ArchiTech: Tool Support for NFR-guided Architectural Decision-Making

David Ameller, Oriol Collell, Xavier Franch
Software Engineering for Information Systems research group (GESSI)
Universitat Politecnica de Catalunya (UPC)
Barcelona (Catalunya, Spain)
{dameller, ocollell, franch}@essi.upc.edu

Abstract—Researchers from from requirements engineering
and software architecture had had emphasized the importance
of Non-Functional Requirements and their influence in the
architectural design process. To improve this process we have
designed a tool, ArchiTech, which aims to support architects
during the design process by suggesting alternative architec-
tural decisions that can improve some types of non-functional
requirements in a particular project, and facilitate the reuse of
architectural knowledge shared between projects of the same
architectural domain (e.g., web-based applications).

Keywords-Non-functional requirement; architectural deci-
sion; computer-aided support system;

I. INTRODUCTION

Non-Functional Requirements (NFRs) are one of the main
targets of research in the Requirements Engineering com-
munity [1]. A trending topic along this line is the analysis
of relationships between NFRs and software architectures
(e.g., [2]). From the perspective of the software architecture
community, many researchers have stated that architectural
decisions are the core of software architecture [3], and how
this decisions can be reused among projects by having a
common knowledge base, normally referred as Architectural
Knowledge (AK) [4]. Therefore, it seems natural to explore
the links among NFRs, architectural decisions and AK and
to look for tool support for their coordinated management.

In this paper we present ArchiTech, a tool to guide
architects in the architectural decision-making process. Ar-
chiTech integrates two subsystems: an Architectural Knowl-
edge (AK) manager, ArchiTech-CRUD, and an architectural
decision-making-assistant, ArchiTech-DM (see Figure 1).

II. ARCHITECH DESCRIPTION

ArchiTech tool is one piece of a bigger envisioned frame-
work to deal with NFRs in Model-Driven Development [5].

ArchiTech starts from a set of quality requirements and
constraints derived from a SRS by the architect. As result
of the decision-making process (described in Section II-B),
ArchiTech will provide a set of architectural decisions and an
overall evaluation of the expected quality as consequence of
applying the resulting decisions. The results obtained from
ArchiTech-DM require the management and maintainability
of Architectural Knowledge, these facilities are provided

« | have project management responsibilities.
« | design the software architecture.

+ | manage AK for a particular domain.

« | decide which decisions are good or
bad for each type of NFRs.

* | use the decisions made in other
projects to make grow the AK.

« | design the most adequate quality
model for a particular domain.

+ | decide the most influencing
properties for a particular domain.

4—»@

i

ARCH. DECISIONS
AK and QUALITY
Repository EVALUATION

During the architectural design:
« | select the elicited NFRs that have an
impact in the software architecture.

« | transform NFRs into constraints and
quality requirements

Software
Architect

SOFTWARE
REQUIREMENTS

Projects SPECIFICATION (SRS)

ArchiTech overview

Figure 1.

by Architech-CRUD in form of interrelated CRUD (Create-
Read-Update-Delete) operations (described in Section II-A)
applied to the concepts defined in an AK ontology [6].

A. ArchiTech-CRUD

This subsystem provides a graphical user interface for the
domain expert to operate with the AK. The CRUD opera-
tions are specialized for four different types of knowledge:

o Architectural element. The domain expert has to define
the elements (e.g., architectural styles -SOA, layered,
etc.-, components -services, packages, etc.-, technolo-
gies -DBMS, RESTful vs. W3C, etc.-) that are to be
used to structure any software architecture. We use four
architectural views (logical, deployment, development,
and platform) to classify these elements.

o Properties. Each architectural element may have values
for one or more properties that are defined by the
domain expert (e.g., the property License may be used
to classify and reason about OSS technologies).

o Types of NFRs. We give freedom to the domain expert
to define (and reuse in multiple projects) the most
appropriate quality model for her interests (e.g., the S-
Cube quality model to design SOA systems [7]).

o Architectural decisions. The domain expert has to de-
fine the decisions that are more habitual in a particular
architectural domain (e.g., web-based system, service-
based system, etc.), and which types of NFRs are
affected by each alternative. Decisions can be higher-
level (e.g., which architectural style to apply) or lower-
level (e.g., which DBMS to choose).

