
Effort and Quality of Recovering Requirements-to-
Code Traces: Two Exploratory Experiments

Alexander Egyed Florian Graf Paul Grünbacher
Institute for Systems Engineering and Automation

Johannes Kepler Universität
Altenbergerstr. 69, 4040 Linz, Austria

e-mail: {alexander.egyed | florian.graf | paul.gruenbacher}@jku.at

Abstract— Trace links between requirements and code are
essential for many software development and maintenance
activities. Despite significant advances in traceability research,
creating links remains a human-intensive activity and surpri-
singly little is known about how humans perform basic tracing
tasks. We investigate fundamental research questions regard-
ing the effort and quality of recovering traces between re-
quirements and code. Our paper presents two exploratory
experiments conducted with 100 subjects (half with industrial
experience, the other half without) who recovered trace links
for two open source software systems in a controlled environ-
ment and cast over 125.000 votes. In the first experiment, sub-
jects recovered trace links between the two systems’ require-
ments and implementation classes. In the second experiment
trace links were established between requirements and imple-
mentation methods. In order to assess the validity of the trace
links cast by subjects, key developers of the two software sys-
tems participated in our research and provided benchmarks.
Our study yields surprising observations: trace capture is sur-
prisingly fast and can be done within minutes even for larger
classes; the quality of the captured trace links, while good, does
not improve with higher trace effort; it is not harder though
slightly more expensive to recover the trace links for larger,
more complex classes; and, trace capture should be performed
by multiple engineers because “hard-to-do” traces differed per
subject and were not uniform to certain parts of code. These
findings open interesting possibilities for future research.

Keywords – Requirements, traceability, cost, understanding.

I. INTRODUCTION

Trace links between requirements and code identify
where requirements are implemented. They are important for
many success-critical development and maintenance activi-
ties. Requirements traceability is not a new field of research
and there is a general consensus among practitioners and
researchers that trace links are vital for understanding soft-
ware systems and for supporting many critical software en-
gineering activities. For instance, trace links are required to
determine the impact of changes to requirements during
maintenance, to perform coverage analyses, or to check the
consistency of arbitrary development artifacts [19, 24, 33].
Traceability is generally considered most beneficial in long-
living software systems [34] when engineers are no longer
familiar with the source code [31]. Traceability is nowadays
mandated by standards and prescribed in development me-

thods. The existence of trace links is assumed by many exist-
ing research approaches [1, 11, 38].

However, little is known on the cost-effectiveness of tra-
ceability between requirements and code. In domains where
system failure implies loss of life or massive economic loss,
the question on cost-effectiveness is secondary. In such do-
mains, trace capture is state of the practice. However, for the
vast majority of other systems, the economic benefits are
unclear and, as a result, trace capture is rarely done in indus-
trial practice [34]. To understand the cost effectiveness of
traceability, the economic benefits of using traces must out-
weigh the cost of trace capture and maintenance. While stu-
dies exist that explore the economic benefits of traces
[7,10,11,14,24,34] to the best of our knowledge no studies
have explored the cost of trace capture and maintenance.

This paper aims to provide this vital missing link. There
are many factors that affect the cost of trace capture: the de-
gree of familiarly with a system, the level of automation (for
code understanding or trace capture), the availability of do-
cumentation, etc. It is clearly impossible to consider all these
factors in a study. We thus focus on understanding the worst
case, i.e., fully manual trace recovery by subjects without
system familiarity, without automated support in identifying
traces, and without additional documentation about the sys-
tem. We will show that even in this extreme scenario, trace
capture is reasonably quick with surprisingly good quality.
This worst-case assessment allows researchers to reason
about the cost effectiveness of traceability from a conserva-
tive point of view – that is, if traceability is cost effective
compared to the worst-case cost of trace capture then it can
be argued that traceability is cost effective under all circums-
tances (and more so under better circumstances)! This work
thus provides a foundation for assessing the economic bene-
fits of traceability for practitioners and researchers alike:

 for assessing the savings of trace capture automation or
the expected cost of their manual overheads

 for assessing whether or not a particular use of traces
is cost effective by comparing the savings with cost

 for simply better understanding the economics of trace
capture which are not known

The worst-case assessment of trace capture is done through
two exploratory experiments [36] conducted in a controlled
environment on recovering trace links between requirements

and code. The subjects chosen for the experiments were mas-
ter-level computer science students of Vienna University of
Technology and Johannes Kepler University Linz. About
half of them had 2 years or more of industrial experience in
software development and the skills and experience of those
subjects is certainly representative of industrial settings. The
other half of the subjects had less than two years of industrial
experience and their skills are representative of new people
joining companies. Both groups of subjects had no a-priori
knowledge of the systems used. Our study thus aims at iden-
tifying to what degree experienced and inexperienced sub-
jects unfamiliar with the code can still recover correct traces.
This problem is highly relevant in industry because engi-
neers may understand the bigger picture of the source code
and its domain [10, 31] but they often do not understand the
purpose of individual classes. Since our study aims at identi-
fying the worst case cost of trace capture, the choice of stu-
dents as subjects is ideal: these students are nearly finished in
their studies and represent soon-to-be software engineers in
companies. As a benchmark for evaluating the subjects’
work, we relied on two key developers who wrote the soft-
ware systems in the studies and thus were highly familiar
with its implementation. Their data allowed us to assess the
correctness of the trace links cast by the subjects.

Our study shows that subjects needed in average only 1-2
minutes for recovering the trace link for a class. While the
cost of trace recovery increases slightly with code size, we
did not find a strong correlation between code size and the
quality of the trace links recovered. Almost all subjects, al-
though unfamiliar with the systems, managed to recover
mostly correct traceability (80-90%). However, for the
201.480 traces necessary to completely describe require-
ments-to-method traces for the first open source system used,
15% incorrectness still amounts to 30.000 errors! Surprising
was that subjects were performing at peak efficiency after
only 20 minutes after the start of the experiments, with a
noticeable exhaustion after 90 minutes. Trace recovery
should thus be done incrementally. More experienced sub-
jects did perform slightly better than less experienced sub-
jects but at the expense of higher effort. But our assumption,
that subjects who investigated a class longer than others
would also recover better quality traces was wrong: we
found that the more detailed requirement-to-method traces
were 3-6 times more costly to recover than requirements-to-
class traces. Surprisingly, however, the correctness of finer
grained method traces was not superior to class traces. Trace
recovery was more likely correct if the recovery was fast.
This suggests that subjects either quickly had the correct
intuition about a class’ traceability or they did not. While the
effort of trace recovery correlated strongly with class size
and complexity, quality had only a weak correlation with
size/complexity.

