
Stateful Requirements Monitoring for Self-Repairing Socio-Technical Systems

Lingxiao Fu1, Xin Peng1, Yijun Yu2, John Mylopoulos3, Wenyun Zhao1

1 School of Computer Science, Fudan University, China
2 Department of Computing, The Open University, UK

3 Department of Information Engineering and Computer Science, University of Trento, Italy
{09210240010, pengxin, wyzhao}@fudan.edu.cn, y.yu@open.ac.uk, jm@disi.unitn.it

Abstract—Socio-technical systems consist of human, hard-
ware and software components that work in tandem to fulfill
stakeholder requirements. By their very nature, such systems
operate under uncertainty as components fail, humans act
in unpredictable ways, and the environment of the system
changes. Self-repair refers to the ability of such systems
to restore fulfillment of their requirements by relying on
monitoring, reasoning, and diagnosing on the current state
of individual requirements. Self-repair is complicated by the
multi-agent nature of socio-technical systems, which demands
that requirements monitoring and self-repair be done in a
decentralized fashion. In this paper, we propose a stateful
requirements monitoring approach by maintaining an instance
of a state machine for each requirement, represented as a
goal, with runtime monitoring and compensation capabilities.
By managing the interactions between the state machines,
our approach supports hierarchical goal reasoning in both
upward and downward directions. We have implemented a
customizable Java framework that supports experimentation
by simulating a socio-technical system. Results from our
experiments suggest effective and precise support for a wide
range of self-repairing decisions in a socio-technical setting.

Keywords-self-repair, requirements monitoring, goal models

I. INTRODUCTION

Socio-technical systems consist of human, hardware and
software components that work in tandem to fulfill stake-
holder requirements. By their very nature, such systems
operate under uncertainty as components fail, humans act
in unpredictable ways, and the environment of the system
changes. Self-repair refers to the ability of such systems
to restore fulfillment of their requirements by relying on
monitoring, reasoning, and diagnosing on the current state
of individual requirements. Self-repair is complicated by
the multi-agent nature of socio-technical systems, which
demands that requirements monitoring and self-repair be
done in a decentralized fashion. For example, for an online
product shipping system, if a delivery man forgets to check
the shipping address, a product may not be delivered before
Christmas. To compensate for this omission and satisfy
customer expectations, a second shipment may be generated
from the nearest warehouse to the customer’s home.

Existing research on self-repairing has proposed sev-
eral methods for issues related to requirements moni-
toring [1], reasoning [2], and diagnosing [3] and self-
reconfiguration [4], [5], [6]. However, little is published

on how to bridge the gap between the deviations detected
and the repairing actions required by specifying precise
application-specific self-repairing policies. Nor are there any
proposals for an integrated and reusable infrastructure for
developing such self-repairing systems. Also, existing pro-
posals generally do not support decentralized requirements
monitoring and self-repairing for socio-technical systems.

To address the above problems, we propose a fine-grained
and stateful requirements monitoring approach towards goal
fulfillment. Rather than treating the fulfillment of a goal
as a binary transition from an initial state to either an
achieved or a failed state, a richer set of states is presented
such that it is possible (1) to specify repairing policies as
prevention, retry and compensation, upon the specification
deviation of a goal at any state; (2) to reason about the
interaction between fulfillment and repairing of individual
goals through appropriate propagations and substitutions;
and (3) to support decentralized requirements monitoring
and repairing using inter-agent interactions.

Following model-based adaptation [6], [7], our approach
maintains and manages a set of externalized instances for
requirements goals at runtime. To support monitoring and
repairing of the proposed stateful goals, we use state ma-
chines to model the runtime lifecycle by representing their
fulfillment by a richer set of states and transitions. Our
approach manages the runtime lifecycle of each goal by
defining both external and internal event mappings between
the state machines of different goals and by enforcing
appropriate goal state transitions accordingly at runtime.
External event mappings reflect the observed behaviors from
the target system, while internal event mappings embody the
interactions among different goal state machines. Based on
the stateful goal monitoring, we provide a fine-grained self-
repairing algorithm that combines local repairing policies
such as prevention, retry and compensation, with global
repairing policies including goal and agent substitutions. By
the nature of isomorphic goal state machines and event-
driven interactions, our approach can also support decen-
tralized requirements monitoring and repairing.

To evaluate the effectiveness of our approach, we imple-
mented a customizable prototype of the reasoning frame-
work for the goal state machine and interactions. Using the
prototype, we conducted an experimental study with a simu-



lated socio-technical system developed using AnyLogic [8].
The study shows that our approach can support a wide range
of self-repairing decisions. Moreover, the results confirm
that system failures caused by requirements deviation are
reduced with an acceptable performance overhead.

The rest of the paper is structured as follows. Section II
illustrates the basic ideas of our approach with a small real-
life example. Section III presents the proposed approach, in-
cluding an extended goal state machine and the correspond-
ing monitoring and the self-repairing mechanisms. Section
IV evaluates the proposed approach using our prototype
from both qualitative and quantitative perspectives. Section
V compares our work to a number of existing proposals, and
section VI draws a final conclusion.

II. AN ILLUSTRATING EXAMPLE

To illustrate the essence of stateful requirements monitor-
ing and the self-repairing mechanisms, we use an Order &
Delivery scenario adapted from real-life commodity shop-
ping and logistics systems.