In order to provide management facilities, the AK must
be persistent and easy to share among projects. To this end
we provide an embedded database, and we have also added
an option to export the stored AK to an XML file.

B. ArchiTech-DM

This subsystem uses our method, called Quark, to guide
software architects in NFR-driven decision-making. Quark
starts from the SRS (from which we focus in NFR at this
stage), and ends with a set of architectural decisions and the
overall evaluation of the software quality. The Quark method
delivers an iterative process divided into four activities:

1) Architectural Specification. The architect specifies the
QRs and constraints (using the SRS as basis) that will
drive the architecture decision making. For example,
a QR could be “performance should be high” (in
other words, more a goal than a requirement), and
constraints could be “the database management system
(DBMS) must be MySQL 5”. As happens in this
example, QRs may be at a high level of abstraction.

2) Decision Inference. The ArchiTech tool uses the AK
available to generate a prioritized list of decisions
(e.g., the decisions that satisfy more constraints and
better comply with the stated QRs are top priority)
using a local search algorithm.

3) Decision Making. The architect decides what decisions
are to be applied from the ones generated in the
previous activity. When the architect makes a decision,
some issues may rise (e.g., we may be selecting the
“data replication” decision, but we could have already
selected a DBMS not supporting this feature).

4) Architectural Refinement. The ArchiTech tool identi-
fies possible issues and suggest actions that to resolve
them (e.g., following the previous example, the tool
may suggest to use a DBMS with data replication).

After the fourth activity, we may end the process by
accepting the resulting set of architectural decisions or use
the suggested actions provided by the tool and start a new
iteration. Once a new iteration starts, the architect is free to
change any of the previously defined requirements (e.g., s’he
may want to soften some of them to get more alternatives).

ITII. CONCLUSION

In this paper we have described the principal parts of
ArchiTech and summarized the specific use cases of the tool.
A detailed description of the system may be found at
(www.upc.edu/gessi/architech/index.html), where the current

1 Decision Maker 52 Recompute = O

Logical View | Deployment View | Platform View | Development View|

Decision Quaity (ov.
Use 3-Layer logical st 81

=0

Element Properties % X | Hide HideUnselected ShowAl = 5

Quality Attrbute Desired? Affected Level
- MNone
- None
© Weakly Satisied
© Weakly Satisied
— MNone

= Non:

z

eakly Satified
akly Satified

=

I i1 1110000001
z

[I A RN AN

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Figure 2.

§§55555%

ArchiTech screen-shot

version is available for download. Also, the details of the
design of ArchiTech (architectural description, technologies
used, etc.) are available in [8]. Finally, a screen-shot of the
tool is shown in Figure 2.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
MICINN project TIN2010-19130-C02-02.

REFERENCES
[1] M. Glinz, “On Non-Functional Requirements,” in RE, 2007.

[2] J. A. Miller, R. Ferrari, and N. H. Madhavji, “An exploratory
study of architectural effects on requirements decisions,” JSS,
vol. 83, no. 12, pp. 2441-2455, 2010.

[3] P. Kruchten, R. Capilla, and J. C. Duenas, “The Decision
View’s Role in Software Architecture Practice,” IEEE Soft.,
vol. 26, pp. 36-42, 2009.

[4] P. Kruchten, P. Lago, and H. van Vliet, “Building Up and
Reasoning About Architectural Knowledge,” in QoSA, 2006.

[5] D. Ameller, X. Franch, and J. Cabot, “Dealing with Non-
Functional Requirements in Model-Driven Development,” in
RE, 2010.

[6] D. Ameller and X. Franch, “Ontology-based Architectural
Knowledge representation: structural elements module,” in
IWSSA, CAiSE, 2011.

[7]1 A. Gehlert and A. Metzger, “Quality reference model for sba
(deliverable cd-jra-1.3.2),” S-Cube, Tech. Rep., 2009.

[8] D. Ameller, O. Collell, and X. Franch, “Reconciling the 3-
layer architectural style with a plug-in-based architecture: the
Eclipse case,” in TOPI, ICSE, 2011.