Practical Implications: The findings are important for practi-
tioners for better understanding the worst-case cost and qual-
ity of trace capture. The findings are also important for re-
searchers to better quantify the cost/benefit of research ap-
proaches that rely on the existence of trace links.

II. RELATED WORK

Trace recovery represents a massive re-engineering effort
not unlike architecture recovery. To date, the research com-
munity has focused largely on automated approaches to re-
cover trace links [5, 12, 13, 23, 35]. Despite successes in this
field, adequate automation has never been achieved and trace
recovery remains a human-intensive activity. Indeed, re-
searchers have pointed out that it is risky to neglect humans
in the traceability loop [20]. Nevertheless, only little is
known on how people without system knowledge recover
trace links and no data is available on the effort, quality, and
complexity of basic trace recovery tasks. Although trace re-
covery relies heavily on human expertise to our knowledge
so far no experiments have been conducted to better under-
stand manual trace recovery for large-scale software systems.

Nonetheless, research on traceability has progressed sig-
nificantly and researchers have been developing automated
approaches that go far beyond simple “recording and replay-
ing” of trace links (which is still the level of support in many
commercial tools). Approaches exist today that support re-
covery of different types of trace links such as code and
models [2, 16, 28], code and documentation [25], architec-
ture and test cases [27], architecture and code [29], or fea-
tures and code [8]. Researchers have proposed various tech-
niques and heuristics to support the automation of trace re-
covery. Examples include event-based approaches [6], in-
formation retrieval [5, 12], feature location techniques [23],
process-oriented approaches [32], scenario-based techniques
[13], or rule-based methods [35]. Although advances have
been made to automatically recover links, trace acquisition
remains a human-intensive activity with high initial cost as
also reported in case studies on industrial processes and tra-
ceability experiences [3, 18, 24, 30, 34].

Researchers have also conducted case studies and expe-
riments to determine the effectiveness of traceability ap-
proaches. For instance, Hayes et al. report on a case study
that investigates the effectiveness of information retrieval
techniques to create trace links between high-level and low-
level requirements [21]. Bianchi et al. present an exploratory
case study evaluating the relationship between the granulari-
ty of the traceability model adopted and the effectiveness of
the maintenance process [4]. De Lucia et al. describe a con-
trolled experiment [10] on the combined use of traceability
links with information retrieval techniques to give hints re-
garding the similarity of source code elements.

Despite these advances and available heuristics, captur-
ing trace links remains difficult and unreliable. A better un-
derstanding of how people recover trace links is essential for
researchers aiming at improving their existing techniques,
needed by tool developers providing trace recovery features,
and by practitioners facing the challenges of planning and
managing trace recovery activities in industrial practice. Al-
so, all current automated approach requires some human
intervention. Our studies aim at a more correct assessment on
the cost of this human intervention – say, if information re-
trieval recovers 60% of traces then the remaining 40% still
need to be recovered manually and the cost of the manual
recovery should not be worse than our worst case.

III. RESEARCH QUESTIONS

Our research is meant to provide worst-case data on ef-
fort and quality of trace recovery. This is ensured by using
subjects not familiar with a system and providing no mea-
ningful automation aside of basic reading technologies. We
explore five research questions derived from our literature
survey and our industrial experiences to better understand the
human nature of trace recovery:

RQ1. Does code complexity impact trace recovery effort?
We explored whether the amount of code engineers have to
read and the code’s complexity have an impact on trace ef-
fort. Our basic assumption was that code of higher complexi-
ty is harder to understand and we expect that code complexity
increases effort. We investigate this research question in
experiment 1.

RQ2. Does code complexity impact the correctness of
trace links? We investigated to what degree the size and
complexity of the source code engineers have to read im-
pacts trace quality. Our expectation is that larger size and
higher complexity negatively impact trace link quality. We
investigate this research question in experiment 1.

RQ3. What is the impact of trace granularity on effort?
Maximizing the benefits of traceability techniques by apply-
ing them in different forms or combinations is a hard re-
search challenge [7]. In earlier research we explored the
trade-off between trace granularity and quality [14, 17].
While fine-grained traces (e.g., requirements to methods in-
stead of requirements to classes) increase the possibilities for
trace utilization, in many cases their creation is more costly.
Based on these earlier results we predict that fine-grained
traces require more effort. We investigate this question in
experiment 2.

RQ4. What is the impact of trace granularity on quality?
One could assume that fine grained traces are more precise
and correct as engineers must investigate each method indi-
vidually leading to a deeper, more intricate understanding of
a class. Our expectation was that finer granularity positively
impacts trace recovery quality. We investigate this research
question in experiment 2.

RQ5. Does the correctness of trace links increase with
higher tracing effort? We expect that more effort implies
better quality which reflects the general belief that people
will achieve higher quality if they devote more time. This
research question is investigated in experiment 1.

IV. RESEARCH DESIGN

The goals of the exploratory experiments were to recover
the trace links of two systems, to validate the correctness of
the trace links, and to investigate the effort needed to recover
requirements-to-class and requirements-to-method traces.
We explore the five research questions on the two open
source systems GanttProject (GP) and ReactOS (RO) as
shown in Table I.

A. Case Study Systems

GanttProject (GP) (http://ganttproject.biz/). This open
source system provides features for project planning and
tracking. Users can visualize task dependencies using Gantt

charts and compute the start and finish dates of projects. GP
supports basic analyses such as critical path computations for
identifying tasks delaying the entire project. It also allows
the planning of human resources and their degree of in-
volvement in different tasks to support optimization of staff-
ing. The system was selected as the subjects already had
basic skills in project management techniques. Also, GP is
easy to use and its key features are explained in existing lec-
tures on project management. The system is quite large, con-
sisting of 41 KLOC Java code distributed in 516 classes and
3689 methods. The part of the system selected for the study
consisted of 85 classes and 788 methods.

ReactOS (RO) (http://www.reactos.org/). RO is an open
source implementation of the Windows XP OS. RO aims at
compatibility to XP applications and device drivers. Fur-
thermore, RO provides a graphical user interface that is high-
ly similar to Windows XP (e.g., a start menu, a taskbar, an
explorer for performing typical file system operations).
Again, the subjects were familiar with the basic functionality
of RO due its similarities to the Windows OS. The systems is
also quite large, consisting of 34 KLOC C++ code distri-
buted in 245 classes (files) and 3490 methods. The part se-
lected for the study consisted of 123 classes and 544 me-
thods.

