
OpenArgue: Supporting Argumentation to Evolve Secure Software Systems

Yijun Yu∗, Thein Than Tun∗, Alessandra Tedeschi†, Virginia N. L. Franqueira‡ and Bashar Nuseibeh∗§
∗ The Open University, Milton Keynes, UK

† DeepBlue, Rome, Italy
‡ University of Twente, Enschede, The Netherlands

§ Lero, Irish Software Engineering Research Centre Limerick, Ireland

Abstract—When software systems are verified against se-
curity requirements, formal and informal arguments provide
a structure for organizing the software artifacts. Our recent
work on the evolution of security-critical software systems
demonstrates that our argumentation technique is useful in
limiting the scope of change and in identifying changes to
security properties. In support of this work, we have developed
OpenArgue, a tool for syntax checking, visualizing, formaliz-
ing, and reasoning about incremental arguments. OpenArgue
has been integrated with requirements engineering tools for
Problem Frames and i*, and applied to an Air Traffic Man-
agement (ATM) case study.

I. INTRODUCTION

As long-lived software systems evolve, checking whether
their properties satisfy evolving security requirements needs
to be done continuously. Haley et al. [1] introduced the
use of argumentation for the validation of security require-
ments, which we have extended in two ways: first, we
have proposed an approach for deriving the changes in
security properties of an evolving software system using
argumentation [2], and second, we have incorporated risk
assessment into the argumentation process in order to focus
on practical security [3]. In support of these, we have
developed an Eclipse-based automated tool, OpenArgue to
support argumentation, and then applied it to a significant
Air Traffic Management (ATM) case study. The OpenArgue
tool supports informal argumentation by checking and visu-
alizing its structures. The tool also supports formalization
and reasoning of incremental arguments described in propo-
sitional logic. Integrated with existing plugins we developed
for requirements engineering approaches, including Problem
Frames, and i*, the tool can show traceability between them
through model transforming using a security ontology [2].
In collaboration with DeepBlue, the tool is applied to a
significant ATM case study.

II. OPENARGUE: AN ARGUMENTATION TOOL

The structure of informal arguments in our meta-model,
shown in Fig. 1, is similar to the structure of Toulmin-style
arguments. Informal arguments are formalized typically in
propositional logic. The main concepts supported by this
conceptual model include the following:

• An argument has one claim, zero or more ground(s),
and zero or more warrant(s);

Figure 1. A simplified meta-model of arguments

• A claim is a predicate whose truth is established by an
argument;

• A ground is a piece of evidence, a fact, a theory, a
phenomenon considered to be true;

• A warrant is either a fact or a sub-argument that shows
how facts justify the claim;

• A rebuttal uses one argument to rebut another, falsify-
ing the claim of the rebutted argument;

• A mitigation uses one argument to mitigate a rebutted
argument, restoring the claim of the rebutted argument;

• An argument diagram has zero to many nested incre-
mental arguments, rebuttals and mitigations;

• A round of argumentation indicates a temporal ordering
among the increments in the argumentation.

Providing syntax highlighting editors: The argument
syntax is defined using the extended BNF. Illustrated with
a fragment of the ATM example from [2], Fig. 2 shows
the argument editors providing syntax highlighting and input
validation, in textual and graphical forms.

Visualizing and synchronous editing of models: Argu-
ments described in plain text are used to generate argument
diagrams, and the edited argument diagrams are synchro-
nized back into the textual input format, through model
synchronization between the EMF and GMF editors.

Formalizing arguments using propositional logic:
When formalizing the arguments, the basic structure of an
argument is transformed into the following formula:

Ground ∧Warrant → Claim (1)

978-1-4577-0924-1/11/$26.00 © 2011 IEEE

2011 IEEE 19th International Requirements Engineering Conference Poster & Demo

351

Figure 2. Syntax highlighting and graphical editors in OpenArgue

OpenArgue automatically extracts the identifiers of the
claims as propositional literals and constructs a propositional
formula in the conjunctive normal form. Claims, grounds
and warrants may contain complex propositional formulae
annotated on the informal arguments as user-defined parts
of the syntax (the tool checks the validity of the Boolean
expression as well). OpenArgue then generates a syntacti-
cally correct propositional statement for an entire diagram,
using the implicit rule (1) and the user-defined rules.

