experiment was conducted before the RO 
experiment, we lacked the benchmarks to assess the required 
redundancy. 

Trace correctness in our analyses is measured through the 
consensus between the trace links captured by the subjects 
and trace links produced by the developers (benchmark). To 
compare effort and quality of class and method traces in ex-
periment 2, we combined the method traces to aggregated 
classes using a simple criterion: if at least one of the methods 
of the class traced to a requirement then the class as a whole 
was considered to trace to that requirement; otherwise there 
was no trace.  

D. Experiment Data Quality 

To control the effort spent, we conducted both explorato-
ry experiments in a controlled environment and supervised 
the subjects. The sessions were limited to 90 minutes per 
subject. As discussed above we randomly shuffled the order-
ing of classes and methods for each subject to ensure that 
classes and method had a roughly equal likelihood of being 
investigated (i.e., this was important since we presumed that 
subjects would be unable to complete the experiment in the 
limited time available). Subjects were instructed to emphas-
ize quality over quantity when capturing links. Also, subjects 
were told to cast trace and no trace votes in case of confi-
dence only. They could choose to skip votes and leave them 
undefined in case of doubt. However, only 5% of the votes 
were left undefined. Despite the lack of system knowledge, 
subjects seemed to be confident in their votes in most cases.  

However, did this confidence also lead to good trace link 
quality? We compared the data gathered by the subjects to 
the benchmark provided by the developers: 80-90% of the 
GP and RO class and method traces were confirmed by the 
benchmark. However, the no trace votes were more correct 
than the trace votes which averaged to 40-60%. It thus ap-
pears that it is often easier to rule out a trace link but that 
there is some gray zone where trace recovery is hard.  

These results show that a very high percentage of trace 
links discovered by the subjects was confirmed by the 
benchmark data although the subjects were not familiar with 
the code while the developers were familiar with the soft-
ware systems. Our analyses also confirmed that subjects 
could not have cast their votes in random and achieve such a 
high success rate. 

V. EXPERIMENT 1: CLASS TRACES 

In the first exploratory experiment, 20 subjects investi-
gated the trace links among 17 requirements and the 85 Java 
classes of GP. Another 20 subjects investigated the trace 

links among 16 requirements and the 123 C++ classes of 
RO. The subjects cast 13350 trace/no trace votes for the GP 
class traces and 20073 trace/no trace votes for the RO class 
traces. Since these class votes were roughly evenly distri-
buted among all classes, we ended up with 9 votes (GP) and 
5 votes (RO) per requirement and class.  

A. Code complexity and effort (RQ1) 

Research question 1 explores whether the amount of code 
engineers have to read and the code’s complexity have an 
impact on trace effort. Trace recovery requires subjects to 
read source code. It is thus intuitive to believe that larger 
code size (LOC) and higher code complexity (McCabe’s 
cyclomatic complexity [26]) increases trace recovery effort. 
We indeed found a correlation between LOC and effort (Fig-
ure 2 shows the data of GP and RO class traces). The corre-
lation between size of classes and effort (Figure 2) is highly 
significant at the 1% level for both GanttProject and Reac-
tOS with Spearman's rho being 0.408 for GP (p-value 
0.00005) and .480 for RO (p-value = 0.00313). 

Interestingly, GP effort per class was also significantly 
higher compared to RO effort which implies that the GP 
classes were harder to assess than RO classes. This might be 
an effect of the application domain or the understandability 
of the code. We also measured the impact of McCabe’s cyc-
lomatic complexity on effort and observed the same effect 
(data omitted for brevity). The results of the RO system con-
firm this trend although the effort increase was not as strong. 
Do note, however, the logarithmic scale of the x-axis and the 
linear trend of the effort data. It implies that effort increases 
with larger classes but not linearly with class size. This indi-
cates an economy of scale compared to class size; smaller 
classes are more expensive to trace than larger classes. 
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Figure 2.  Code size affects class traces. Results are significant for GP and 
weakly correlated for RO. 