ArchiTech: Tool Support for NFR-guided Architectural Decision-Making (Demo
Outline)

I. INTRODUCTION

This document describes how the ArchiTech tool will be presented during the conference. The tool is addressed to
software architects and requirements engineers collaborating in the design of the architecture of a given software system
in a way that maximizes the fulfillment of its non-functional requirements (NFRs). During the demo, the presenter will
take the role of the software architect and will show how the tool can assist him on the architecture design activity by
following the Quark method (see figure 1). Some attendee will be contacted in advance to play the role of requirements
engineers. As explained in the extended abstract, ArchiTech also includes a CRUD subsystem (ArchiTech-CRUD) to manage
the Architectural Knowledge (AK) to be used by the second subsystem, ArchiTech-DM, in the decisional process to suggest
architectural decisions.The demo will focus on the decisional subsystem which is far more interesting. ArchiTech-CRUD
will be just briefly introduced although, in case a participant shows interest, we will show it in more detail.

Decision
inference

- Prioritization
{Constraints - Guidance

and QRs}

N1
Decision
making

Architectural
specification

- Constraints

"aRe - Evaluation
andQRs} /" Architectural

{ Decisions and
decisi . .
{decisions} quality evaluation
refinement

Software

requirements {Constrh

- Dependencies
- Restrictions

Figure 1. Graphical representation of the Quark method

The method starts from the set of requirements contained in the initial software requirements specification (SRS) defined
by the Requirements Engineer, which can include both Quality Requirements (QRs) and constraints. We will first show how
the Software Architect, most probably with the support of the Requirements Engineer, can reformulate these requirements
inside the tool and then, how these requirements guide the rest of the process until the architect, helped by the tool, decides
on a set of decisions to make. During the development of the tool, we have strongly considered the real needs of software
architects coming from several empirical studies (one of them reported in the main conference itself). We will show how
these considerations are reflected in the tool, such as the balance between degree of freedom and assistance provided by the
tool.

The demo will use predefined data (AK, NFRs, ...) already installed in the tool, but we will try during the demo to engage
participants by proposing them to add new AK they may have from their own projects, or new NFRs they may consider
relevant for their decision-making. Given that a complete architectural design example may take too much time, we will
focus on one decision, the DBMS selection (it can be demonstrated in between 2 and 5 minutes, depending on the degree
of interaction).

The rest of the document shows how we will orientate the demo for each of the steps in the Quark method, and how we
will relate each step with the functionality provided in the tool. We will also exemplify the execution of each step of the
method with the aforementioned example.

II. ARCHITECTURAL SPECIFICATION

The first step in the method is to select the project NFR types that have an impact on the software architecture, and then
formalize them in the tool, so that they can be considered in the rest of the steps to infer which decisions to take in order
to maximize its fulfillment.

Lets suppose that the Requirements Engineer has produced an SRS document containing among others the three require-
ments below:

(R1) The software system shall keep information about clients and providers
(R2) The software system shall be developed using OSS whenever possible
(R3) The software system shall be highly reliable

ArchiTech includes two concepts in order to represent these requirements:

o Quality Attributes: Represent the quality requirements (QRs) to attain, such as Security, Reliability, etc. Each archi-
tectural decision will directly impact over one or more Quality Attributes by helping or damaging them (we have used
the levels of impact described in [1]) . One good example of a full set of Quality Attributes can be found in the ISO
9126-1 quality standard. In the provided example, the “Reliability” attribute would be present.

« Element Properties: Represent characteristics of architectural elements, such as architectural styles, components or
technologies. This concept corresponds to constraints in the Quark process. In the provided example, there would be
the “provides persistence” and “license” properties that correspond respectively to R1 ' and R2.

We will explain how these requirements can be elicited inside ArchiTech using both the “Quality Attributes view” and
the “Element Properties view”.

