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Abstract—The requirements traceability matrix (RTM) sup-
ports many software engineering and software verification and
validation (V&V) activities such as change impact analysis,
reverse engineering, reuse, and regression testing. The gen-
eration of RTMs is tedious and error-prone, though, thus
RTMs are often not generated or maintained. Automated
techniques have been developed to generate candidate RTMs
with some success. When using RTMs to support the V&V of
mission- or safety-critical systems, however, a human analyst
must vet the candidate RTMs. The focus thus becomes the
quality of the final RTM. This paper investigates how human
analysts perform when vetting candidate RTMs. Specifically,
a study was undertaken at two universities and had 26
participants analyze RTMs of varying accuracy for a Java
code formatter program. The study found that humans tend
to move their candidate RTM toward the line that represents
recall = precision. Participants who examined RTMs with
low recall and low precision drastically improved both.

Keywords-traceability; requirements; information retrieval;
decision support

I. I NTRODUCTION

Research has shown that information retrieval techniques
can be effectively applied to generate candidate RTMs in an
automated fashion for textual artifacts [1], [2], [3]. These
methods retrieve a high percentage of related items (for
example, when tracing from a specific user story to a
collection of test cases, the methods find almost all of the
related test cases), but also retrieve many unrelated items
(false positives). This shortcoming of the automated methods
has led to a plethora of research on how to decrease the
number of false positives retrieved [3], [4], [5]. Research
that focuses on improving automated traceability methods
is often called “the study of methods” [3]. As research has
progressed and practitioners have begun to use the tools
developed by academia, a new area of interest has emerged:
the study of the analyst.

Automated methods generate RTMs that must be vetted
by human analysts. The role of the human is particularly
important when the RTMs are generated to support verifica-
tion and validation (V&V) and independent verification and
validation (IV&V) activities for mission- or safety-critical
software systems. The human analyst must vet the candidate
RTM and add and remove links as necessary to arrive at the

final RTM. The quality of the final RTM is of paramount
concern. If automated methods generate candidate RTMs in
such a way that human analysts make bad decisions and
generate low quality final RTMs, the reduction of human
effort is immaterial—the process will have failed. This is
true even if the automated methods output perfect (or near
perfect) candidate RTMs—as long as human analysts do
not recognize it during the vetting process. This suggests
that automated methods for generating candidate RTMs are
valuable in such settingsonly if the human analysts make
the right decisionswith the information provided to them.

Our research addresses the question ofwhether the ana-
lysts will make the right decisions.To that end, this paper
concentrates on the study of the analyst (rather than the study
of the methods) by examining the human role in the tracing
process. We posit the following research questions: (1) how
do human analysts transform the requirements traceability
information produced by automated methods? (2) how does
the accuracy change in that process? (3) does the amount of
time an analyst spends impact the quality of the results?

To examine these questions, we designed a version of
our requirements tracing tool, REquirements TRacing On
target (RETRO), that allowed us to present candidate RTMs
of known accuracy to analysts. We then had the analysts
vet the RTMs and we measured the accuracy of the final
RTM. Specifically, we worked with 26 computer science and
software engineering students at two different universities
in the United States1 who examined RTMs for a Java code
formatter program (tracing its requirements to test cases).
We report our discoveries in this paper.

The research methodology described in the paper is ap-
plicable to a wider range of tasks involving human analyst
interactions with decision support software2. There are three
key aspects of the tracing process that affected the nature
of our study: (a) the presence of automated methods that
provide suggestions for a specific task, (b) the need for a
human analyst to examine the suggestions, and (c) the notion
of accuracy associated with the produced result. Researchers
can use similar approaches to study other settings within the

1Our work was approved by the IRB at each University.
2Understood in a broad sense here.



broad area of requirements engineering which exhibit these
characteristics.

The rest of the paper is organized as follows: Section II
covers background information on automated traceability
and related research. Section III describes our research
method. Section IV reports the results of our study. Sec-
tion V covers the threats to our study’s validity, and finally
Section VI contains our concluding remarks and future work.