A. Requirements Models

The Order & Delivery scenario involves two agents, i.e.
Commodity Ordering System and Regional Distribution
Center, and the simplified requirements of which are de-
scribed by the goal model in Figure 1. There are three types
of goals in the figure, i.e. root goals of agents, subgoals
refined from higher-level goals by AND/OR decompositions
(we assume that a goal cannot be both AND- and OR-
decomposed), and tasks representing concrete realization
of goals. Each root goal is iteratively refined by AND/OR
decompositions all the way down to leaf level goals to be
further refined into tasks of the same agent or into goals
delegated to other agents.

The root goal of a Commodity Ordering System, “Order
Commodity”, is to offer customers what they order. It is
further refined into three subgoals including “Choose items”,
“Pay Orders”, and “Deliver Commodity”. The fulfillment of
commodity delivery is actually delegated to the Regional
Distribution Center agent. The assigned distribution center
will then proceed to warehouse, sort, allocate, and dispatch
the shipment along with a signed receipt.

Figure 1. Partial Order & Deliver Goal Model

B. Goal State Machines

Consider the process of goal fulfillment using the example
of “Deliver Commodity”. Initially for a new commodity
delivery task, the goal “Deliver Commodity” is not activated
until a Regional Distribution Center accepts the assign-
ment. The execution of commodity delivery is not started
with the activation of the corresponding goal, instead, it is
started when the distribution center dispatches the current
handling task and begins to prepare an inventory for it. The
delivery can also suspend, e.g. when interrupted by more
urgent tasks, and then resume after all required resources are
available. The execution process ends when all the relevant
sub-tasks have finished. Note that the whole process of the
goal achievement is not always linear but is possible to
shift back and forth between different phases. Such stateful
process of requirements fulfillment in terms of goals of all
kinds can be generalized by the state machine in Figure 2.

Figure 2. Elementary Goal State Machine

Rather than directly specify the behaviors of target agent
(e.g., a software system or a human being), the state machine
describes a general process of goal fulfillment from an exter-
nal perspective. The current state of a goal indicates the sat-
isfaction status of the requirement currently. In general, one
can represent the fulfillment process of each goal (including
task) with an instance of a goal state machine. The state
transitions can be mapped to external events from the target
systems, e.g. the Activate event of “Deliver Commodity”
maps to the acceptance of an assigned delivery task. The
state machine instances of different goals are not necessarily
independent, they can interact with each other, which can be
done by the mapping and propagation of the events through
state transitions among different goal instances. For example,
the Start event of “Prepare Inventory” is mapped to that of its
parent goal “Deliver Commodity”, making that the latter is
started once the former is started. Intuitively, some semantics
of goal decomposition are reflected by the interactions of
goal state machines. For example, the achievement of an
AND-decomposed goal implies the achievement of all its
subgoals (tasks); and the achievement of an OR-decomposed
goal implies the achievement of any of its subgoals (tasks).

Several constraints exist at varying stages of the goal
lifecycle: context condition expresses when certain alterna-
tives, i.e. subgoals of OR-decompositions, are applicable [6];
precondition specifies the conditions that should be satisfied
when a goal is about to start; postcondition defines the
conditions that should be satisfied when the execution of
a goal is over; commitment condition determines a time



limit within which an activated goal committed by an agent
should be achieved. For example, the context condition
“goods smaller than 1M×0.5M×0.5M” of task “Transport
by Motorcycle” specifies the size of goods transportable
by a motorcycle. Context condition and precondition have
different implications from the perspective of system moni-
toring and repairing. A violation of precondition means some
necessary conditions for task execution are not satisfied
currently, but may be satisfied later. For example, “Transport
by Motorcycle” has the precondition of “address attached
on the package”, which can be satisfied later after the
workers print and attach the address label. In contrast, a
violation of context condition means that a goal commitment
is meaningless or disallowed, e.g. committed to transport
goods larger than the prescribed size.

Apart from these constraints associated with goal state
transition, there is also an invariant condition that should
be kept satisfied in the whole process of goal fulfillment
(i.e., maintain goals). For example, the package of the goods
should be kept intact in the whole process of delivery.

C. The Repairing Process

The elementary goal state machine in Figure 2 shows a
fail-free process of goal fulfillment. However, if any of the
above constraints is violated within the lifecycle, a require-
ments deviation occurs. To avoid possible failures, proper
repairing measures should be taken after deviations were
detected. Figure 3 illustrates an ideal example of the self-
repairing process for a requirements deviation rooted in the
goal “Transport by Motorcycle”. Goal “Deliver Commodity”
is initially delegated to one Regional Distribution Center
RDC-1. The labeled arrows represent the actions and their
orders in the repairing process that first tries to correct the
deviation locally, within the current goal (Action 1). For
example, a gate guard can check the precondition “address
attached on the package” when a delivery man drives a
motorcycle to start a delivery task. When the guard finds
the precondition not satisfied, he can prevent the delivery
man from starting the task.

If all the local repairing actions fail, e.g. goods still
not delivered after retrying more than 3 times, then a
failure of “Transport by Motorcycle” is propagated to its
parent goal “Dispatch Goods” (Action 2). As it has another
alternative subgoal, a goal substitution repairing (Action 3)
is then conducted to deliver the goods by truck. Similarly,
in the lifecycle of “Transport by Truck”, some requirements
deviations and local repairing may also occur (Action 4).
When it chooses to propagate the local failure (Action 5), its
parent goal has to further propagate the failure to “Deliver
Commodity” (Action 6), since both of the two alternative
subgoals have failed. For the goal “Deliver Commodity”,
as it is the root goal of Regional Distribution Center,
the failure is propagated to the delegating agent Com-
modity Ordering System (Action 7). Finally, if possible,

the Commodity Ordering System may choose to delegate
the current delivery task to another Regional Distribution
Center RDC-2 (Action 8).