On one hand, in the “Quality Attributes view”, the architect declares (from the SRS) which goals are Necessary for
the project, which ones are Desirable and which ones are not relevant for the current project (see figure 2). Following
the example, we would state that “Reliability” is Necessary. Moreover, all sub-attributes of “Reliability” are marked also
as Necessary by default to indicate that all aspects of “Reliabiliy” are important. The architect, however, has freedom to
unselect all those attributes that are not relevant for the given project.

o0 Quality Attributes 32 | Element Properties @ X | Hide HideUnselected ShowAll ¥ = [

Quality Attribute Desired? Affected Level | >IN o
Co-Existence = Ne = None [
Installability = No = None
Portability Compliance = No = None Necessary
Replaceability = No = None

4 Reliability OO Necessary = None
Fault Tolerance P Necessary = MNone
Maturity P9 Necessary = None -
Recoverability PO Necessary = None |
Reliability Compliance PP Necessary = None

4 Usability = No = None
Attractiveness = No = None Y

Figure 2. Quality Attributes View

On the other hand, in the “Element Properties view”, the architect selects which properties are relevant for the project
and which are not, and also sets conditions over the properties according to the requirements. Following the example, the
“provides persistence” property would be set to “true”, and the “license” to “equals OSS” (see figure 3).

Additionally, the architect has the option to set another type of constraints over architectural elements, in the form of Use
an element or Ban it. For example, we could set a constraint saying that the “Oracle Database” technology is banned (see
figure 4).

When showing this step of the process, we will offer the possibility to also explain how knowledge about requirements
(both Quality Attributes and Element Properties) can be changed, given that in a real scenario the knowledge base may not
be the same for each company, project or user. To show this situation the presenter will take the role of the Domain Expert.

IR1 is, in fact, a functional requirement, however it has some implications over NFRs. With respect to ArchiTech, only these implications are relevant.

°" Quality Attributes Element Properties &3

=4

v X ‘ Hide Hide Unselected Show All

Property Value Condition on V... Selected

verage response time == No

cense 0SS == Yes
provides persistence YES == Yes Select
supported users == No

Figure 3. Element Properties View

C_ Constraints £ =X 0
Help i1
— ; — Type of Element: Vigd
@ & ol 4| & c)
:mcm“! o e S | Component Logical
Bookmarks & Index ¥l style 7] Deploymibt View
ArchiTech > Knowledge Management > = 7] Style Variation 7] Develo t Viev
El t -
sements ¥ Implementation |« Platforﬁm.'
Actions on elements can be invoked
using the toolbar in the view © Development Tool
. @ Folder
] R L
- @ Layer
o9 oX @ Module
- @ Server
or by right=clicking on an element * @ Tier
s s @ Application tier (Middleware)
@ Specialize Style © Data tier (Back-end)
i s @ Presentation tier (Client)[Use]
«' Edit Element 3 O Apache
X Delete Element 0 MySQL
@ New Component O Oracle[Ban]
@ New Style 0 PostgreSQL
¥ New Style Variation © Tomceat
® New Implementation ® Advanced Development

@ Basic Development
@ Layered architecture
@ N-tier architecture

Explore »

Also, double-clicking on an element will
allow the editing of the element by

Figure 4. Constrains can be set over elements. The figure also shows one of the help documents offered by the tool

III. DECISION INFERENCE

Once we have shown how to elicit the requirements, we will explain how the next step is performed, which corresponds
to the calculation of a prioritized list of all decisions. This prioritization is done according to the requirements stated and,
also, the detected incompatibilities between decisions and violations of user constraints.

The tool uses the “Decision Maker view” for this purpose (see figure 5). To help the architect in the decisional process, the
tool will show the quality of each decision, according to how well it fits the requirements, incompatibilities and constraints
imposed. Also, it will mark in green the set of decision which the tool considers as the recommended set, in the sense
that selecting all the green decisions will generate a good solution with the minimum of incompatibilities and constraint
violations and the maximum of NFRs fulfilled.

Additionally, as a result of another observation from our empirical studies with software architects, we decided to include
a description with each decision that gives insight about how it has been evaluated, so that the architect has more information
at hand to make informed decisions. For example we could describe “data replication” as follows: “this decision improves
the quality attribute High Performance, which has been selected”.

Continuing with the example, the tool will suggest the following decisions:

1) The decision to use MySQL 5. This decision will be marked as “high quality” because it is OSS. MySQL will be

[Decision Maker i3 % Recompute & = 0

Logical View Deployment‘ufiewl Platform View | Development View

Decision Quality (ov... Decision Quality (ov...
Use 3-Layer logical sty 100
Only OS5 7

Persistence with Hiber 0

[Add »> |

’Add Recommended = > l

<< Remove

’ <« Remove All l

Details:

This decision needs the Persistence Layer -
component, but no applicable style variation is
present in the selected and recommended decisions

Figure 5. Decisions Maker View. Architectural decisions in the recommended set are shown in green. The details indicate that this decision corresponds
to using a component, but the recommended set does not include the style variation to which the component applies.

preferred because it supports more OSS technologies. Also, in the description it will be explained that using MySQL
has neutral impact on reliability because ACID compliance depends on the configuration.