II. BACKGROUND AND RELATED WORK

Gotel definesrequirements traceabilityas “the ability to
describe and follow the life of a requirement, in both a
forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent
deployment and use, and through all periods of on-going
refinement and iteration in any of these phases)” [6].

Requirements tracingis the process of establishing trace-
ability. In general, tracing involves linking elements from a
high-level artifact to elements of a low-level artifact. An
artifact can be any by-product of a software life cycle,
including a requirements document, design document, and
code. An element is a distinct piece of an artifact that
can be traced. Examples include a requirement or use case
from a requirements document; a class, method, or package
in source code or design documents; and a section or
subsection of documentation.

The output of the tracing process is arequirements
traceability matrix (RTM). It defines the mapping between
elements of one artifact and elements of the other artifact.
Any RTM that exists before the tracing process is complete
is said to be acandidate RTM, because it is a candidate to
become the final RTM. Thefinal RTM is the one approved
by a human analyst.

A pair of elements that trace to each other is called alink.
A candidate linkis any possible link between two artifacts.
Thus, for two artifacts with 10 and 5 elements, there are
10 × 5 = 50 candidate links for the elements of the two
artifacts. In order to measure the accuracy of an RTM, some
notion of correctness is needed for the links in the RTM. We
refer to a link that is correct as atrue link and a link that is
incorrect as afalse link.

When textual artifacts are traced to each other, require-
ments tracing can be viewed as an information retrieval
task. Information retrieval (IR) is concerned with which
documents from a collection of documents are relevant to a
query. In requirements tracing, the high-level requirements
act as queries and the low-level elements represent the
collection of documents [7].

A. Measures

Consider a tracing process consisting of a set of high-level
requirementsH of sizeM and a set of design elementsD
of sizeN . For a particular requirementq ∈ H, let nq be the
number of candidate links betweenq and the design elements

in D that an automated tool returns. Letrq be the number of
those links which are correct andRq be the actual number
of correct links betweenq and the elements inD [3].

Recall is the percentage of correct links that are found
[3]. Given a requirementq, the recall for the individual
requirement isrq

Rq

. The overall recall for the entire document
is defined formally in (1).

recall =

∑

q∈H

rq

∑

q∈H

Rq

(1)

Precision is the percentage of retrieved candidate links
that are correct [3]. Given a requirementq, the precision for
the individual requirement isrq

nq

. The overall precision for
the entire document is defined formally in (2).

precision =

∑

q∈H

rq

∑

q∈H

nq

(2)

F-measureis the harmonic mean of recall and precision.
Defined formally in (3), it represents a balance between
recall and precision and can be weighted to emphasize one
metric or the other.b = 1 weights recall and precision
equally,b < 1 favors precision, andb > 1 favors recall.

fb =
1 + b2

b2

recall
+ 1

precision

(3)

In this paper, following Hayes, Dekhtyar, and Sundaram
[3], we use thef2-measure(i.e., b = 2), because we observe
that it is easier to remove incorrect links than to find missing
links andf2 favors recall over precision.

B. Automated Traceability as Information Retrieval

Research has shown that information retrieval techniques
are efficient and effective at generating candidate links [1],
[2], [3]. Table I summarizes some of the current research in
methods for automated candidate link generation.

Antoniol, Canfora, Casazza, DeLucia, and Merlo [1]
applied term frequency-inverse document frequency (TF-
IDF) and a probabilistic IR method to trace source code to
documentation and requirements in two case studies. They
traced C++ classes to manual pages for LEDA (Library of
Efficient Data types and Algorithms). Their second dataset
was a hotel management system called Albergate. They
reported high levels of recall (86–100%) but low precision
(6–19%) for both methods.