TABLE I. KEY CHARACTERISTICS OF EXPERIMENTS AND SYSTEMS.

GanttProject (GP) ReactOS (RO)
Programming Language Java C++

Benchmark for Correctness key developer key developer

Experiment 1
(RQ1, RQ2, RQ5)

Requirements-to-Class traces

20 subjects
17 requirements

85 classes

20 subjects
16 require-

ments
123 classes

Experiment 2
(RQ3, RQ4, RQ5)

Rqts-to-Method traces

48 subjects
17 requirements

788 methods

12 subjects
16 require-

ments
544 methods

The large size, complexity, and poor documentation
made trace recovery a non-trivial exercise. The mnemonic
value of variable and method names was quite good which
made it fairly intuitive in many cases to guess a trace link.
However, these systems hardly contained any comments or
other linguistic cues in the code. Subjects investigated parts
of the system only and thus were never able to gain system
knowledge (not even during the experiment).

B. Experiment Process

We used a series of measures to gauge correctness and
completeness. In particular, we used a 3-tiered research de-
sign to assess trace link quality:

(i) Multiple subjects recovered the traces of any given
piece of code to ensure redundancy..

(ii) We conducted trace recovery independently at two
different levels of granularity: In experiment 1, 20 subjects
for GP and 20 more subjects of RO investigated how the
requirements traced to classes (class traces). In experiment
2, 48 subjects for GP and 12 more subjects RO investigated
how the requirements traced to methods (method traces).

(iii) We validated the correctness of the trace links cast
by the subjects with the help of two developers of GP and

RO. Both had significantly contributed to development and
were highly familiar with the code.

The subjects participating in the two experiments were
100 master-level students from Johannes Kepler University
Linz and Vienna University of Technology. All subjects
were trained in trace recovery and relevant features of GP
and RO. As discussed above, our experiments focused on
subjects without a-priori system knowledge. For this purpose
the chosen subjects were an ideal choice since roughly half
of them had between 2-10 years of experience and the other
half had little to no industrial experience. All subjects were
of course unfamiliar with the source code or implementation
details – to fit the scope of this study.

Figure 1. Trace Capture Tool.

We did not know how many classes or methods a subject
could recover in a reasonable amount of time as no such
benchmark existed. We therefore decided on evaluating a
selected subset of each system and its requirements only as
shown in Table I. We focused on 17 (GP) / 16 (RO) re-
quirements covering the core functionality of the systems.
The requirements were selected randomly – in part together
with the developers. Figure 1 shows some of the require-
ments. The classes were selected based on the requirements.
Since the larger majority of classes did not implement any of
the selected requirements, irrelevant classes were eliminated
(with the help of developers and through testing and profil-
ing [13, 15]). While all selected classes were thus relevant to
at least one requirement, trace links were still rare (only
about 10% of the trace matrix had trace links). While our
selecting process focused on a subset of requirements and
classes, the average number of requirements per class should
remain reasonably small even in larger systems with more
requirements. Our experiment setup was thus quite realistic
in terms of its low ratio of traces vs. no traces.

In the first exploratory experiment, 20 subjects investi-
gated the trace links among the requirements and the 85 se-
lected Java (GP) classes, another 20 subjects worked on the
123 C++ (RO) classes. In the second experiment the remain-

ing subjects investigated the trace links among those re-
quirements and the 788 (GP) / 544 (RO) methods.

The subjects used a simple Trace Capture tool to record
trace links (Figure 1). The tool was purely used for data col-
lection and did not automate any trace recovery step. For
each subject, the tool provided a randomized list of classes or
methods (thus presenting a different subset of code to each
subject). The tool allowed the subjects to view the source
code of any class or method. The tool also provided basic
navigation features we considered as most relevant for trace
recovery. Most significantly, the tool revealed the callers and
callees of classes and methods. The subjects could navigate
and view the source code; and the tool also provided infor-
mation on parent and child classes. This information was
determined through prior static and dynamic analysis of the
source code. Initially, all requirement-to-code traces were set
to undefined. The subjects could change this setting to trace
or no trace. We also advised the subjects to only vote in cas-
es of certainty – or otherwise bypass a vote by leaving it un-
defined. The tool determined trace recovery effort devoted to
different code elements by measuring the time span between
selecting the code element, voting on its traceability, and
selecting the next one. If a subject returned to a piece of code
at a later time then the additional time spent was added.

C. Definitions for Data Analyses

Recovering the trace links for the 85 GP classes and 17
requirements in experiment 1 requires 17x85=1445 trace/no
trace votes. For the 788 GP methods in experiment 2,
17x788=13396 votes are necessary. In the limited time avail-
able, each subject managed to cast a portion of these votes
only. For instance, the 20 GP subjects recovering class traces
combined cast 13350 votes with a redundancy of 9 votes per
requirement and class. The remaining 48 subjects cast 80432
method votes with a redundancy of 6 votes per requirement
and method. The low redundancy is explained by the expe-
riment duration of 90 min per subject. Even the subset of the
systems was too large for a subject to cover it entirely. A
redundancy of 6 per class for 48 subjects (all subjects were
given that same classes but in different order) implies that
subject managed to complete 12% of the assignment in aver-
age only. This was intended and important for the experi-
ment context because we wanted to avoid learning effects
(recall that the experiment investigates the worst case which
is only possible if the subjects are not familiar with the sys-
tem nor gain sufficient familiarity with the system during the
experiment). In order to still draw statistically significant
conclusions, we thus used on many subjects.

Most votes were no trace votes (93%); the remaining 7%
were trace votes (we ignored votes that subjects left at unde-
fined). The overwhelming vote in favor of no trace was not
surprising given that most classes implement few require-
ments only. Trace links are thus expected to be rare com-
pared to no traces. For traceability both the effort of traces
and no traces are relevant. During trace recovery, all classes
of a system must be investigated and thus the combined ef-
fort of all classes is important (whether it traces to a given
requirement or it does not). It would thus be invalid to dis-
card no trace votes from this study.