Figure 3. Hierarchical Repairing Process

By clarifying the runtime lifecycles of goals and the inter-
actions between them, system requirements at runtime can
be precisely and comprehensively monitored, thus enabling
more precise and proper self-repairing actions.

III. OUR APPROACH

Our monitoring and repairing approach is overviewed in
Figure 4. Deployed to a host agent defining a goal model,
our framework maintains a set of individual goal instances
whose runtime lifecycle is managed by an extended goal
state machine (see Section III-A). The transitions of goal
instances are driven by external events captured from the
corresponding host agents and internal events produced by
other related goal instances through state machine interac-
tions (see Section III-C). The external and internal events
are distributed and mapped according to the general and
application-specific event mapping rules (see Section III-B).
In the process of goal lifecycle management, our frame-
work checks the constraints related to different states and
transitions, and takes proper repairing measures when devi-
ations to requirements are detected (see Section III-D). The
repairing measures are conducted hierarchically as shown
in Figure 3. The mechanism is distributed among different
agents. Cross-agent delegations and failure propagations are
supported by state machine interactions, supporting multi-
agent socio-technical systems.

A. Extended Goal State Machine
To facilitate the monitoring and repairing of possible

requirements deviations, we extend the elementary goal state
machine in Figure 2 with states, actions and transitions for
monitoring and repairing, as shown in Figure 5. Besides
those goal states in the elementary goal state machine,
additional states are further introduced:

• ProgressChecking is a temporary state that infers
goal’s next state by state reasoning after receiving some
events from the subgoals and delegate goals.



Figure 4. An overview of our approach

• Failed states that the current goal instance has failed
and the failure is propagated to upper goals to conduct
repairing at higher levels. Any goal became Failed
should perform an application-specific rollback oper-
ation to eliminate the undesired effects it had brought.

• Repairing is also a temporary state in which require-
ments deviations are captured and under repairing. If
repairing succeeds, the current goal instance will transit
to a proper state, otherwise it will still fail.

With presence of these states, the elementary transitions
are further refined and extended to support requirements
monitoring and repairing. First, checking for context con-
ditions, preconditions, and postconditions are added to the
Activate, Start, and End transitions, respectively. If these
conditions are not satisfied, requirement deviations occur and
the goal state will be transferred to Repairing. Second, when
a goal instance is in the ShouldDo state, its commitment
condition and invariants are monitored. Once a commitment
condition or invariant violation is detected, a CCViolated
or InvViolated event is triggered, respectively, and transit
the goal state to Repairing. A goal’s commitment condition
is usually associated with a specific time event, either a
time period reminder or a particular state machine event
of other goals, that is managed and checked by a Timer
object bound to the goal instance. The timer is created
when a goal instance is activated and then it constantly
verifies the commitment condition (see the setTimer and
commitmentConditionCheck actions at ShouldDo state). The
invariants monitored include both constraints on system
properties and temporal rules on events sequence.

Some transitions in the extended goal state machine are
related to state interactions among different goal instances.
These include state transition events from subgoals and
delegated goals (event names prefixed with “Sub” and “Del-
egate”, respectively). These events are triggered by the entry
actions of the corresponding states of relevant subgoals and
delegated goals, see those “trigger” actions.

The extended goal state machines framework is universal
for monitoring and repairing requirements goals. Although

the consistency rules among the states of related goals
(see Table I) apply to all applications, the state machines
need be customized for specific applications by defining the
internal and external event mappings (see Section III-B).
To enable self-repairing, application-specific actuators need
to be implemented and integrated with the framework (see
Section III-D).

B. Event Mapping Rules

The events that drive the goal state transitions, e.g. Ac-
tivate, Start, End, have two different sources, by which we
classify them as external and internal. External events are
mapped from the monitored events of the target systems,
indicating the occurrence of specific behaviors of concern.
For example, the Activate event of “Deliver Commodity”
can be mapped to an observable external event of “accept
an assigned delivery task”; and the Start event of “Transport
by Motorcycle” can be associated with the event of “a
delivery man departs by motorcycle”. These external events
are captured and dispatched to the exact state machine
instances according to additional context information such as
the session ID. On the contrary, internal events are mapped
and passed among different goal instances, reflecting the
state interactions of them. For example, the Start event of
“Dispatch Goods” can be mapped from that of its OR-task
“Transport by Motorcycle”.