Marcus and Maletic [2] achieved similar results on the
same datasets as Antoniol, Canfora, Casazza, DeLucia, and
Merlo [1] using latent semantic indexing (LSI) to automate
tracing in the opposite direction. For the LEDA dataset, LSI



Technique Dataset Recall Precision
TF-IDF [1] LEDA, Albergate 86–100% 6–18%
Probabilistic Method [1] LEDA, Albergate 94–100% 6–19%
Latent Semantic Indexing [2] LEDA, Albergate 91–100% 16–25%
TF-IDF [8] MODIS [9], [10] 63% 39%
TF-IDF with Thesaurus [8] MODIS [9], [10] 85% 40%
TF-IDF with feedback [3] MODIS [9], [10], CM-1 [11] 90% 80%

Table I
RESEARCH IN IR TECHNIQUES FOR AUTOMATED TRACEABILITY.

scored similar recall (96–97%) but higher precision (18–
25%) than TF-IDF and the probabilistic model. For the
Albergate dataset, recall and precision for LSI was similar
to that of Antoniol, Canfora, Casazza, DeLucia, and Merlo
[1] (91–100% and 16–17%, respectively).

Hayes, Dekhtyar, and Sundaram [3] studied requirements
to requirements tracing using TF-IDF, TF-IDF with a simple
thesaurus, and LSI. They also studied the use of Standard
Rochio feedback analysis to incorporate analyst feedback
into the automated methods. The results of the study showed
that applying user feedback to filter results automatically
fixed some errors in the original results.

C. The Human Side of Automated Traceability

Our research direction, introduced in [12], [13], is to
study the ways in which human analysts affect the final
traceability results when using automated tracing tools. To
our knowledge, there has been only one attempt to study
the analyst’s role in editing or vetting RTMs [12]. While
the study involved only four analysts, it showed that analyst
behavior is a problem worthy of further research [12]. The
results of the study [12] are shown in Fig. 1. There, each
vector represents the change affected by one analyst to an
RTM. The starting point of a vector represents the recall
and precision of the initial RTM given to an analyst. The
end point of a vector represents the recall and precision of
the RTM submitted by the analyst after performing vetting.
The key observation from the study [12] is that analysts
make both errors of omission (throwing out correct links)
and commission (adding incorrect links) [13].

On the other side of the interface between the human
and the automated tool, Dekhtyar, Hayes, and Larsen [14]
simulated human analyst decision making to study different
strategies that humans may utilize when working with auto-
mated tracing tools. The simulations assumed that analysts
always make correct decisions about whether a candidate
link is a true link or a false link. The results showed that if
analysts can correctly classify candidate links, incorporating
analyst feedback provides a 7–13% savings in effort for the
analyst.

To date, no large-scale study of automated traceability
involving human analysts has been conducted. Any evidence
of human effects on automated traceability data so far
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Figure 1. Results from a pilot study [12]. Arrows indicate change in
accuracy after analyst corrections.

is anecdotal. Our work extends the aforementioned study
[12] by conducting a more rigorous study involving more
participants.

III. M ETHODOLOGY

For our study, we concentrated on observing what analysts
do when vetting candidate RTMs obtained from automated
tools. Our goal is to determine if we can better understand
the work of human analysts. The key goals of our study
were outlined as the research questions in Section I.

A. Research Tool

In our study, we used a modified version of RETRO
(REquirements TRacing On-target) [15]. RETRO uses TF-
IDF vector space retrieval to suggest candidate RTMs and
uses the analyst’s corrections to provide feedback to the
retrieval algorithm using Standard Rochio feedback [3].
RETRO evolved from a research toolkit for tracing tar-
geting IV&V analysts and system maintainers, and it has
already been used to establish traceability between artifacts
such as requirements, design documents [7], [3], and bug
reports [16].

RETRO has two modes. The automated tracing mode,
shown in Fig. 2 (a), lets the analyst work with the results of
and provide feedback to the automated tracing methods used
in RETRO. The analyst can confirm or reject any candidate
link suggested by the automated methods. Rejecting a link
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Figure 2. (a) RETRO’s “trace” tab; (b) RETRO’s “browse” tab;(c) the pool of candidate RTMs that can be assigned to participants.

corrects for errors of commission. The manual tracing mode,
shown in Fig. 2 (b), allows the analyst to correct errors of
omission.