The subjects exploring the RO traces also managed to
cast a portion of all trace votes of the system in the given
time. The 20 subjects who recovered traces to the C++
classes cast 20.073 trace/no trace votes with a redundancy of
5 votes per requirement and class. The remaining 12 subject
cast 14.104 votes with a redundancy of 3 votes on a random
subset per class. Even though the RO system received fewer
votes in average, the large number of classes/methods cov-
ered was sufficient to draw statistically significant conclu-
sions. Indeed, the high redundancy of GP is not necessary
but since the GP experiment was conducted before the RO
experiment, we lacked the benchmarks to assess the required
redundancy.

Trace correctness in our analyses is measured through the
consensus between the trace links captured by the subjects
and trace links produced by the developers (benchmark). To
compare effort and quality of class and method traces in ex-
periment 2, we combined the method traces to aggregated
classes using a simple criterion: if at least one of the methods
of the class traced to a requirement then the class as a whole
was considered to trace to that requirement; otherwise there
was no trace.

D. Experiment Data Quality

To control the effort spent, we conducted both explorato-
ry experiments in a controlled environment and supervised
the subjects. The sessions were limited to 90 minutes per
subject. As discussed above we randomly shuffled the order-
ing of classes and methods for each subject to ensure that
classes and method had a roughly equal likelihood of being
investigated (i.e., this was important since we presumed that
subjects would be unable to complete the experiment in the
limited time available). Subjects were instructed to emphas-
ize quality over quantity when capturing links. Also, subjects
were told to cast trace and no trace votes in case of confi-
dence only. They could choose to skip votes and leave them
undefined in case of doubt. However, only 5% of the votes
were left undefined. Despite the lack of system knowledge,
subjects seemed to be confident in their votes in most cases.

However, did this confidence also lead to good trace link
quality? We compared the data gathered by the subjects to
the benchmark provided by the developers: 80-90% of the
GP and RO class and method traces were confirmed by the
benchmark. However, the no trace votes were more correct
than the trace votes which averaged to 40-60%. It thus ap-
pears that it is often easier to rule out a trace link but that
there is some gray zone where trace recovery is hard.

These results show that a very high percentage of trace
links discovered by the subjects was confirmed by the
benchmark data although the subjects were not familiar with
the code while the developers were familiar with the soft-
ware systems. Our analyses also confirmed that subjects
could not have cast their votes in random and achieve such a
high success rate.

V. EXPERIMENT 1: CLASS TRACES

In the first exploratory experiment, 20 subjects investi-
gated the trace links among 17 requirements and the 85 Java
classes of GP. Another 20 subjects investigated the trace

links among 16 requirements and the 123 C++ classes of
RO. The subjects cast 13350 trace/no trace votes for the GP
class traces and 20073 trace/no trace votes for the RO class
traces. Since these class votes were roughly evenly distri-
buted among all classes, we ended up with 9 votes (GP) and
5 votes (RO) per requirement and class.

A. Code complexity and effort (RQ1)

Research question 1 explores whether the amount of code
engineers have to read and the code’s complexity have an
impact on trace effort. Trace recovery requires subjects to
read source code. It is thus intuitive to believe that larger
code size (LOC) and higher code complexity (McCabe’s
cyclomatic complexity [26]) increases trace recovery effort.
We indeed found a correlation between LOC and effort (Fig-
ure 2 shows the data of GP and RO class traces). The corre-
lation between size of classes and effort (Figure 2) is highly
significant at the 1% level for both GanttProject and Reac-
tOS with Spearman's rho being 0.408 for GP (p-value
0.00005) and .480 for RO (p-value = 0.00313).

Interestingly, GP effort per class was also significantly
higher compared to RO effort which implies that the GP
classes were harder to assess than RO classes. This might be
an effect of the application domain or the understandability
of the code. We also measured the impact of McCabe’s cyc-
lomatic complexity on effort and observed the same effect
(data omitted for brevity). The results of the RO system con-
firm this trend although the effort increase was not as strong.
Do note, however, the logarithmic scale of the x-axis and the
linear trend of the effort data. It implies that effort increases
with larger classes but not linearly with class size. This indi-
cates an economy of scale compared to class size; smaller
classes are more expensive to trace than larger classes.

0

0.5

1

1.5

2

2.5

3

3.5

10 100 1000

A
ve

ra
g

e
 E

ff
o

rt
 o

f
C

la
ss

 V
o

te
s

(M
in

u
te

s)

Lines of Code

0-30 LOC 30-100 LOC 100-300 LOC >300 LOC

ReactOS
GanttProject

Figure 2. Code size affects class traces. Results are significant for GP and
weakly correlated for RO.

B. Code complexity and quality (RQ2)

It is also intuitive to believe that trace link quality de-
creases with higher code complexity – the larger and the
more complex a class, the more likely conflicts should occur.
We assessed the impact of code size and complexity (meas-
ured through McCabe’s cyclomatic complexity) on trace link

quality (measured by the number of conflicts with develop-
ers). Given above observations, we would expect trace re-
covery to be easier for smaller classes than for larger ones.
Although the average conflicts do increase with code size,
the findings are clearly not as well correlated as we observed
with code complexity and effort.

The correlation between size of classes and the average
number of conflicts (Figure 3) is highly significant at the 1%
level for GanttProject (rho 0.285, p-value = 0.0041). There
also seems to be weak correlation between the size of classes
and the average number of conflicts for ReactOS (rho 0.229)
but we cannot claim statistical significance in this case.
Again also note the logarithmic scale of the x-axis, implying
that increasing class size/complexity has decreasing effect on
conflicts and thus quality. This observation suggests that
syntactic features of source code do not much affect trace
link quality. Only the meaning and usage seems relevant.

C
o

n
fl

ic
ts

 B
et

w
e

en
 S

u
b

je
ct

s
an

d

D
ev

el
o

p
er

Figure 3. Code size does not affect class trace quality.