Table I
CONSISTENCY RULES OF GOAL STATES

1 ANDDecomposed(g) ∧ g.state = Achieved ↔ ∀s ∈
{s|Goal(s) ∧Decomposed(s, g)}s.t.(s.state = Achieved)

2 ORDecomposed(g) ∧ g.state = Achieved ↔ ∃s s.t.
(Goal(s) ∧Decomposed(s, g) ∧ s.state = Achieved)

3 ANDDecomposed(g) ∧ g.state = Failed ↔ ∃s s.t.
(Goal(s) ∧Decomposed(s, g) ∧ s.state = Failed)

4 ORDecomposed(g) ∧ g.state = Failed ↔ ∀s ∈
{s|Goal(s) ∧ Decomposed(s, g)} s.t. (¬context cond(s) ∨
s.state = Failed)

5 Goal(g) ∧ g.state = Unactivated → ∀s ∈ {s|Goal(s) ∧
Decomposed(s, g)}s.t.(s.state = Unactivated)

6 Goal(g) ∧ g.state = Activated → ∀s ∈ {s|Goal(s) ∧
Decomposed(s, g)} s.t. (s.state = Activated ∨ s.state =
Unactivated)

7 Goal(g) ∧ g.state = ShouldDo ← ∃s s.t. (Goal(s) ∧
Decomposed(s, g) ∧ s.state = ShouldDo)

8 Goal(g) ∧ g.state = Executing ↔ ∃s s.t. (Goal(s) ∧
Decomposed(s, g) ∧ s.state = Executing)

9 Goal(g) ∧ g.state = Suspended → ∀s ∈ {s|Goal(s) ∧
Decomposed(s, g)} s.t. (¬s.state = Executing)

Both external and internal event mappings should conform
to the semantics of goal models as well as the application-
specific business rules. Table I lists the first-order logic
rules that define the state consistency among goals ac-
cording to the goal modeling semantics, especially those
of AND/OR decompositions. The type checking function
Goal(g) indicates that g is a goal or a task. Functions
ANDDecomposed(g) and ORDecomposed(g) return true
when the goal g is refined by AND/OR decomposition,
respectively. And function Decomposed(s, g) tells that s is



Figure 5. Extended Goal State Machine for Requirements Monitoring and Repairing

a subgoal or task of g. The state consistency rules between
OR-decomposed parent and subgoals would also extend to
delegate source goal and its delegate candidates, only that
a valid delegate relation is established dynamically. The
rules listed in Table I only apply to non-temporary states,
i.e., all the goal states except for “ProgressChecking” and
“Repairing”.

We can then define event mapping rules describing the
required mapping sources of state transition events for each
kind of goals (and tasks). External event mappings are
specific to the application between goal transition events
and observable events from the target system. Internal event
mappings are categorized into general ones and application-
specific ones. The former reflect general goal state inter-
actions defined on the rules in Table I. In contrast, the
latter are internal event mappings reflecting application-
specific business logic. Our event mapping rules reveal a
series of rationales specific to different goal/task types. For
example, root goals and OR-subgoals/tasks are activated
explicitly by external events as they reflect the choices of the
target system; activation events of AND-subgoals are always
mapped from other goals (in most cases their parent goals
or sibling goals), reflecting application-specific commitment
propagation; tasks as concrete means for goal fulfillment
take over most of the external events. Readers can refer to
our technical report [9] for detailed description about event
mapping rules.

C. Goal State Machine Interactions

Goal state machine interactions are embodied in event
propagation among different goal instances and relevant
state reasoning (see the ProgressChecking state in Figure

5). Event propagations are needed by both general and
application-specific internal event mappings. Typically, some
goal instances have their states changed driven by external
events, then their state transition events are mapped to other
goal instances. This event propagation may trigger further
state transitions of other goal instances in a chain-reaction
manner. An example of goal state interactions by general
event mapping rules is described in Figure 6. A task t turns
from “Activated” to “Executing” after receiving an external
Start event. Its entry to “Executing” state triggers a SubStart
event to its parent goal g, which then turns to “Executing”.
This state transition may trigger further event propagation
to upper goal instances.

Figure 6. State Propagation Example

Rather than the straightforward Start event propagation
as shown in the above example, the interactions among
ShouldDo goal instance and its subgoal instances involve
goal state reasoning. Therefore, an intermediate state Pro-
gressChecking and its state action progressCheck are in-
troduced in the extended goal state machine. The progress
checking is triggered by the SubRedo, SubSuspend, Sub-
Resume, and SubAchieve events from subgoals and Dele-
gateAchieve from delegate goals. It reasons about the state
of the current goal instance according to the rules listed in
Table I. For example, if all the subgoals of an executing and
AND-decomposed goal instance are in the Achieved state



when it receives a SubAchieve event, then its state turns to be
Achieved. Reasoning with delegate goals works the similar
way.

D. Repairing

In the extended goal state machine, a “Repairing” state is
introduced to handle those requirements deviations captured
by requirements monitoring, with the objective of minimiz-
ing possible failures. If the repairing is successful, then the
current goal instance returns to elementary states; otherwise,
a failure occurs and is propagated to the parent goal instance,
and triggers further repairing at higher-level.

Table II
LOCAL REPAIRING POLICIES

Deviation Type State/Transition Repairing Policy
Context Condition Violation Activate (T) Prevention

Precondition Violation Start (T) Compensation
Prevention

Postcondition Violation End (T) Compensation
Retry

Invariant Violation Executing (S) Retry

Commitment Violation ShouldDo (S) Compensation
Retry

1) Local Repairing Policies: When a requirements devi-
ation is captured, local repairing is first conducted to tackle
the deviation within the scope of the current goal instance.
We summarize the local repairing policies as shown in
Table II. The second column of the tabel gives the state or
transition at which the deviation occurs. The three suggested
local repairing policies are Prevention, Compensation, and
Retry. The Prevention policy is to prevent a goal to activate
or start if the contextual condition or the precondition is
not satisfied. Compensation represents an active repairing
action that takes some additional measures to recover the
undesired system status. Retry means giving up the goal
fulfillment progress so far and trying again to achieve the
goal with new commitment.

Prevention policy has a different implication at contextual
condition violation and precondition violation. Contextual
condition violation means that the intended choice (usually
an OR-decomposed subgoal) is not allowed for the current
task session, thus the Prevention action is to remind the
user or the system of the right choice. When a precondition
is violated, the Prevention action prevents a goal instance
from begin execution for the moment, but the goal may
start after the required precondition is satisfied. Apart from
Prevention, the more positive action Compensation can
be planned and actuated to make the condition satisfied
when it is applicable. Another action Retry is used for
postcondition, invariants, and commitment deviations, kicks
the goal back to the Activated state and enforce it to re-start.