Modifications: To study the impact that initial can-
didate RTM accuracy has on the accuracy of the final
RTM, it is necessary to providedifferent participantswith
different candidate RTMsfor the same dataset. We made two
modifications to RETRO. We added a user login dialog to
the startup screen. We also replaced the IR methods used to
deliver candidate RTMs with a mechanism that allowed us
to assign each user a specific candidate RTM.

The new candidate RTM delivery system associates spe-
cific recall and precision targets with each user ID. It starts
with the candidate RTM computed by RETRO, and then
adds or subtracts candidate links to reach the appropriate
recall and precision values. When removing candidate links,
links are removed in order of the smallest relevance score to
the highest so that the strongest matches stay in the candidate
RTM. When adding candidate links, a link is chosen at
random and given a random, low relevance score.

B. Dataset

Our study involved two datasets. The first is thetraining
dataset, which is only used for a training exercise to famil-
iarize the participants with RETRO. The training dataset is
very small, consisting of 10 functional requirements and 5
system tests, so that participants can trace it very quickly.

For the actual experiment, we constructed a dataset using
a project assignment from a junior-level software engineer-
ing course sequence that spanned two quarters. Throughout
the course sequence, the students produced a requirements
document, written system test procedures, and an RTM for
the system tests. This project was selected because: (a) its
domain (a Java code formatter plugin for BlueJ) is easily
understood by upper-division students in computer science
or software engineering, (b) all of the documents were
produced by the development team at appropriate times
during the project’s development, and (c) its size lends itself

well to a tracing task that is reasonable to ask participants
to complete in about one hour.

To limit the scope of the tracing task, we extracted only
the functional and non-functional requirements from the
requirements document and only the system tests covering
those requirements. The result was a dataset consisting of
32 requirements (18 functional and 14 non-functional) and
17 system tests. We stripped traceability information from
the system tests, and then converted all data into a format
readable by RETRO. This dataset is referred to as the
experimental dataset.

The RTM for the experimental dataset was manually
verified by the research team. Since the original RTM was
created by the development teamat the time that the system
tests were written, we defaulted to their decision in any cases
where there was uncertainty about the traceability between
two elements. The resulting RTM contained 23 links be-
tween the requirements and system tests. The verified RTM
is thegolden standard RTM, against which the accuracy of
all other RTMs is measured.

C. Candidate RTM Preparation

In our study, each participant was asked to review a
candidate RTM, further referred to as theinitial RTM, with
precision and recall selected from a predefined pool of
possibilities. In Fig. 2 (c), we show the pool of recall-
precision possibilities chosen for the study. We group the
possible initial candidate RTMs into regions of similar recall
and precision, which helps in assigning initial candidate
RTMs to participants and analyzing the results for outcomes
that depend on the accuracy of the initial candidate RTM.

The pool of candidate RTMs was generated by calculating
nine points that surround the midpoint of each region.
The midpoints were selected to be the inner product of
{25%, 50%, 75%, 95%} recall and{25%, 50%, 75%, 95%}
precision. The nine points in each region were calculated
by taking all combinations of adding−5%, 0%, and+5%

to recall and precision. We could then calculate the number



of true positives and false positives needed for each RTM
by solving equations (1) and (2). Since the number of links
has to be an integer, not every point calculated by this
algorithm was unique. Any duplicates were discarded. In
addition to the points calculated by the algorithm, points
used in previous experiments were included.

D. Procedure

The study took place in four upper-division software
engineering classes at two universities, and consisted of two
assignments and two surveys. Participation in the study was
voluntary. Students were offered 1% extra credit in their
class for participating and given the option to complete an
alternative extra credit assignment of equal difficulty.

We started by giving all the students a pre-experiment
survey, which was designed to gauge their prior experience
and comfort with tracing. After collecting the surveys, a
researcher discussed requirements tracing and RETRO in
a one-hour presentation/practice session. The presentation
specifically covered how to work with RETRO to correct
errors of omission and errors of commission to ensure that
study participants had the knowledge necessary to make
improvements to the candidate RTMs.