2) The decision to use PostgreSQL 8.3. This one will also be marked as high quality because it is OSS. There are few
OSS technologies with support for PostgreSQL. Quality will also be increased because using PostgreSQL improves
reliability given that it is ACID compliant.

3) The decision to use SQL Server 2005. This last one will be given less quality because it is not OSS and there are
few OSS technologies with support for SQL Server. SQL Server will require Windows operating system. However, this
technology is ACID compliant and offers backup facilities, which helps reliability.

I1V. DECISION MAKING

Once the prioritized list has been generated we will explain how the architect can select which decisions to take, helped
by the tool and its recommendations. The tool will inform about the consequences of taking a decision, but the architect
will always have the last decision about the adequacy of each decision (there may be other reasons, beyond requirements
fulfillment, that have higher priority). At this moment, we will be willing to discuss with participants about the degree of
freedom offered and the reasons that may drive an architect to not always select the “best” decisions.

In the proposed example, the architect could decide to use MySQL 5 (the decision with higher priority) as the implementing
technology for the DBMS component. But as said before, the architect may prefer to use PostgreSQL, even it is not the top
decision, e. g. because she used it in her last project and ended very satisfied. The important point is that the architect is
able to make informed decisions, and, eventually, new decisions that were unknown to her/him are taken into consideration.

@n Quality Attributes 22 | Element Properties & X | Hide Hide Unselected Showall ~ = B

Quality Attribute Desired? | Affected Level | -
4 Portability = Mo = Mone
Adaptability = MNo &J Weakly Satisfied
Co-Existence = DMNo = [Mone
Installability = Mo = Mone E
Portability Compliance = Mo = Mone
Replaceability = MNo &J Weakly Satisfied
4 Reliability WP MNecessary = [Mone -

Figure 6. Quality Attributes monitor. The “Affected Level” column shows the level of fulfillment of quality goals when selecting the MySQL Decision.

The tool also includes a “Quality Attributes monitor” (see figure 6) that shows how requirements are fulfilled by the set
of selected decisions, so that the architect can have an accurate idea about the impact of making a decision.

Once some decisions have been selected, the architect has to decide whether he wants to finish the process right now,
obtaining the set of selected decisions as a result, or if he wants to perform another iteration in order to refine the list of
decisions. In case the architect wants to refine the list, he proceeds to the next step.

V. ARCHITECTURAL REFINEMENT

After selecting an initial set of decisions to make, the architect can execute an action to recalculate the quality of decisions
and the recommended set. This will update the list, giving the architect a clear idea about the situation after some decisions
have been made. Descriptions over decisions will also be updated to reflect the new status.

Before recalculating, the architect can decide to change requirements if he feels that the decisions he is making are related
to some other requirement that he wants to make explicit, or if he wants to change constraints.The architect can execute as
many iterations as he feesl necessary until he is satisfied with the set of selected decisions.

Finalizing with the example, the architect could continue with new iterations, where the decision to use MySQL will
impact, for example, in the selection of other technologies that are compatible with MySQL.

VI. THE DOMAIN EXPERT ROLE

We have decided to focus on the role of the architect to present the tool, because we feel that this is the most appealing
usage and in which participants will have more interest. However, we are also planning on doing some role-playing together
with participants in order to illustrate the other users of the tool, namely the Domain Experts, which are the responsible for
managing the Architectural Knowledge. As said previously in the document, we will be willing to show how the CRUD
module works to any participant interested in it.

VII. MORE INFORMATION

A detailed description of the system may be found at its site (www.upc.edu/gessi/architech/index.html), where the current
version is available for download. We have prepared a short video about the tool, it can be viewed in the same website.
Also, any requests about the tool should be directed to dameller@essi.upc.edu

REFERENCES

[1] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-functional requirements in software engineering. Kluwer Academic, 2000.

	da-oc-xf-RE12-Demo
	demoOutline