B. Code complexity and quality (RQ2) 

It is also intuitive to believe that trace link quality de-
creases with higher code complexity – the larger and the 
more complex a class, the more likely conflicts should occur. 
We assessed the impact of code size and complexity (meas-
ured through McCabe’s cyclomatic complexity) on trace link 



quality (measured by the number of conflicts with develop-
ers). Given above observations, we would expect trace re-
covery to be easier for smaller classes than for larger ones. 
Although the average conflicts do increase with code size, 
the findings are clearly not as well correlated as we observed 
with code complexity and effort.  

The correlation between size of classes and the average 
number of conflicts (Figure 3) is highly significant at the 1% 
level for GanttProject (rho 0.285, p-value = 0.0041). There 
also seems to be weak correlation between the size of classes 
and the average number of conflicts for ReactOS (rho 0.229) 
but we cannot claim statistical significance in this case. 
Again also note the logarithmic scale of the x-axis, implying 
that increasing class size/complexity has decreasing effect on 
conflicts and thus quality. This observation suggests that 
syntactic features of source code do not much affect trace 
link quality. Only the meaning and usage seems relevant.  
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Figure 3.  Code size does not affect class trace quality. 

VI. EXPERIMENT 2: METHOD TRACES 

Trace recovery can be done at the granularities of re-
quirements-to-methods or requirements-to-classes. In the 
second exploratory experiment we gathered data on trace 
recovery between requirements and methods. The purpose 
was to better understand the impact of trace granularity on 
trace effort by comparing data with results from experi-
ment 1 (RQ3). We also aimed at deeper analyses regarding 
trace granularity and quality (RQ4). In experiment 2, 48 sub-
jects investigated the trace links among the GP requirements 
and the 604 GP methods. Another 12 subjects investigated 
the trace links among the RO requirements and the 544 RO 
methods. Considering GP we required more subjects to 
achieve the same code coverage as in experiment 1, mainly 
because assessing trace links at a finer level of granularity 
increases the number of code elements (604 method versus 
85 classes) and a fine-grained analysis of each method re-
quires a more intricate understanding of the role of each me-
thod in the class. The 48 subjects cast 80.432 trace/no trace 
votes for method traces. For the 604 methods, the 48 subjects 
produced a coverage of roughly 6 votes per requirement and 
method. These votes were aggregated to make them compa-
rable to the class traces. There were just 12 subjects available 

to cast the trace links between the 544 RO methods and the 
16 requirements. They cast 14.104 trace/no trace votes with a 
coverage of roughly 2 votes per requirement and method. 
We could use the RO method data for considerations on sin-
gle subjects (e.g. how long did a single subject need to cast a 
trace vote). Nevertheless, we considered a coverage of 2 
votes for a requirement method pair too low to compare 
these results to the results of the class requirement traces 
with a coverage of 5 votes per requirement and class. There-
fore we filtered the results and just considered requirement-
method pairs with a minimum redundancy of three votes. 
The methods of 30 RO classes passed this threshold and 
were used for comparisons to experiment 1. This reduced set 
was still large enough to draw statistically significant conclu-
sions. 

A. Trace granularity and Effort (RQ3) 

Regarding this research question, we tried to understand 
the impact of trace granularity on effort. We expected that 
fine-grained trace recovery requires more effort since me-
thods must be investigated individually. 
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Figure 4.  Comparing Method and Class Votes for GP and RO: Method 
votes required more effort than class votes. The factor is shown as black 
lines for GP (upper line) and RO (lower line). The factor increases with 

larger classes. The dotted line describes the situation of equal effort 
between class and method votes.  