To familiarize the participants with RETRO, we asked
them to trace our training dataset using RETRO. Participants
were given a printout of instructions on how to use RETRO
and a link to a page where they could download RETRO
and the training dataset. The training exercise started during
the in-class presentation, and participants were asked to
complete it outside of the class. They were not required
to turn in anything from the training exercise.

The research team analyzed the results from the pre-
experiment surveys to determine the participants’ prior ex-
perience with requirements tracing. This information was
used in assignment of initial RTMs to participants. All
participants were separated into two groups based on their
experience and then assigned RTMs. For each group, par-
ticipants were assigned to a region by round-robin, and
then a random RTM within the region was assigned to the
participant. Because our sample size is relatively small, a
random assignment of all participants would have risked
grouping experienced participants in the same region. Our
assignment procedure avoided this.

One week after the practice session, students were given
the experimental tracing task. Each user received a unique
user ID for RETRO, used by RETRO to present the initial
candidate RTM assigned to the specific user. Participants
were given about one week to trace the experimental dataset
outside of class time. They received written instructions
for the tracing task, a time log sheet, and a link to the
experimental dataset. Participants were asked to keep a
record of the time they spent on the task and any issues that
they encountered during the task. Submission instructions
asked participants to: (a) save their final RTM and email
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Figure 3. Change in recall and precision for all participants.

it to the research team, (b) submit the time log to their
course instructor, and (c) take an on-line post-experiment
survey that asked them for their reactions to the tracing
assignment (whether they felt prepared, how difficult the
task was, whether RETRO benefited or hindered them in
their task, etc.) and how long they spent on the assignment
and the training exercise.

E. Data Collection

We assembled a rich set of meta-information from the
pre- and post-experiment surveys and time logs in addition
to the final RTMs turned in by the participants. In this paper,
our independent variables are the recall, precision, andf2-
measure of each participant’s initial candidate RTM, and
our dependent variables are the recall, precision, andf2-
measure of each participant’s final RTM and an estimate of
each participant’s effort spent on the task as self-reported on
their time logs and post-experiment surveys. Further analysis
of the data is left for future work.

IV. RESULTS

This section presents results and analysis.

A. Overview of Results

As shown in Fig. 2 (c), we collected 26 responses to our
study from four groups of participants: three software en-
gineering courses at California Polytechnic State University
(Cal Poly) and a senior project course at the University of
Kentucky. One of the universities provided 10 responses and
the other provided 16. The filled dots represent assigned
candidate RTMs while the hollow dots represent candidate
RTMs that were not assigned. Fig. 3–8 depict the key results
of our study.
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Figure 4. Change in recall and precision of participants who(a) improvedand (b) decreased thef2-measure, and (c)–(f) change in recall and precision
by region/quadrant.
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Figure 5. (a) Final candidate RTM distribution; (b) change in f2-measure versus the initialf2-measure; (c) finalf2-measure versus the initialf2-measure.

Recall-Precision Drift: Fig. 3 presents an overview of
our results. Each vector plotted on the graph represents the
performance of a single respondent with respect to the two
main measures of RTM accuracy, recall and precision. The
starting point of each vector, marked as a solid dot for
participants from one university and as a star for participants
from the other, represents the recall and precision of the
starting candidate RTM that the study participant received.
The end point of the vector shows the recall and precision of
the candidate RTM submitted by the participant. Fig. 4 (c)
through (f) breaks Fig. 3 by region (quadrant) of the starting
candidate RTM. Fig. 5 (a) shows the distribution of the recall
and precision of all submitted candidate RTMs.

Improving Precision and Recall:In our study, 10
participants improved the recall of their candidate RTM,
four kept it the same, and 12 lowered it. Fourteen par-
ticipants improved the precision of their candidate RTM,
two participants kept the same precision, and 10 decreased
it. Only seven participants improved both precision and
recall. Four participants decreased both.