VI. EXPERIMENT 2: METHOD TRACES

Trace recovery can be done at the granularities of re-
quirements-to-methods or requirements-to-classes. In the
second exploratory experiment we gathered data on trace
recovery between requirements and methods. The purpose
was to better understand the impact of trace granularity on
trace effort by comparing data with results from experi-
ment 1 (RQ3). We also aimed at deeper analyses regarding
trace granularity and quality (RQ4). In experiment 2, 48 sub-
jects investigated the trace links among the GP requirements
and the 604 GP methods. Another 12 subjects investigated
the trace links among the RO requirements and the 544 RO
methods. Considering GP we required more subjects to
achieve the same code coverage as in experiment 1, mainly
because assessing trace links at a finer level of granularity
increases the number of code elements (604 method versus
85 classes) and a fine-grained analysis of each method re-
quires a more intricate understanding of the role of each me-
thod in the class. The 48 subjects cast 80.432 trace/no trace
votes for method traces. For the 604 methods, the 48 subjects
produced a coverage of roughly 6 votes per requirement and
method. These votes were aggregated to make them compa-
rable to the class traces. There were just 12 subjects available

to cast the trace links between the 544 RO methods and the
16 requirements. They cast 14.104 trace/no trace votes with a
coverage of roughly 2 votes per requirement and method.
We could use the RO method data for considerations on sin-
gle subjects (e.g. how long did a single subject need to cast a
trace vote). Nevertheless, we considered a coverage of 2
votes for a requirement method pair too low to compare
these results to the results of the class requirement traces
with a coverage of 5 votes per requirement and class. There-
fore we filtered the results and just considered requirement-
method pairs with a minimum redundancy of three votes.
The methods of 30 RO classes passed this threshold and
were used for comparisons to experiment 1. This reduced set
was still large enough to draw statistically significant conclu-
sions.

A. Trace granularity and Effort (RQ3)

Regarding this research question, we tried to understand
the impact of trace granularity on effort. We expected that
fine-grained trace recovery requires more effort since me-
thods must be investigated individually.

E
ff

o
rt

 D
if

fe
re

n
c

e
b

e
tw

ee
n

 C
la

ss

a
n

d
 M

e
th

o
d

 V
o

te
s

Figure 4. Comparing Method and Class Votes for GP and RO: Method
votes required more effort than class votes. The factor is shown as black
lines for GP (upper line) and RO (lower line). The factor increases with

larger classes. The dotted line describes the situation of equal effort
between class and method votes.

Figure 4 shows the effort difference between recovering
method traces versus class traces. If the sum of the individual
method efforts of a class exceed the class effort as a whole
then it is above the nominal line (red, dashed line), otherwise
it is below (equal effort yields 1). The correlation between
the size and the method-to-class effort ratio (Figure 4) is
highly significant at the 1% level for both GanttProject (rho
.389, p-value 0,00011) and ReactOS (rho .392, p-value =
0.00005). This confirms our expectation. However, surpris-
ing is that the increase for class traces was not as strong as
the increase for method traces. This observation suggests that
class trace recovery is easier because understanding the pur-
pose of a class as a whole is easier than understanding the
purposes of each of its methods combined. It also appears
that subjects do not need to investigate all methods of a class
to establish trace links at the granularity of classes, which
might explain the significantly weaker increase of class trace
link effort compared to method trace link effort.

B. Trace Granularity and Quality (RQ4)

We expected that fine-grained trace recovery requires
more effort but produces trace links at a better quality due to
the higher work precision needed. We thus assessed the im-
pact of code size and complexity on trace link quality (meas-
ured by the number of conflicts produced). Given above ob-
servations, we already know that trace recovery was not eas-
ier for smaller, less complex trace links (Section 2) at the
granularity of classes.

However, there were some disagreements between
classes and method votes. The above discussion merely
shows that code size and complexity do not account for these
differences. Of the 87 (GP) / 45 (RO) class traces and 96
(GP) / 38 (RO) aggregated method traces, class traces and
method traces agreed in 41 (GP) / 28 (RO) cases. 55 (GP) /
17 (RO) class traces were not found at the granularity of
methods while 46 (GP) / 10 (RO) aggregated method traces
were not found at the granularity of classes. For better under-
standing agreements and disagreements between class traces
and method traces, we compared the trace votes of the sub-
jects with the benchmark of the two developers. We ex-
pected that class traces would be of lower quality and conse-
quently most of these missing or extra traces should be the
result of incorrect class traces (and not incorrect method
traces).

TABLE II. COMPARISON OF CLASS AND METHOD TRACE LINKS WITH
THE DEVELOPER BENCHMARK.

Class
Group

Methods
Group

Developer
Benchmark GP RO

trace trace confirm 41 25
reject 7 3

no trace no trace confirm 1036 396
reject 56 14

no trace trace with class 27 5
with method 28 5

trace no trace with class 23 15
with method 23 2

Table II summarizes our findings for both systems. We
see, for example, in row 4 that of the class traces not found at
the granularity of methods, the developer agreed with the
class group in 23 cases and with the methods group in 23
cases. In the case of the methods traces not found at the gra-
nularity of classes (row 3), the assessment group agreed with
the class group in 27 cases and the method group in 28 cases.
The data gathered on ReactOS was very similar (see right
column). Surprisingly, in these cases the developers agreed
slightly more with the subjects’ doing. Indeed, our expecta-
tion was wrong and subjects working on methods traces did
not produce better quality traces than subjects working on
class traces. We thus conclude that method traces are not of
better quality than class traces – despite 3-6 times higher
effort.

VII. TRACE EFFORT AND QUALITY (RQ5)

Research question 5 investigates how trace recovery ef-
fort is correlated with trace correctness. It is a general truism
that effort and quality are positively correlated. But, as was
already revealed in the comparison of class vs. method trac-

es, finer-grained traces require 3-6 times more effort to pro-
duce without a significant correlation between finer and
coarser-grained traces and trace quality. This suggests that
from the perspective of trace quality there is no benefit in
increasing effort by asking subjects to investigate classes in
more detail (i.e., more granularity).

One might argue that recovering method traces and class
traces is somewhat different. We thus also investigated the
role of effort on class traces only. We investigated the effort
of different subjects for all classes and surprisingly observed
that the subjects who spent more time (=effort) on a class
were also more likely to recover incorrect trace links.

To illustrate this, we divided all classes into four equally
sized buckets according to the effort the subjects spent to
cast their votes. Figure 5 shows the four buckets and the av-
erage number of conflicts of the trace votes compared to the
benchmark data for each bucket. A surprising finding is that
the more effort subjects spent on a given class the more like-
ly their votes were in conflict with the benchmark. The
rightmost bucket, for example, contains the conflicts of those
classes where the subjects spent the least effort. This bucket
with the fastest classes contains significantly fewer conflicts
than the bucket with the slowest classes (95% confidence).
Trace links cast on RO produced fewer conflicts than trace
votes casted on GP. Nevertheless, in both cases a higher ef-
fort spent on a class resulted in poorer quality.