Figure 4 shows the effort difference between recovering 
method traces versus class traces. If the sum of the individual 
method efforts of a class exceed the class effort as a whole 
then it is above the nominal line (red, dashed line), otherwise 
it is below (equal effort yields 1). The correlation between 
the size and the method-to-class effort ratio (Figure 4) is 
highly significant at the 1% level for both GanttProject (rho 
.389, p-value 0,00011) and ReactOS (rho .392, p-value = 
0.00005). This confirms our expectation. However, surpris-
ing is that the increase for class traces was not as strong as 
the increase for method traces. This observation suggests that 
class trace recovery is easier because understanding the pur-
pose of a class as a whole is easier than understanding the 
purposes of each of its methods combined. It also appears 
that subjects do not need to investigate all methods of a class 
to establish trace links at the granularity of classes, which 
might explain the significantly weaker increase of class trace 
link effort compared to method trace link effort. 



B. Trace Granularity and Quality (RQ4) 

We expected that fine-grained trace recovery requires 
more effort but produces trace links at a better quality due to 
the higher work precision needed. We thus assessed the im-
pact of code size and complexity on trace link quality (meas-
ured by the number of conflicts produced). Given above ob-
servations, we already know that trace recovery was not eas-
ier for smaller, less complex trace links (Section 2) at the 
granularity of classes.  

However, there were some disagreements between 
classes and method votes. The above discussion merely 
shows that code size and complexity do not account for these 
differences. Of the 87 (GP) / 45 (RO) class traces and 96 
(GP) / 38 (RO) aggregated method traces, class traces and 
method traces agreed in 41 (GP) / 28 (RO) cases. 55 (GP) / 
17 (RO) class traces were not found at the granularity of 
methods while 46 (GP) / 10 (RO) aggregated method traces 
were not found at the granularity of classes. For better under-
standing agreements and disagreements between class traces 
and method traces, we compared the trace votes of the sub-
jects with the benchmark of the two developers. We ex-
pected that class traces would be of lower quality and conse-
quently most of these missing or extra traces should be the 
result of incorrect class traces (and not incorrect method 
traces).  

TABLE II.  COMPARISON OF CLASS AND METHOD TRACE LINKS WITH 
THE DEVELOPER BENCHMARK. 

Class 
Group 

Methods 
Group 

Developer 
Benchmark GP RO

trace trace confirm 41 25
reject 7 3

no trace no trace confirm 1036 396
reject 56 14

no trace trace with class 27 5
with method 28 5

trace no trace with class 23 15
with method 23 2

 

Table II summarizes our findings for both systems. We 
see, for example, in row 4 that of the class traces not found at 
the granularity of methods, the developer agreed with the 
class group in 23 cases and with the methods group in 23 
cases. In the case of the methods traces not found at the gra-
nularity of classes (row 3), the assessment group agreed with 
the class group in 27 cases and the method group in 28 cases. 
The data gathered on ReactOS was very similar (see right 
column). Surprisingly, in these cases the developers agreed 
slightly more with the subjects’ doing. Indeed, our expecta-
tion was wrong and subjects working on methods traces did 
not produce better quality traces than subjects working on 
class traces. We thus conclude that method traces are not of 
better quality than class traces – despite 3-6 times higher 
effort.  

VII. TRACE EFFORT AND QUALITY (RQ5) 

Research question 5 investigates how trace recovery ef-
fort is correlated with trace correctness. It is a general truism 
that effort and quality are positively correlated. But, as was 
already revealed in the comparison of class vs. method trac-

es, finer-grained traces require 3-6 times more effort to pro-
duce without a significant correlation between finer and 
coarser-grained traces and trace quality. This suggests that 
from the perspective of trace quality there is no benefit in 
increasing effort by asking subjects to investigate classes in 
more detail (i.e., more granularity).  

One might argue that recovering method traces and class 
traces is somewhat different. We thus also investigated the 
role of effort on class traces only. We investigated the effort 
of different subjects for all classes and surprisingly observed 
that the subjects who spent more time (=effort) on a class 
were also more likely to recover incorrect trace links.  