Who Improved Their Candidate RTMs?:One way
of determining whether the submitted candidate RTM is
“better” than the starting one is to use thef -measure. In our
study, we use thef2-measure, which prefers improvement
in recall (finding all correct links) over improvement in
precision (not producing false positives). Fig. 4 (a) and (b)
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Figure 6. (a) Change inf2-measure vs. initial recall and precision; (b) finalf2-measure vs. initial recall and precision.
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Figure 7. (a) Final RTM size vs. initial RTM size; (b) change in f2-measure vs. starting size, and (c) finalf2-measure vs. the effort.

show the results for those participants who improved thef2-
measure and those who reduced it, respectively. Overall, 13
participants improvedf2 and 13 did not.

Fig. 5 (b) plots the difference inf2 values between the
starting and the ending candidate RTMs (denoted as∆f2)
vs. the initial value of thef2-measure. Solid dots represent
participants who improvedf2 (∆f2 > 0). Triangles repre-
sent participants who did not improvef2. Fig. 5 (c) plots
the final values off2 vs. the starting values off2.

Changes by Region:Fig. 6 (a) and (b) show 3D
plots (top) and heat maps (bottom) for∆f2 and final f2,
respectively. The plots are in therecall-precisionspace.

RTM size: Fig. 7 (a) and (b) show the scatter plots
comparing the size of the final candidate RTM to the size

of the initial candidate RTM and showing the change in the
f2-measure based on the size of the initial candidate RTM,
respectively.

Effort: Fig. 7 (c) shows thef2-measure of the final
candidate RTM plotted against the effort, represented here
and elsewhere as the number of minutes to complete the
experiment task. Fig. 8 plots the change in thef2-measure
vs. the effort.

B. Analysis

Based on the results described briefly in Section IV-A,
we make the following observations concerning the results
of our study.

1) Movement Towardrecall = precision Line: One of
the surprising observations made in the prior study [12] was



the fact that human analysts tended to move their candidate
RTMs toward therecall = precision line. With only
four data points described [12], though, this observation
required more significant confirmation. In our current study,
we clearly observed the same drift.

Fig. 5 (a) shows a scatter plot of thefinal destinations, i.e.,
the locations of the submitted candidate RTMs in the recall-
precision space. As can be seen from this figure, in addition
to drifting toward therecall = precision line, we observe a
hot spot for the final destinations wheref2 is between 0.60
and 0.75 and the size of the RTM is between 17 and 32.

Why do so many final RTMs seem to hover around the
recall = precision line? One observation we make is that
candidate RTMs withrecall ≈ precision will have about
the same size as the true RTM. This is easily proven: setting
equations (1) and (2) equal to each other yields

∑
Rq =∑

nq. In other words, the number of links in a candidate
RTM is equal to the number of true links whenrecall =

precision.
We make a conjecture that analysts have an intuition

about the expected size of the true RTM based on the sizes
of the artifacts that they are tracing. For example, in the
experimental dataset used in this study, one would probably
expect the true RTM to contain roughly between 17 and 32
links. If each system test covers exactly one requirement,
then there would be 17 links. There would be 32 links if
each requirement is satisfied by exactly one system test. As
shown in Fig. 7 (a), 19 out of 26 participants submitted
RTMs containing between 17 and 32 links. We plan to test
this conjecture in our future studies.

2) Regional Behavior Differs:We observe distinctly dif-
ferent results for participants who started with candidate
RTMs in different regions.

Participants working with candidate RTMs from the low
precision, low recall region (Fig. 4 (d)) drastically improved
both precision and recall, and in general, demonstrated the
highest improvement in the accuracy of the final candidate
RTM. This is also seen in Fig. 6 (a) where a hot spot (gray
and bright orange) can be noted in the change inf2 for
participants with starting RTMs in this region.