2) Repairing Decision: Combining repairing policies as
listed in Table II and state propagation mechanism in Figure
5, a hierarchical system self-repairing (see Figure 3) is
achieved with the doRepairing action in Repairing state.
This comprehensive repairing activity takes the requirements

deviation as input (indicated by the incoming transitions to
Repairing state), plans appropriate actions from both local
and non-local (goal/agent substitution) policies, and returns
the target of the outgoing transition according to the result of
the repairing decision and actuation. A detailed description
about the repairing decision algorithm can be found in [9].

DoRepairing starts by evaluating the type of monitored
deviation, and conducted repairing for specific deviation
types respectively. For context deviation monitored, Preven-
tion is directed to the actuator at target system side, and
Unactivated is returned as the target state of the immediate
outgoing transition. Postcondition and commitment violation
bear the same repairing planning process. Compensation
is preferred to Retry due to possibly less cost. However,
finding appropriate compensatory actions for a specific de-
viation is non-trivial and is beyond the major concern of
this paper. A retrieveSolution (cond1, cond2) function is
to retrieve possible solutions that can transform the context
from an initial status cond1 to a targeted status cond2. This
function can be implemented by techniques like knowledge-
based component retrieval and composition [10]. If found,
the selected plan is pushed to the actuator, and the current
goal is thus Achieved; otherwise, Retry is in use only if
its application matches particular condition. The current
goal is Failed if none of above works. Local repairing for
precondition and invariants violation is planned similarly
using the corresponding policies specified in Table II, only
that successful compensation on precondition case would
return Executing as the following state, and for the sake of
space we skip the details within.

According to Figure 5, a goal transits to Failed and trig-
gers SubFail on its parent or DelegateFail on its delegation
source, thus DoRepairing is called again immediately on
the parent/source instance and looks for a non-local repair-
ing policy. For subgoal failure, an AND-decomposed goal
propagates failure to its parent again; an OR-decomposed
goal would select an unactivated while currently context-
compatible goal. The goal either returns to Activated as
a new substitution is turned on or becomes Failed if no
alternative is available. The goal being delegated reacts to its
delegate failure similarly as what an OR-decomposed goal
does to its subgoal failure, except that the substituted goal
is searched among agents capable of fulfilling the same goal
(g.delegateCandidates).

3) Customizable Repairing Policies: In addition to the
common repairing decisions, we also reserve part of our
method to be customizable in order to adapt in domain-
specific applications. A match function is used in the re-
pairing decision algorithm to determine the applicability
of Retry policy. We argue that no Retry action should
be performed indefinitely as this might be either useless
in some cases or even hazardous for the system in terms
of repeated failures. Two factors we currently defined for
match function are use limit and avoidance goal state



pattern. A use limit specifies the upper bound of the policy
occurrences. For example, match function returns false if
a task-to-fail’s retry time has reached a specified limit. By
avoidance goal state pattern, Retry is ruled out if monitored
goal state trace history contains that of specified state
pattern, in terms of regular expression-like representation.
For example, avoidance pattern of (executing activated)+
is specified to “Transport by Truck”, suggesting employee’s
unskillfulness. If “Transport by Truck” failed eventually, the
match function in the repairing decision algorithm would
return false and skip Retry on the task, and in futher steps
an Agent Substitution might occur. The match function
performs conjunction on above two factors checking.

IV. EXPERIMENTAL STUDY

To evaluate the effectiveness of our approach, we have
implemented a customizable framework in Java for an ex-
periment through the simulation of a typical socio-technical
system. Implementing goal state machines and managing
their interactions through repairing decisions, the framework
provides a customizable interface for defining goal models
and repairing policies, and integrating with application-
specific monitors and actuators. The socio-technical system
is simulated using AnyLogic [8], which has Java APIs to
measure the effectiveness through several key performance
indicators.

A. Settings for Experimental Study

Consider a food preparing system in a socio-technical
environment, as shown in Figure 7, its goal model involves
five agents: a software agent Food Ordering System, and
four human agents: Customer, Order Dispatcher, Chef,
and Delivery Man. A customer gets food prepared by either
ordering from a restaurant or by cooking instant food with a
microwave. The restaurant runs a food ordering service for
customers to place orders online. If a customer orders food
via the food ordering system, an order dispatcher will be
delegated to handle the order by arranging a chef to cook
the food and by assigning a delivery man to deliver the food
after confirmation.

Figure 7. Food Preparing Goal Model

Some of the constraints specified for the goals/tasks in
Figure 7 are listed in Table III, following expected repairing
policies that are compatible in this experiment if violation
occurs. Take Customer as example, a customer who intends
to have food heated with microwave may carelessly input un-
matched mode and parameters, and only to get cold food as
a result. The error may even damage the device and expose
its user to safety hazard. In this case, an alarm to notify the
user about the erroneous configuration and guide him/her
to retreat would be helpful. Other requirements denials may
come from food ordering systems and restaurant employees.
The dish display web page occasionally goes down and
prevents a customer from proceeding with an order; An
internal database exception may block a customer’s login
info from being authenticated, when an alternative local
backup file reading would suffice; A slow delivery man
may spend much time on finding his way to customer’s
home and break his commitment to deliver order within
30 minutes, when another delivery man can be assigned
to take over the task. If a constraint violation turns out
to be unrepairable during food ordering service, then the
cascading failure would deny customer’s goal of getting
prepared food. We assume that, if an order is successfully
delivered but is overdue (exceeding customer’s expected
time), the customer will complain but his goal of food
preparation is still considered to be achieved.