Reasoning about rebuttals and mitigations: OpenAr-
gue is integrated with the decreasoner, an off-the-shelf
reasoning tool that translates propositional formulae into
problems for SAT-solvers. The integrated tool supports log-
ical deduction to check whether an argument is valid, and
model finding to obtain counterexamples to the argument.
On the basis of these results, rebuttals and mitigations are
generated and visualized. Our algorithm traverses the entire
structure of arguments such that all possible rebuttals and
mitigations between adjacent rounds are checked, ensuring
that the rebuttals and mitigations are effective: a rebuttal
does negate the original claim, and a mitigation does restore
the negated claim [2].

Integrating with other RE tools: OpenArgue is tightly
integrated with open-source RE tools for the Problem
Frames (OpenPF) and i* (OpenOME), and the model
transformation engine Viatra2. It allows elements of the
requirements model to be hyperlinked with arguments, and
performs model evolution through change patterns [2].

Deploying and lowering the adoption barriers: The tool
is available to be downloaded as an Eclipse rich client plat-
form from http://sead1.open.ac.uk/pf. In addition, we offer a
Web service as a modeling wiki (Miki) [4] for users to benefit
from its full modeling features without large network down-
loads, http://computing-research.open.ac.uk/trac/openre.

III. CASE STUDY

We have applied OpenArgue to analyse the impact on the
security of the Arrival Management (AMAN) system [2], a
software component supporting the Air Traffic Controllers

in the approach phase, when a new IP-based communica-
tion is introduced. The AMAN exchanges with other ATM
actors and processes, and presents to Air Traffic Controllers
sensitive data about the flight that have to be protected.

First, Problem Frames diagrams are created showing the
context of change, and the security properties that need
to be maintained after the change. After describing the
behaviors and properties of the system, several rounds of
argumentation are carried out assessing the satisfaction of
the security requirements after the change. Initial arguments
are created from the perspective of the “defender” of the
system, whilst rebuttals are created from the perspective of
“attackers” and mitigations are created from the perspective
of defenders responding to the attackers’ actions. The argu-
mentation at every increment is checked using propositional
logic. When a rebuttal to which no mitigation is found, the
tool has exposed a vulnerability. When the properties of the
mitigations cannot be mapped to the existing domains, this
indicates that some changes in security properties need to
be implemented in order to make the system secure.

IV. CONCLUSIONS

Argumentation has been extensively applied to build
safety cases [5], to demonstrate compliance to laws and
regulations [6], and to define trusted bases of dependable
software systems [7]. Unlike these, our tool support is pri-
marily aimed at reasoning about the satisfaction of security
requirements of evolving systems.

The initial feedback we received from DeepBlue confirms
that: (i) argumentation is intuitive to ATM experts; (ii) ar-
guments are useful when designing and structuring security
artifacts; (iii) the use of informal and formal arguments
is helpful to domain experts; and (iv) the integrated tool
support for argumentation lowers adoption barriers.

ACKNOWLEDGMENT

Financial support of the SecureChange project, SFI grant
03/CE2/I303 1, and the Sentinels program is acknowledged.

REFERENCES

[1] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security
requirements engineering: A framework for representation and
analysis,” IEEE Trans. Softw. Eng., vol. 34, pp. 133–153,
January 2008.

[2] S. Consortium, “D.3.2 methodology for evolutionary require-
ments,” SecureChange Project, Tech. Rep., 2011.

[3] V. N. L. Franqueira, T. T. Tun, Y. Yu, R. Wieringa, and
B. Nuseibeh, “Risk and argument: A risk-based argumentation
method for practical security,” in RE, 2011.

[4] Y. Yu, M. Petre, and T. T. Tun, “Miki: a synchronous modeling
wiki for software requirements,” in FlexiTools, 2011.

[5] T. P. Kelly, “Arguing safety – A systematic approach to safety
case management,” Ph.D. dissertation, University of York,
1998.

[6] B. Burgemeestre, J. Hulstijn, and Y.-H. Tan, “Value-based
argumentation for justifying compliance,” in DEON’10, 2010,
pp. 214–228.

[7] E. Kang and D. Jackson, “Dependability arguments with
trusted bases,” in RE, 2010, pp. 262–271.

352

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Yijun Yu
	Also by Thein Than Tun
	Also by Virginia N.L. Franqueira
	Also by Bashar Nuseibeh