Participants working with candidate RTMs from the low
precision, high recall region (Fig. 4 (f)) improved, sometimes
significantly, the precision of the submitted RTM. Changes
in recall in this region were generally minor, whether posi-
tive or negative. Because low precision, high recall candidate
RTMs tend to have significantly more candidate links than
the true RTM, we conjecture that the study participants
working with such candidate RTMs concentrated mostly on
determining errors of commission (false positives) and on
weeding them out while not spending too much time trying
to find errors of omission (links not in the candidate RTM).

Participants working with candidate RTMs from the high
precision, low recall region (Fig. 4 (c)) tended to improve
recall, sometimes significantly (with the exception of one

case, which appears to us to be an outlier). At the same time,
every participant decreased the precision of their submitted
candidate RTM. We conjecture that these participants were
doing the opposite of what was done in the case of low
precision, high recall starting points. Indeed, high precision,
low recall candidate RTMs have very few links, so we think
that the participants working with these candidate RTMs
spent most of their time looking for errors of omission
(and introducing both true links and false positives into their
candidate RTMs).

Finally, participants working with high precision, high re-
call (Fig. 4 (e)) candidate RTMs almost uniformly decreased
the accuracy (as measured byf2) of their candidate RTMs.
These participants increased neither recall nor precision, but
generally decreased both. Most of the decreases were not
significant though.

Note that with the exception of a portion of the low recall,
high precision starting region, finalf2 was in the range of
0.45 to 0.9 for all starting RTMs (Fig. 6 (b)), with much of
the recall-precision space being colored dark orange (0.65)
and hotter.

3) Those Who Improved Accuracy:There were 13 par-
ticipants who improved the overall accuracy (measured as
f2) of their candidate RTM. As Fig. 5 (b) and (c) show,
all but one improvement led to candidate RTMs with an
f2 measure value between0.6 and 0.75. Fig. 5 (c) shows
a clear correlation: the lower thef2 of the initial candidate
RTM, the higher was the change in thef2 measure for these
participants.

4) Those Who Did Not Improve Accuracy:On the other
hand, the results of the 13 participants who did not improve
the RTM accuracy shows a distinctly different pattern. All
but two participants showed only a slight decrease in the
accuracy of their final candidate RTM (a decrease of 0 to
15%), and this decreasedid not dependon the accuracy (f2)
of the initial candidate RTM.

5) What is Explained by Effort:It is reasonable to assume
that participants who applied minimal effort to the experi-
ment task would yield minimal, if any, improvements in the
quality of the RTM. That, however, was not the case. As can
be seen in Fig. 7 (c), most all participants submitted an RTM
with a final f2 between 0.6 and 0.75 (only 5 of the 26 fell
outside of this range). The effort applied by the participants
varied greatly from 15 to 95 minutes. The participant who
expended the most effort returned an RTM withf2 of only
0.25. The participant who applied the least effort returned
an RTM with a finalf2 of 0.6. From Fig. 7 (c), we observe
a cluster of participants who spent anywhere from 35 to 80
minutes on the task and achieved finalf2 of 0.6 to 0.825.
Change inf2 is even more telling (see Fig. 8). Participants
who applied 40 to 70 minutes of effort yielded -0.1 to 0.38
change tof2 (the participant with -0.5f2 is believed to be
an outlier). We conclude, therefore, that there is no visible
correlation between the effort applied and the finalf2 or the
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change inf2.

6) Cal Poly Participants vs. Kentucky Participants:The
study was conducted at two universities. Fig. 3 uses solid
dots for participants from one university and stars for partic-
ipants from the other. Overall, we notice that students from
the university marked with stars performed slightly below
the average in terms of improving recall, precision, andf2,
while students from the other university performed slightly
above the average. However, the differences are not large,
and the number of participants from each university is not
sufficient for us to draw any statistical conclusions. In fact,
we have no evidence that suggests that student performance
was affected by the university in which they reside. In
each of the regions, participants from different universities
with similar starting RTMs showed similar tendencies. Each
university yielded one outlier in our study: one participant
drastically decreased precision and recall of the returned
RTM, while another submitted the starting RTM without
performing any tracing.