Table III
FOOD PREPARING GOAL CONSTRAINTS AND REPAIRING POLICIES

Goal Constraint Type Specification Repairing
T1 precondition ¬wellConfigured Prevent
T5 postcondition info.correct Compensate
T7 invariants ¬database.exception GoalSUB (G10)
T2 invariants ¬displayPage.corrupt Retry
T3 commitCondition ¬payment.expired GoalSUB (G6)

G13 commitCondition responseTime<30m AgentSUB
T11 invariants ¬pack.inappropriate Retry

B. Simulation Scenario

A simulation of the food preparing system was created
using AnyLogic [8], and used as the subject for evaluating
our stateful monitoring and repairing approach. AnyLogic is
an all-around logic modeling and simulation software that
allows us to build the desired agent-based system model
in combination with discrete triggering events and message
communications. Using the AnyLogic modeling tool and its
terminology, we created five active object classes as the
agents corresponding to the five agent types in the food
preparing system, and defined their connections within the
main environment.

Figure 8 illustrates the simulation scenario in AnyLogic.
A number of customers choose to order food from a
restaurant or cook instant food by themselves at a certain
probability. A food ordering system receives orders from
customers and put them into a queue for order dispatchers
to handle. An order dispatcher checks each received order
and passes it to chefs. After a chef gets an order ready,



the dispatcher assigns a delivery man to package and ship
the ordered food to the customer. Once built, the scenario
can be simulated with different parameters, e.g., in one
simulation, 150 customer instances are created with one
restaurant, which has one order dispatcher, 10 chefs and 10
delivery men.

Figure 8. Overview of the Simulation Scenario

In AnyLogic modeling, each agent possesses a statechart
dictating its behaviors and reactions to incoming messages
at runtime. Inter-agent interaction is realized by message
exchanging between the connected ones. Agents’ choices
on alternative state transitions are simulated by specifying a
triggering rate for related transitions. For example, the transi-
tion rates of customer choosing to order food from restaurant
is specified by the parameter makingOrderRate (see Table
IV). To simulate occasional negligence or adverse conditions
that may cause potential failures, we inject some faulty state
transitions and stochastic delays into the behavior models
of related agents. For example, a faulty state transition for
a customer to improperly launch a microwave is introduced
with a probability specified by the parameter misuseRate.

Our monitoring and repairing framework is integrated
with the simulation system using AnyLogic, which exposes
code injection entries and event handling interfaces for active
object classes in Java. Thus interested agent behaviors can be
monitored by goal state machine via external event mapping,
and repairing actions are realized as AnyLogic agent mes-
sages by implementing the RepairingPolicy interface of our
framework and are registered into the framework as callback
handlers along with customized repairing policies.

C. Results and Evaluation

We ran the experiment on a computer with Intel Core2
Duo P8700 CPU and 2G memory. The configurations of
the used probability parameters are listed in Table IV. The
simulation scenario was executed 20 times with and without
self-repairing respectively. In each execution, a customer
tries to get food prepared once, and the time of customer
starting preparing food is set to be linear in the time line.
For evaluation, the experiment produced 3000 Customer
sessions, that is, 20 times of execution times 150 instances in
each execution, with or without self-repairing respectively.

The following measurements of key performance indica-
tors were collected for evaluation: a) the number of cus-

Table IV
SIMULATION PARAMETERS CONFIGURATION

Agent Parameter Value
Customer makingOrderRate 0.8
Customer misuseRate 0.2
Customer microwaveDamageRate 0.1

FoodOrderSystem memberLoginRate 0.9
FoodOrderSystem incorrectInfoRate 0.1
FoodOrderSystem corruptPageRate 0.1
FoodOrderSystem onlinePaymentRate 0.8
FoodOrderSystem databaseExceptionRate 0.05
FoodOrderSystem paymentExpireRate 0.05
Order Dispatcher responseDelayRate 0.2

Delivery Man inappropriatePackageRate 0.1
Delivery Man damagedPackageRate 0.05

tomers who have their food successfully prepared, indicating
goal satisfaction from the customer’s perspective; b) the
number of food ordering requests sent to the restaurant; c)
the number of food orders successfully delivered, indicating
goal satisfaction from the restaurant’s perspective; d) the
number of damaged microwaves, indicating occurrences
of potentially critical safety hazard; and e) the number
of customer complaints, indicating the quality of service
provided by the restaurant.

The experiment results are shown in Figure 9, where the
letter under each bar corresponding to the measurements
mentioned above and the results with and without asterisks
indicate the measurements with and without self-repairing
respectively. It can be seen that the number of customers
having their food prepared (a) is improved 22.27% after
introducing self-repairing; the success rate of restaurant’s
order delivery (c/b) rises from 77.58% to 95.51%; the
hazards brought by damaged microwaves (d) are entirely
eliminated; and 63% customer complaints (e) are ruled out.
The complaints are not brought down as much as failed
orders because some ordering sessions are still delayed and
cause delivery overdue, although they were repaired by
Retry and Agent Substitute policies.

Figure 9. Improved results: a∗ > a, (c ∗ /b∗) > (c/b), d∗ < d, e∗ < e

We took a segment of reinterpreted goal state transition
trace (see Table V) from our experiment to illustrate how our
stateful monitoring and repairing approach works behind the
simulation scenario. In Table V, the first column refers to the
goals/tasks in Figure 7 and the other columns corresponding
to different steps in the trace; the second row shows goal
events issued in the corresponding steps; the third to eighth
rows show the states of related goals in each step (G15’
and T11’ are goal instances for another delivery man). The



trace starts with T11’s external start event, indicating that a
delivery man begins to pack an order. The executing state is
propagated in turn to G15, G13, G11. Then a postcondition
violation is detected with T11’s end event, making T11
failed since no local repairing policies are defined for
it. This failure is then propagated to G15, triggering an
internal delegateFail event for G13. On behalf of the order
dispatcher, our repairing module decides to enforce Agent
Substitute by assigning another delivery man from available
delegate candidates list for the order, resulting in creation
of a set of new goal instances (e.g. G15’ and T11’) on the
delivery man. The new delivery task starts later on.