To illustrate this, we divided all classes into four equally 
sized buckets according to the effort the subjects spent to 
cast their votes. Figure 5 shows the four buckets and the av-
erage number of conflicts of the trace votes compared to the 
benchmark data for each bucket. A surprising finding is that 
the more effort subjects spent on a given class the more like-
ly their votes were in conflict with the benchmark. The 
rightmost bucket, for example, contains the conflicts of those 
classes where the subjects spent the least effort. This bucket 
with the fastest classes contains significantly fewer conflicts 
than the bucket with the slowest classes (95% confidence). 
Trace links cast on RO produced fewer conflicts than trace 
votes casted on GP. Nevertheless, in both cases a higher ef-
fort spent on a class resulted in poorer quality.  

This observation is not immediately intuitive. Our expla-
nation is that easy trace links required little effort and could 
be produced with high correctness. However, hard trace links 
required more effort and were of lower quality due to their 
complexity despite the extra effort. Note that subjects chose 
freely how much time to spend on a class. This data thus 
does not yield insights into whether the quality would im-
prove if the subjects were forced to spend more time. How-
ever, it should be noted that this aspect was investigated with 
the class vs. method traces where we forced subjects to in-
vestigate all methods individually which yield a higher effort 
cost but no quality improvement either. 

 

 
Figure 5.  More effort spent on a class resulted in more conflicts. The right 

bucket contains conflicts of the fastest subjects for each class. 



Regarding RQ5 we conclude that more effort does not 
yield better trace quality – neither through granularity nor 
through longer evaluation times. Trace recovery is fast and 
accurate when the assigned classes are easily to comprehend. 
Otherwise, it is hard and inaccurate despite the extra effort 
invested. Asking subjects to simply spend more time does 
not obviously benefit trace quality. This suggests that trace 
quality should be improved by means other than effort – per-
haps automation or code familiarity.  

VIII. THREATS TO VALIDITY 

As any empirical study, our exploratory experiments ex-
hibit a number of threats to validity [37]. 

A threat to construct validity – are we measuring what 
we mean to measure? – is the potential bias caused by the 
systems selected for the experiment meaning that our expe-
riment may underrepresent the construct. However, we de-
cided to use two fairly large software systems developed by 
multiple people and with different implementation languages 
(Java and C++). Furthermore, both systems have gone 
through multiple revision cycles (exhibiting aging effects). 
We thus believe that they represent typical systems found in 
industry that are no longer understood by its developers.  

The threat to internal validity – are the results due solely 
to our manipulations – is selection, in particular the assign-
ments of code elements to particular subjects. We used ran-
domization and changed the ordering of code elements to 
avoid systematic bias from selection. A second threat to in-
ternal validity is process conformance. However, the trace 
capture tool and the supervision enabled us to easily ensure 
process conformance. Data consistency was much ensured 
during the experiment due to tool support. Supervisors col-
lected the trace and effort log data immediately after each 
step to avoid manipulation. Additionally, we optimized the 
measurement of effort by fine-grained tracking of user ac-
tions. Also, we aimed at high redundancy of trace votes to 
further minimize this problem. 

Moreover, one would expect there to be a startup phase 
where trace recovery is slow and a fatigue effect setting in 
after prolonged trace recovery. Other researchers have sug-
gested that trace recovery should be done incrementally, in 
short but frequent sessions [9]. We found that subjects 
worked near optimial after only 20 minutes of the experi-
ments. Our findings were not biased much by the experiment 
setup (data excluded for brevity). 

Regarding conclusion validity we have computed statis-
tical significance when analyzing the results of both experi-
ments. While the redundancy at the level of individual 
classes or methods would not have been high enough for 
statistical significance, the high number of classes/methods 
investigated did make our findings statistically significant.  

We are also able to rule out random subject voting as a 
significant threat to validity. The subjects cast ~50% correct 
trace votes and ~95% correct no trace votes (average 90% as 
seen in Figure 6). Both trace and no trace votes must be con-
sidered together. With random guessing, one would cast 50% 
correct traces (as the students did) but then also only cast 
50% correct no traces (while the students cast 95% correct 
no traces).  By simply voting no trace always, one would cast 

90% correct no traces (as the students did) but 0% correct 
trace votes (while the students cast 50% correct trace votes). 
The important fact is that the students found significant 
numbers of correct traces and correct no traces. The findings 
in this study are thus the result of ability – not luck.  