This observation is not immediately intuitive. Our expla-
nation is that easy trace links required little effort and could
be produced with high correctness. However, hard trace links
required more effort and were of lower quality due to their
complexity despite the extra effort. Note that subjects chose
freely how much time to spend on a class. This data thus
does not yield insights into whether the quality would im-
prove if the subjects were forced to spend more time. How-
ever, it should be noted that this aspect was investigated with
the class vs. method traces where we forced subjects to in-
vestigate all methods individually which yield a higher effort
cost but no quality improvement either.

Figure 5. More effort spent on a class resulted in more conflicts. The right

bucket contains conflicts of the fastest subjects for each class.

Regarding RQ5 we conclude that more effort does not
yield better trace quality – neither through granularity nor
through longer evaluation times. Trace recovery is fast and
accurate when the assigned classes are easily to comprehend.
Otherwise, it is hard and inaccurate despite the extra effort
invested. Asking subjects to simply spend more time does
not obviously benefit trace quality. This suggests that trace
quality should be improved by means other than effort – per-
haps automation or code familiarity.

VIII. THREATS TO VALIDITY

As any empirical study, our exploratory experiments ex-
hibit a number of threats to validity [37].

A threat to construct validity – are we measuring what
we mean to measure? – is the potential bias caused by the
systems selected for the experiment meaning that our expe-
riment may underrepresent the construct. However, we de-
cided to use two fairly large software systems developed by
multiple people and with different implementation languages
(Java and C++). Furthermore, both systems have gone
through multiple revision cycles (exhibiting aging effects).
We thus believe that they represent typical systems found in
industry that are no longer understood by its developers.

The threat to internal validity – are the results due solely
to our manipulations – is selection, in particular the assign-
ments of code elements to particular subjects. We used ran-
domization and changed the ordering of code elements to
avoid systematic bias from selection. A second threat to in-
ternal validity is process conformance. However, the trace
capture tool and the supervision enabled us to easily ensure
process conformance. Data consistency was much ensured
during the experiment due to tool support. Supervisors col-
lected the trace and effort log data immediately after each
step to avoid manipulation. Additionally, we optimized the
measurement of effort by fine-grained tracking of user ac-
tions. Also, we aimed at high redundancy of trace votes to
further minimize this problem.

Moreover, one would expect there to be a startup phase
where trace recovery is slow and a fatigue effect setting in
after prolonged trace recovery. Other researchers have sug-
gested that trace recovery should be done incrementally, in
short but frequent sessions [9]. We found that subjects
worked near optimial after only 20 minutes of the experi-
ments. Our findings were not biased much by the experiment
setup (data excluded for brevity).

Regarding conclusion validity we have computed statis-
tical significance when analyzing the results of both experi-
ments. While the redundancy at the level of individual
classes or methods would not have been high enough for
statistical significance, the high number of classes/methods
investigated did make our findings statistically significant.

We are also able to rule out random subject voting as a
significant threat to validity. The subjects cast ~50% correct
trace votes and ~95% correct no trace votes (average 90% as
seen in Figure 6). Both trace and no trace votes must be con-
sidered together. With random guessing, one would cast 50%
correct traces (as the students did) but then also only cast
50% correct no traces (while the students cast 95% correct
no traces). By simply voting no trace always, one would cast

90% correct no traces (as the students did) but 0% correct
trace votes (while the students cast 50% correct trace votes).
The important fact is that the students found significant
numbers of correct traces and correct no traces. The findings
in this study are thus the result of ability – not luck.

With respect to external validity – can we generalize the
results – we took two real-world, large systems representing
realistic application contexts. The size of the systems is simi-
lar to related experiments [10] but not particularly high com-
pared to documents in industrial settings. For instance, we
took 85 classes representative of GanttProject as whole. The
question is whether these classes are representative of Java
classes in general? The selection of the 85 from 450 classes
was based on static and dynamic analyses of 17 randomly
selected requirements so we can assume a reasonably ran-
dom distribution of hard and easy classes.

In many industrial settings people have no intimate sys-
tem knowledge during trace recovery. The experiments thus
investigated whether subjects unfamiliar with the source
code can successfully perform trace tasks. The subjects were
students participating in classes on requirements engineering.
It has been pointed out that students may not be representa-
tive of real developers. However, for the scope of our study
the selection of students as subjects does not represent a
threat to validity as they are representative of the group of
people joining companies and needing to familiarize them-
selves with source code. The students certainly had the ne-
cessary technical skills to perform basic trace recovery tasks
as the quality of their data shows. Also, Höst et al. observe
no significant differences between students and professionals
for small tasks of judgment [22], a condition that is clearly
met in our case. Moreover, to assess validity of the trace
links cast, key developers of the open source systems devel-
oped a benchmark. Trace links of subjects and developers
overlap – another suggestion that the subjects performed
well. The high correctness of the trace links (compared to
benchmark data with actual developers of the system) shows
that students certainly had the necessary technical skills to
perform the trace recovery task.

C
o

rr
e

ct
n

es
s

o
f

V
o

te
s

C
as

t
B

y
Su

b
je

ct
s

Figure 6. Performance of subjects.

Figure 6 shows that subjects performed very well – reco-
vering between 80-95% correct trace/no trace votes. Howev-
er, as was discussed earlier, this high quality is slightly mis-
leading as the number of no trace votes dwarves the trace
votes which were only 49% correct for RO and merely 37%

correct for GP (both averages across all subjects). However,
this quality difference is not surprising and the overall 80-
95% quality is quite outstanding.

Finally, many subjects are already professional software
developers with several years of industrial experience. A
detailed analysis of the subjects is shown in Figure 7. 55% of
subjects had less than 2 years of industrial experience, 24%
of subjects had 2-4 years of industrial experience, and 21%
of subjects had more than 4 years of industrial experience.

The lower red line in the left figure shows that expe-
rienced subjects outperformed novices with respect to trace
correctness, however, at the expense of trace effort (green
line in the right figure). We can report positive correlation
between the experience of subjects and the correctness of
trace links was significant at the 5% level (rho .313, p-value
0.0217). We did not find a correlation between the expe-
rience of subjects and the correctness of all trace links. These
findings, however, correlate weakly and are not statistically
significant. Experience thus seems to matter little during
trace recovery: another indication that students as subjects
are well suited.

0

20

40

60

80

100

<2 2‐4 >4
0

20

40

60

80

100

<2 2‐4 >4

Subject Experience in Years

Trace Votes
All Votes

Figure 7. Experienced subjects perform better but need longer.