Table V
SEGMENT FROM RUNNING SIMULATION

Step 76722 78250 78264 78282 78291
Event T11.start T11.end G13.delegateFail G15’.acti T11’.start
G11 exec exec exec acti exec
G13 exec exec rep acti exec
G15 exec failed failed failed failed
T11 exec failed failed failed failed
G15’ - - - acti exec
T11’ - - - acti exec

D. Discussion

In the experimental study, we conducted a series of
application-specific customization and extension to the mon-
itoring and repairing framework. Apart from defining a goal
model for the 5 agents, we defined 72 external goal events
and the corresponding event mappings, 14 goal constraints,
and 9 actuators. These monitors and actuators were imple-
mented by 85 Java modules with totally 1234 lines of code.
Using a tool to semi-automatically generate part of the code
based on the parameterized code templates, it is shown that
the effort required for the customization and extension is
acceptable compared with the benefits achieved.

It is important to note that any repairing action is possible
to fail again, though the reasoning of repairing failure rate
is out of this paper’s scope. Interestingly, we did find that
approximately 15% of repairing actions failed to come into
effect during our experiments. Since we left all the agent
scheduling work to AnyLogic and after-violation transitions
within an agent behavior statechart has limited timeout
trigger specified, it is likely that the repairing action pushed
by goal state machine just misses the timeout window, so
that the agent continues its deviated behavior. This fact
compensates for the missing explicit repairing failure rate
expression and makes sense because repairing actions should
not compromise real-time feature in a real-time system and
real-life transactions always have suspension limits.

During the application-specific repairing actions enacted
in our experiment, a possibility to refine and regroup repair-
ing policies also emerged. Taking the policy Prevent in Table
III as an example, once a potential microwave malfunction
caused by ill parameters is monitored, not only was the
ongoing process blocked but also user got a warning from it.
Therefore two atomic policies Blocking and Warning can be

composed into one Prevent. Finding such atomic opportunity
to forge new policies could further simplify the logic.

V. RELATED WORK

In a pioneer work, Feather et al. [11] proposed an archi-
tecture and a development process for runtime requirements
monitoring and repairing based on goal-oriented require-
ments engineering. Combining requirements-time goal rea-
soning, event-based runtime monitoring, and self-adaptation
tactics, their work mainly concentrates on requirements
deviations caused by unsatisfied environment assumptions.
A more recent approach proposed by Wang et al. [3], [4]
diagnoses and repairs errors detected at runtime. The repair-
ing is implemented by selecting a best system configura-
tion from alternative configurations using SAT-solver based
goal reasoning, and the selected configuration contributes
most positively to the systems non-functional requirements.
Dalpiaz et al. [6], [12] proposed a requirements-driven self-
reconfiguration architecture, using goal models-based rea-
soning to monitor for and diagnose failures, and axiomatized
a support relation in a service-oriented environment to rea-
son whether adopting a role is compatible with given goals,
application scenarios, and various commitments. Unlike the
logic based failure reasoning in these methods, our work
uses the state history of relevant goals to simulate for
more precise repairing decisions. Instead of considering non-
functional requirements in selecting repairing reconfigura-
tions through goal substitutions, we also simulate probablis-
tically the interactions between the modelled agents.

Unlike previous work [4], [6], our approach supports
decentralized requirements monitoring and self-repairing.
The lifecycle management of goals and support of self-
repairing decision are for decentralized agents, thus does not
require a global view of the target system. In addition, our
approach supports fine-grained requirements monitoring and
repairing at individual goals level, providing a hierarchical
repairing process for both local and global policies. These
advantages are achieved by extending state machine for
individual goals, and by propagating failures among goals
and agents through event-based state machine interactions.

Apart from goal-based approaches, Salifu et al [13] use
problem frames to specify monitoring and adapation require-
ments and introduce state machines to represent the compo-
sition of adaptation switches. A simulation of such systems
was explored [14] using Websphere Business Modeler. One
difference here is that we offer goal-based patterns to specify
state machines to embed the reasoning logic in simulation.
Complement to the proposal in this work, the analysis of
state machines of contextual domains in the physical world
still need to be elicited based on domain expertise.

Awareness requirements approaches [15], [16] concern
monitoring as meta-requirements about success/failure of
functional requirements and quality-of-service requirements,
in addition to uncertainty of domain assumptions at runtime.



Several attempts have been made to model the awareness re-
quirements using fuzzy logic [17], [18], feedback loops [19],
[20]. This work demonstrates the benefits of simulating such
an adaptive system by modeling goal state machines.