With respect to external validity – can we generalize the 
results – we took two real-world, large systems representing 
realistic application contexts. The size of the systems is simi-
lar to related experiments [10] but not particularly high com-
pared to documents in industrial settings. For instance, we 
took 85 classes representative of GanttProject as whole. The 
question is whether these classes are representative of Java 
classes in general? The selection of the 85 from 450 classes 
was based on static and dynamic analyses of 17 randomly 
selected requirements so we can assume a reasonably ran-
dom distribution of hard and easy classes. 

In many industrial settings people have no intimate sys-
tem knowledge during trace recovery. The experiments thus 
investigated whether subjects unfamiliar with the source 
code can successfully perform trace tasks. The subjects were 
students participating in classes on requirements engineering. 
It has been pointed out that students may not be representa-
tive of real developers. However, for the scope of our study 
the selection of students as subjects does not represent a 
threat to validity as they are representative of the group of 
people joining companies and needing to familiarize them-
selves with source code. The students certainly had the ne-
cessary technical skills to perform basic trace recovery tasks 
as the quality of their data shows. Also, Höst et al. observe 
no significant differences between students and professionals 
for small tasks of judgment [22], a condition that is clearly 
met in our case. Moreover, to assess validity of the trace 
links cast, key developers of the open source systems devel-
oped a benchmark. Trace links of subjects and developers 
overlap – another suggestion that the subjects performed 
well. The high correctness of the trace links (compared to 
benchmark data with actual developers of the system) shows 
that students certainly had the necessary technical skills to 
perform the trace recovery task. 
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Figure 6.  Performance of subjects. 

Figure 6 shows that subjects performed very well – reco-
vering between 80-95% correct trace/no trace votes. Howev-
er, as was discussed earlier, this high quality is slightly mis-
leading as the number of no trace votes dwarves the trace 
votes which were only 49% correct for RO and merely 37% 



correct for GP (both averages across all subjects). However, 
this quality difference is not surprising and the overall 80-
95% quality is quite outstanding.  

Finally, many subjects are already professional software 
developers with several years of industrial experience. A 
detailed analysis of the subjects is shown in Figure 7. 55% of 
subjects had less than 2 years of industrial experience, 24% 
of subjects had 2-4 years of industrial experience, and 21% 
of subjects had more than 4 years of industrial experience. 

The lower red line in the left figure shows that expe-
rienced subjects outperformed novices with respect to trace 
correctness, however, at the expense of trace effort (green 
line in the right figure). We can report positive correlation 
between the experience of subjects and the correctness of 
trace links was significant at the 5% level (rho .313, p-value 
0.0217). We did not find a correlation between the expe-
rience of subjects and the correctness of all trace links. These 
findings, however, correlate weakly and are not statistically 
significant. Experience thus seems to matter little during 
trace recovery: another indication that students as subjects 
are well suited.  
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Figure 7.  Experienced subjects perform better but need longer. 

IX. IMPLICATIONS FOR PRACTIONERS 

For practitioners, our study reveals interesting facts about 
the cost and quality of trace capture (worst case): 

 
• Trace recovery costs in average 0.5-2 minutes depend-

ing on code size with the cost increasing non-linearly 
(twice the code size is not twice the cost)  

• The quality of trace recovery favors no trace votes over 
trace votes. It appears to be much easier to correctly 
eliminate a class from tracing to a requirement than in-
cluding it (50% correct trace votes and 95% correct no 
trace votes). Yet, the quality appears to be weakly corre-
lated to the code size and subject experience.  

• Trace recovery of method traces costs between 2-6 times 
as much as class traces – again with the cost increasing 
non-linearly. Most interesting, however, the quality of 
method traces is not better than that of class traces – 
even though they require more effort. We generally 
found that trace effort does not correlate with trace qual-
ity which is a surprising observation.  