IX. IMPLICATIONS FOR PRACTIONERS

For practitioners, our study reveals interesting facts about
the cost and quality of trace capture (worst case):

• Trace recovery costs in average 0.5-2 minutes depend-

ing on code size with the cost increasing non-linearly
(twice the code size is not twice the cost)

• The quality of trace recovery favors no trace votes over
trace votes. It appears to be much easier to correctly
eliminate a class from tracing to a requirement than in-
cluding it (50% correct trace votes and 95% correct no
trace votes). Yet, the quality appears to be weakly corre-
lated to the code size and subject experience.

• Trace recovery of method traces costs between 2-6 times
as much as class traces – again with the cost increasing
non-linearly. Most interesting, however, the quality of
method traces is not better than that of class traces –
even though they require more effort. We generally
found that trace effort does not correlate with trace qual-
ity which is a surprising observation.

X. CONCLUSIONS

We presented the results of two exploratory experiments
on recovering trace links between requirements and classes
(experiment 1) as well as requirements and methods (expe-
riment 2). We believe that our exploratory studies are valua-
ble as they succeeded in confirming and dismissing some
existing beliefs and in providing a foundation for assessing
the cost of trace capture under worst-case assumptions. The
latter is important for assessing the cost effectiveness of any
technology that relies on traceability..

We intentionally selected subjects that were unfamiliar
with the systems, supplied no automated support for trace
recovery, and provided no documentation for the task at
hand – with the intent of creating a worst-case environment.
During the course of the experiments, individual subjects
investigated in average a random set of 24 classes only (15%
of the 85 classes covering the core functionality which is less
than 3% of the total 516 classes). This clearly did not allow a
reasonably complete understanding of the system. Documen-
tation of the source code was non-existent with the exception
of very few comments. This is largely consistent with indus-
trial settings where the original developers of a system are
either no longer available or are no longer intimately familiar
with the very details of the system [10, 31]. Despite of these
constraints, subjects were able to identify meaningful trace
links. Trace quality was surprisingly high (with no trace
links easier to determine correctly compared to trace links).

In context of our research questions, the findings are:
Regarding research question RQ1, the data indicates that

code complexity increases trace recovery effort. This data is
not a contradiction to our observations in RQ5. Larger
classes do need more time to recover than smaller classes.
However, within any given class, more effort does not mean
better quality.

Regarding research question RQ2 our analyses reveal
that there is only a weak correlation between the code
size/complexity and the quality of the trace links. This sug-
gests that quality of trace recovery is not determined by syn-
tactic facts but rather semantic facts such as the meaning of
identifiers or the context of code fragments. In future work
we will analyze the navigation behavior of subjects to find
out whether more than local knowledge is required in more
complex cases. This also suggests that trace recovery does
not suffer greatly from scalability problems were larger,
more complex classes would become less recoverable.

Regarding research question RQ3 our experiment
showed that tracing requirements to methods required 3-6
times more effort than tracing requirements to classes. How-
ever, traces at the granularity of methods have no advantage
over traces on granularity of classes in terms of trace quality
(RQ4).

We also explored trace effort and quality differences in
various phases of working sessions as only little is known
about the time it takes to get up to speed and about the op-
timal duration of trace sessions. Data suggests that trace re-
covery should be done incrementally, in short but frequent
sessions. We found that trace recovery has a short learning
phase (<20min), reaches optimum quickly (<60min) but suf-

fers from a fatigue effort (>90min). The data also suggests
that trace recovery could be fairly easily split into multiple
sessions, done by different people, incrementally. This is
consistent with recent research results that suggest incremen-
tal over one-shot trace recovery [9].

We got surprising results regarding RQ5. A higher trac-
ing effort does not imply better quality. Data indicates that
trace link recovery falls into two categories: fast and accurate
or slow and inaccurate. At this point, the only remedy against
bad quality seems to be redundancy by assigning multiple
subjects to any given class. If affordable, it improves quality
because we observed that subjects did not uniformly perce-
ive the same classes as difficult. It seems that a long classifi-
cation time is indicative of uncertainty, leading to decreased
precision.

Automation is critical to support trace recovery but still
in its infancy. Existing commercial tools help recording and
managing traces but they don’t help recover them. We hope
that the knowledge gained in this study can help researchers
and tool builders to optimize features for trace recovery au-
tomation. Our work was also motivated by the fact that there
exists no large system with known trace links for researching
the problem of trace recovery. Our data provides the first,
meaningful benchmark that can be used and further refined
by other researchers in the community who need to assess
the effectiveness and efficiency of automated traceability
approaches. Our benchmark is intentionally based on a worst
case scenario – in part because of simplicity due to the large
number of factors involved but also because if it can be
shown that an application of a trace is cost-effective even in
a worst-case situation then the application is truly cost effec-
tive in general.

REFERENCES
[1] Aizenbud-Reshef, N., Nolan, B.T., Rubin, J. and Shaham-Gafni, Y.

Model Traceability. IBM Systems Journal, 45 (3). 515-526.
[2] Antoniol, G., Caprile, B., Potrich, A. and Tonella, P. Design-Code

Traceability Recovery: Selecting the Basic Linkage Properties.
Science of Computer Programming, 40 (2-3). 213-234.

[3] Asuncion, H.U., Francois, F. and Taylor, R.N. An end-to-end indus-
trial software traceability tool 6th Int'l ESEC/FSE conference, ACM,
Dubrovnik, Croatia, 2007.

[4] Bianchi, A., Visaggio, G. and Fasolino, A.R. An Exploratory Case
Study of the Maintenance Effectiveness of Traceability Models 8th
Int'l Workshop on Program Comprehension, IEEE CS, 2000.

[5] Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R. and Romano-
va, E. Best Practices for Automated Traceability. Computer, 40 (6).
27-35.

[6] Cleland-Huang, J., Chang, C.K. and Christensen, M. Event-Based
Traceability for Managing Evolutionary Change. IEEE TSE, 29 (9).
796-810.

[7] Cleland-Huang, J., Zemont, G. and Lukasik, W. A Heterogeneous
Solution for Improving the Return on Investment of Requirements
Traceability 12th IEEE Int'l RE Conference, IEEE CS, 2004.

[8] Dagenais, B., Breu, S., Frederic Weigand, W. and Robillard, M.P.
Inferring structural patterns for concern traceability in evolving soft-
ware 22nd IEEE/ACM Int'l Conf. on Automated Software Engineer-
ing, ACM, Atlanta, GE, 2007.