Design-by-contract methodology for implementation [21]
supports runtime checks. Traditional runtime verification
methods like the MOP framework proposed by Chen et
al. [22] monitor generic constraints such as preconditions,
postconditions and invariants at runtime. Although MOP
provides violation handlers for developing their own re-
pairing implementations, it does not involve requirements
models in monitoring and does not provide builtin self-
repairing mechanisms. Model-based monitoring methods
such as Schneider et al. [23] require strict behavior models
specific to applications. In contrast, the state machines are
used in our approach to specify and manage the runtime
lifecycles of requirements goals.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a distributed, stateful, goal-based
monitoring and self-repairing framework for socio-technical
systems. The main contributions of our proposal are as
follows. First, by defining state transitions of goal instances
and their interactions at runtime, the approach provides
a comprehensive requirements monitoring mechanism that
combines both traditional constraints checking (i.e. pre-
condition, postcondition, and invariant) and goal-oriented
requirements reasoning. Second, our monitoring framework
detects deviations from state histories of relevant goal in-
stances, and supports precise and fine-grained self-repairing
decision making. Third, the isomorphic nature of goal
state machines and event-driven interactions facilitate the
implementation of decentralized requirements monitoring
and repairing in socio-technical systems. In the future, we
consider integrating this work with runtime modeling of
the behaviors of physical world domains and conducting
more experiments with real socio-technical systems, e.g.,
applications in the field of pervasive computing.

ACKNOWLEDGMENT

This work has been supported in part by Chinese National
grants of Natural Science Foundation No. 90818009, High
Technology Development 863 Program No.2012AA011202
and by both the European Research Council advanced grants
267856 and 291652.

REFERENCES

[1] A. R. Dingwall-Smith, “Run-time monitoring of goal-oriented
requirements specifications”, Ph.D. dissertation, University of
London, 2006.

[2] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani,
“Reasoning with goal models”, in ER, 2002.

[3] Y. Wang, S. A. Mcllraith, Y. Yu, and J. Mylopoulos, “An auto-
mated approach to monitoring and diagnosing requirements”,
in ASE, 2007.

[4] Y. Wang and J. Mylopoulos, “Self-repair through reconfigu-
ration: A requirements engineering approach”, in ASE. IEEE
Computer Society, 2009, pp. 257–268.

[5] M. J. Khan, M. M. Awais, and S. Shamail, “Enabling self-
configuration in autonomic systems using case-based reason-
ing with improved efficiency”, in ICAAS, 2008.

[6] F. Dalpiaz, P. Giorgini, and J. Mylopoulos, “An architec-
ture for requirements-driven self-reconfiguration”, in CAiSE,
2009.

[7] S. W. Cheng, A. C. Huang, D. Garlan, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation
with reusable infrastructure”, in ICAC, 2004.

[8] X. Technologies, “Anylogic”, http://www.xjtek.com/
anylogic/.

[9] L. Fu, X. Peng, Y. Yu, J. Mylopoulos, and W. Zhao,
“Stateful requirements monitoring for self-repairing socio-
technical systems”, Software Engineering Lab, Fudan Uni-
versity (FDSE-TR201201), Tech. Rep., 2012.

[10] L. Chen, N. R. Shadbolt, C. Goble, F. Tao, S. J. Cox,
C. Puleston, and P. R. Smart, “Towards a knowledge-based
approach to semantic service composition”, in ISWC, 2003.

[11] M. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard,
“Reconciling system requirements and runtime behavior”, in
IWSSD, 1998.

[12] A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos,
“Modeling and reasoning about service-oriented applications
via goals and commitments”, in CAiSE, 2010.

[13] M. Salifu, Y. Yu, and B. Nuseibeh, “Specifying monitoring
and switching problems in context”, in RE, 2007.

[14] M. Salifu, Y. Yu, A. K. Bandara, and B. Nuseibeh, “Analysing
the requirements for monitoring and switching: A problem-
oriented approach”, J. Syst. Software, to appear, 2012.

[15] V. E. S. Souza, A. Lapouchnian, W. N. Robinson, and J. My-
lopoulos, “Awareness requirements for adaptive systems”, in
SEAMS, 2011.

[16] K. Welsh, P. Sawyer, and N. Bencomo, “Towards require-
ments aware systems: Run-time resolution of design-time
assumptions”, in ASE, 2011.

[17] J. Whittle, P. Sawyer, N. Bencomo, B. Cheng, and J.-M.
Bruel, “Relax: Incorporating uncertainty into the specification
of self-adaptive systems”, in RE, 2009.

[18] L. Baresi, L. Pasquale, and P. Spoletini, “Fuzzy goals for
requirements-driven adaptation”, in RE, 2010.

[19] X. Peng, B. Chen, Y. Yu, and W. Zhao, “Self-Tuning of
Software Systems through Dynamic Quality Tradeoff and
Value-based Feedback Control Loop”, J. Syst. Software, to
appear, 2012.

[20] B. Chen, X. Peng, Y. Yu, and W. Zhao, “Are your sites down?
requirements-driven self-tuning for the survivability of web
systems”, in RE, 2011.

[21] Y. L. Traon, B. Baudry, and J.-M. Jézéquel, “Design by
contract to improve software vigilance”, IEEE Trans. Softw.
Eng., vol. 32, pp. 571–586, 2006.

[22] F. Chen and G. Rosu, “Mop: an efficient and generic runtime
verification framework”, in OOPSLA, 2007.

[23] F. B. Schneider, “Implementing fault-tolerant services using
the state machine approach: A tutorial”, ACM Computing
Surveys, vol. 22, no. 4, pp. 299–319, 1990.

http://www.xjtek.com/anylogic/
http://www.xjtek.com/anylogic/

	Introduction
	An Illustrating Example
	Requirements Models
	Goal State Machines
	The Repairing Process

	Our Approach
	Extended Goal State Machine
	Event Mapping Rules
	Goal State Machine Interactions
	Repairing
	Local Repairing Policies
	Repairing Decision
	Customizable Repairing Policies


	Experimental Study
	Settings for Experimental Study
	Simulation Scenario
	Results and Evaluation
	Discussion

	Related Work
	Conclusions and Future Work
	References