 
 

X. CONCLUSIONS 

We presented the results of two exploratory experiments 
on recovering trace links between requirements and classes 
(experiment 1) as well as requirements and methods (expe-
riment 2). We believe that our exploratory studies are valua-
ble as they succeeded in confirming and dismissing some 
existing beliefs and in providing a foundation for assessing 
the cost of trace capture under worst-case assumptions. The 
latter is important for assessing the cost effectiveness of any 
technology that relies on traceability.. 

We intentionally selected subjects that were unfamiliar 
with the systems, supplied no automated support for trace 
recovery, and provided no documentation for the task at 
hand – with the intent of creating a worst-case environment. 
During the course of the experiments, individual subjects 
investigated in average a random set of 24 classes only (15% 
of the 85 classes covering the core functionality which is less 
than 3% of the total 516 classes). This clearly did not allow a 
reasonably complete understanding of the system. Documen-
tation of the source code was non-existent with the exception 
of very few comments. This is largely consistent with indus-
trial settings where the original developers of a system are 
either no longer available or are no longer intimately familiar 
with the very details of the system [10, 31]. Despite of these 
constraints, subjects were able to identify meaningful trace 
links. Trace quality was surprisingly high (with no trace 
links easier to determine correctly compared to trace links).  

In context of our research questions, the findings are: 
Regarding research question RQ1, the data indicates that 

code complexity increases trace recovery effort. This data is 
not a contradiction to our observations in RQ5. Larger 
classes do need more time to recover than smaller classes. 
However, within any given class, more effort does not mean 
better quality. 

Regarding research question RQ2 our analyses reveal 
that there is only a weak correlation between the code 
size/complexity and the quality of the trace links. This sug-
gests that quality of trace recovery is not determined by syn-
tactic facts but rather semantic facts such as the meaning of 
identifiers or the context of code fragments. In future work 
we will analyze the navigation behavior of subjects to find 
out whether more than local knowledge is required in more 
complex cases. This also suggests that trace recovery does 
not suffer greatly from scalability problems were larger, 
more complex classes would become less recoverable. 

Regarding research question RQ3 our experiment 
showed that tracing requirements to methods required 3-6 
times more effort than tracing requirements to classes. How-
ever, traces at the granularity of methods have no advantage 
over traces on granularity of classes in terms of trace quality 
(RQ4).  

We also explored trace effort and quality differences in 
various phases of working sessions as only little is known 
about the time it takes to get up to speed and about the op-
timal duration of trace sessions. Data suggests that trace re-
covery should be done incrementally, in short but frequent 
sessions. We found that trace recovery has a short learning 
phase (<20min), reaches optimum quickly (<60min) but suf-



fers from a fatigue effort (>90min). The data also suggests 
that trace recovery could be fairly easily split into multiple 
sessions, done by different people, incrementally. This is 
consistent with recent research results that suggest incremen-
tal over one-shot trace recovery [9]. 

We got surprising results regarding RQ5. A higher trac-
ing effort does not imply better quality. Data indicates that 
trace link recovery falls into two categories: fast and accurate 
or slow and inaccurate. At this point, the only remedy against 
bad quality seems to be redundancy by assigning multiple 
subjects to any given class. If affordable, it improves quality 
because we observed that subjects did not uniformly perce-
ive the same classes as difficult. It seems that a long classifi-
cation time is indicative of uncertainty, leading to decreased 
precision.  

Automation is critical to support trace recovery but still 
in its infancy. Existing commercial tools help recording and 
managing traces but they don’t help recover them. We hope 
that the knowledge gained in this study can help researchers 
and tool builders to optimize features for trace recovery au-
tomation. Our work was also motivated by the fact that there 
exists no large system with known trace links for researching 
the problem of trace recovery. Our data provides the first, 
meaningful benchmark that can be used and further refined 
by other researchers in the community who need to assess 
the effectiveness and efficiency of automated traceability 
approaches. Our benchmark is intentionally based on a worst 
case scenario – in part because of simplicity due to the large 
number of factors involved but also because if it can be 
shown that an application of a trace is cost-effective even in 
a worst-case situation then the application is truly cost effec-
tive in general. 
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