[9] De Lucia, A., Oliveto, R. and Tortora, G., IR-Based Traceability
Recovery Processes: An Empirical Comparison of "One-Shot" and
Incremental Processes. 23rd IEEE/ACM Int'l Conf. on Automated
Software Engineering, (2008), L'Aquila, Italy, 39-48.

[10] de Lucia, A., Oliveto, R., Zurolo, F. and Penta, M.d. Improving Com-
prehensibility of Source Code via Traceability Information: a Con-
trolled Experiment 14th IEEE Int'l Conf. on Program Comprehension,
IEEE CS, 2006.

[11] Deng, M., Stirewalt, R.E.K. and Cheng, B.H.C. Retrieval by Con-
struction: a Traceability Technique to Support Verification and Vali-
dation of UML Formalizations. International Journal of Software En-
gineering and Knowledge Engineering (IJSEKE), 15 (5). 837-872.

[12] Duan, C. and Cleland-Huang, J. Clustering support for automated
tracing 22nd IEEE/ACM Int'l Conf. on Automated Software Engi-
neering, ACM, Atlanta, GE, 2007.

[13] Egyed, A., A Scenario-Driven Approach to Traceability. 23rd Int'l
Conf. on Softw. Eng., (Toronto, 2001), 123-132.

[14] Egyed, A., Biffl, S., Heindl, M. and Grünbacher, P., Determining the
Cost-Quality Trade-Off for Automated Software Traceability. 20th
ACM/IEEE Int'l Conf. on Automated Software Eng., 2005.

[15] Egyed, A., Binder, G. and Grünbacher, P., STRADA: A Tool for
Scenario-based Feature-to-Code Trace Detection and Analysis. 29th
Int'l Conf. on Software Engineering, (St. Louis, Missouri, 2007),
IEEE CS, 41-42.

[16] Egyed, A. and Grünbacher, P., Automating Requirements Traceabili-
ty: Beyond the Record & Replay Paradigm. 17th IEEE Int'l Conf. on
Automated Software Engineering, (Edinburgh, 2002), IEEE CS, 163-
171.

[17] Egyed, A., Grünbacher, P., Heindl, M. and Biffl, S., Value-Based
Requirements Traceability: Lessons Learned 15th IEEE Int'l Re-
quirements Engineering Conference, (New Delhi, India, 2007), IEEE
CS, 115-118.

[18] Gotel, O. and Finkelstein, A., Extended Requirements Traceability:
Results of an industrial case study. 3rd Int'l Symposium on Require-
ments Engineering, (1997), 169-178.

[19] Gotel, O.C.Z. and Finkelstein, A.C.W., An Analysis of the Require-
ments Traceability Problem. 1st Int'l Conf. on Requirements Eng.,
(1994), 94-101.

[20] Hayes, J.H. and Dekhtyar, A. Humans in the traceability loop: can't
live with 'em, can't live without 'em 3rd Int'l Workshop on Traceabili-
ty in Emerging Forms of Software Engineering, ACM, Long Beach,
CA, 2005.

[21] Hayes, J.H., Dekhtyar, A., Sundaram, S.K. and Howard, S. Helping
Analysts Trace Requirements: An Objective Look 12th IEEE Int'l
Requirements Engineering Conf., IEEE CS, 2004.

[22] Höst, M., Regnell, B. and Wohlin, C. Using Students as Subjects: A
Comparative Study of Students and Professionals in Lead-Time Im-
pact Assessment. Empirical Software Engineering, 5. 201-214.

[23] Koschke, R. and Quante, J. On dynamic feature location Proceedings
of the 20th IEEE/ACM international Conference on Automated soft-
ware engineering, ACM, Long Beach, 2005.

[24] Lindvall, M. and Sandahl, K. Practical implications of traceability.
Softw. Pract. Exper., 26 (10). 1161-1180.

[25] Marcus, A. and Maletic, J.I. Recovering documentation-to-source-
code traceability links using latent semantic indexing 25th Int'l Conf.
on Software Engineering, Portland, 2003.

[26] McCabe, T.J. A Complexity Measure. IEEE TSE, 2 (4). 308-320.
[27] Muccini, H., Bertolino, A. and Inverardi, P. Using Software Architec-

ture for Code Testing. IEEE TSE, 30 (3). 160-171.
[28] Murphy, G.C., Notkin, D. and Sullivan, K., Software Reflexion Mod-

els: Bridging the Gap Between Source and High-Level Models. 3rd
ACM SIGSOFT Symp. on the Foundations of Software Engineering,
(1995), New York, 18-28.

[29] Murta, L.G.P., van der Hoek, A. and Werner:, C.M.L. Continuous and
automated evolution of architecture-to-implementation traceability
links. Autom. Softw. Eng., 15 (1). 75-107

[30] Neumüller, C. and Grünbacher, P., Automating Software Traceability
in Very Small Companies: A Case Study and Lessons Learned. 21st
IEEE Int'l Conf. on Automated Software Eng., (2006), 145-156.

[31] Parnas, D.L., Software Aging. Int'l Conf. on Software Engineering,
(1994), 279-287.

[32] Pohl, K. PRO-ART: Enabling Requirements Pre-Traceability 2nd Int'l
Conference on Requirements Engineering, 1996.

[33] Ramesh, B. and Jarke, M. Toward Reference Models for Require-
ments Traceability. IEEE TSE, 27 (4). 58-93.

[34] Ramesh, B., Stubbs, L.C. and Edwards, M. Lessons Learned from
Implementing Requirements Traceability. Crosstalk: Journal of De-
fense Software Engineering, 8 (4). 11-15.

[35] Spanoudakis, G., Zisman, A., Perez-Minana, E. and Krause, P. Rule-
based generation of requirements traceability relations J. Systems and
Software, 72 (2). 105-127.

[36] Walker, R.J., Baniassad, E.L. and Murphy, G.C., An initial assess-
ment of aspect-oriented programming Proceedings of the 21st interna-

tional Conference on Software Engineering (Los Angeles, 1999),
ACM, 120-130.

[37] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B. and
Wesslén, A. Experimentation in Software Engineering: An Introduc-
tion. Kluwer Academic Publishers, 2000.

[38] Yue, T., Briand, L.C. and Labiche, Y. Automated Traceability Analy-
sis for UML Model Refinements. Journal of Information and Soft-
ware Technology, 51 512-527.