The only interesting observed discrepancy occurred for
those who received high precision and high recall candidate
RTMs (both recall and precision over 80%). The three partic-
ipants from one university showed the preference for keeping
precision (almost) the same, while decreasing, sometimes
significantly, the recall. The two participants from the other
university decreased precision significantly more than they
decreased recall. It appears that, in this case, participants
from one of the universities attempted to concentrate on
elimination of false positives (and eliminated some true
links), while the participants from the other university at-
tempted to concentrate on discovery of omitted links (and
introduced a number of false positives). In our subsequent
studies, we intend to see if this pattern holds.

V. THREATS TOVALIDITY

Influences that may impact the independent variables with
respect to causality are referred to as threats to internal
validity [17]. A possible personal bias threat in preparation
of the golden standard RTM was reduced by having multiple
researchers review the answer set. Personal bias in conduct-
ing the study was reduced by using a random assignment
of students to RTMs. The tool used in the study is also an
internal threat. Another possible threat to internal validity is
that we kept the strongest matches in the candidate RTMs
as we were building RTMs for the participants. Results may
have differed had we kept weak matches instead. However,
our study tries to mimic what happens when humans observe
computer-generated results which do the same thing: show
strongest matches first.

There were minimal threats to construct validity as stan-
dard IR measures (recall, precision,f2) were used. These
measures have been used extensively in requirements tracing
studies. It should be noted that there are other ways and
metrics to capture the impact of the independent variable.
We have used a subset of those measures.

External threats to validity impact the generalizability of
results. In the study, only one experimental dataset was used.
The dataset that was used was from a small Java code
formatter software project. As this project was developed
by upper-division computer science students and may not
be representative of a program written by industrial profes-
sionals, it is unknown if the results will generalize to other
software systems, other software domains, or larger systems.
A subset of the Java code formatter program was selected
for tracing, to permit completion of the assignment. It is
possible that a different group of researchers may extract a
different subset of the requirements and test cases, which
may lead to different results.

Reliability threats to validity have been mitigated. The
study process is defined and repeatable: the study was under-
taken at two universities. The second university performing
the study had no difficulty applying the study artifacts used
earlier by the first university.

VI. CONCLUSIONS ANDFUTURE WORK

This paper introduces a simple, repeatable, and adaptable
framework for the study of analyst interaction with artifacts
generated automatically during the tracing process and de-
scribes the initial study conducted at two universities. To
our knowledge, this is the first systematic study of human
analysts and their impact on the tracing process and its
results. In our view, this study confirms the key conjecture
of prior studies [12], [13]:there is a clear need to study
this interaction in order to understand how best to automate
the tracing process!At the same time, observed behavior of
analysts lends itself to further study.

Based on the results described above, we observe that
analysts working with high-quality candidate RTMs do not



necessarily perform better than analysts who start with
lower-accuracy candidate RTMs. We saw significant differ-
ences in the results of analysts who worked with candidate
RTMs from differentrecall-precisionregions. Some of the
observed behavior leads us to make a number of conjectures
about the nature of analyst behavior. Our first conjecture
is that software engineers use sizes of the traced artifacts
to estimate the size of the true RTM. We also conjecture
that large, high recall and low precision candidate RTMs
make software engineers concentrate on catching errors
of commission. At the same time, small candidate RTMs
with low recall and high precision make software engineers
primarily search for errors of omission.

We plan to address these conjectures in the followup
studies we will pursue. We will modify our information
collection mechanisms to learn more about the actual tracing
process (which, for the purpose of the initial study, was
essentially treated as ablack box).

The overarching goal of our study is to determine which
factors influence the work of a software engineer with auto-
mated tracing tools. In this paper, we concentrated mainly on
measuring the quality of starting and ending candidate RTMs
for each participant. We also looked at the effort expanded
by our study participants. At the same time, factors outside
these (for example, the experience of a study participant),
may influence their work. We plan to address this in future
studies.
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