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Abstract—Human analysts working with results from 

automated traceability tools often make incorrect decisions 

that lead to lower quality final trace matrices. As the human 

must vet the results of trace tools for mission- and safety-

critical systems, the hopes of developing expedient and 

accurate tracing procedures lies in understanding how analysts 

work with trace matrices. This paper describes a study to 

understand when and why humans make correct and incorrect 

decisions during tracing tasks through logs of analyst actions. 

In addition to the traditional measures of recall and precision 

to describe the accuracy of the results, we introduce and study 

new measures that focus on analyst work quality: potential 

recall, sensitivity, and effort distribution. We use these 

measures to visualize analyst progress towards the final trace 

matrix, identifying factors that may influence their 

performance and determining how actual tracing strategies, 

derived from analyst logs, affect results. 

Keywords-Traceability; Human Factors; Performance 

Measures; Process Improvement; Tracing Strategies  

I.  INTRODUCTION 

Trace Matrices (TM) support the verification of mission- 

and safety-critical software systems. Even though TMs can 

be automatically generated, analysts are still required to vet 

TMs and ensure that critical requirements have been 

satisfied. Analysts, however, can sometimes make incorrect 

decisions that lower the quality of vetted TMs. Despite the 

subjectivity of analysts’ decisions, it is not possible to do 

away with the analyst in the tracing process and rely only on 

software-generated TMs [1, 2, 3, 4]. To move toward 

improvement of tracing as a practice, it is necessary to 

consider the human in the tracing process improvement 

feedback loop. 
Despite their vital role, the study of analysts in the 

context of working with tracing software [5, 6], calculating 
tracing effort and quality [7], and understanding how 
analysts perform tracing [1, 2, 3, 4] has only just begun. 
Important information about how analysts work with TMs 
has not yet been studied in detail and empirically validated.  
For example, how accurately do analysts perform tracing 
tasks? How often do analysts make correct decisions? How 
often and why do they make incorrect decisions? How do 
analysts spend their time during the tracing task and are they 
making the best use of their time? While we may have some 

intuitive answers, this work empirically validates those 
questions. 

We know that automated tracing methods do not retrieve 

perfect TMs [2].  We know that analysts are not perfect 

either, and can often make a high quality TM worse [2, 3].  

We, however, need analysts to properly validate TMs and 

improve their accuracy. Our overarching goal is to develop 

procedures and software that facilitate accurate assisted 

tracing, where analysts work with the output of an automated 

tracing tool [1]. To that end, we need to identify things that 

analysts do well and things with which they struggle. Based 

on this knowledge, we can make improvements (better 

tracing methods, better user interfaces, better procedures that 

capitalize on analyst strengths) and avoid things that 

challenge analysts (or handle these challenges). 
Recall and precision are measures frequently used to 

evaluate the accuracy of a TM from a researcher’s 
perspective [8, 9, 10, 11, 12], while measures such as lag, 
selectivity, and mean average precision have been used to 
evaluate the quality of a TM from an analyst’s perspective 
[5, 13]. In general, automated methods return candidate TMs 
(“candidate” until a human analyst vets them) with high 
recall and low precision. New or improved techniques 
attempt to maintain high recall while increasing precision 
over existing techniques. These measures, however, indicate 
the accuracy of the final tracing product and not the accuracy 
of the analyst. We need measures to capture information 
about analyst behavior in order to understand how analysts 
perform tracing tasks and what factors affect their work 
quality. 

We posit that recall may not always be preferred over 
precision when evaluating analyst quality. Recall only tells 
us how many true links an analyst added to the final TM and 
not how many they did not find or incorrectly rejected. 
Analysts’ performance should reflect all their decisions on 
true and false links. An analyst that rarely rejects a true link, 
rarely accepts a false link, and spends less effort on false 
links produces a high quality final TM. Analysts need to be 
able to observe all the true links in the candidate TM in order 
to maximize the likelihood of accepting those links into the 
final TM. 

This paper introduces three new measures that target the 
study of the tracing process in addition to the accuracy 
(recall and precision) of the final TM: potential recall, 
sensitivity, and effort distribution. We apply these measures 
in a multi-site and multi-dataset study of assisted 
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requirements tracing. We study when analysts make correct 
and incorrect decisions by logging analyst actions during a 
tracing task. We also introduce a matrix visualization that 
provides an at-a-glance view of analyst decisions on true 
links. To support trend analysis, we visualize analyst logs 
using a lattice chart that tracks the state of the TM and 
analyst measures over time. We analyze log and survey data 
to identify actual participant tracing strategies. 
 The paper is organized as follows.  Section II discusses 
background and related work while Section III presents the 
new analyst-specific measures. Section IV describes the 
study setup.  Section V presents threats to validity. Section 
VI discusses results and Section VII presents observations. 
Section VIII concludes and addresses future work.   

II. BACKGROUND AND RELATED WORK 

The assisted tracing process is best described as follows: 

an analyst uses an automated method to generate a candidate 

TM, reviews it, makes any desired changes, and certifies the 

final TM. We know human analysts are not perfect and 

cannot possibly review every link in the candidate TM 

without investing significant time and effort. The analyst has 

to decide how to best spend their time in order to produce a 

high quality final TM. We measure the quality of the final 

TM against an answer set TM (an independently validated 

TM that contains all the true links in a document collection) 

using recall and precision, defined below: 

Recall = TLa / TLt ,        (1) 

 

Precision = TLa / (TLa + FLa) ,   (2) 

 

where TLa is the number of true links accepted, TLt is the 

total number of true links in the collection, and FLa is the 

number of false links accepted. 
The study of automated tracing methods has resulted in 

much progress toward the automation of candidate trace link 
generation. Techniques using latent semantic analysis [11], 
key phrases [14], unsupervised learning [15], and term 
proximity [13] exploit the structural relationship between 
words in a document. The use of thesauri [10, 16] and web 
queries [17] supplement trace link generation with external 
information to improve weak links. Automated tracing 
techniques generate TMs that include most of the true links 
that should be found (80 – 90% recall). These techniques, 
however, also retrieve many false links (below 10% 
precision on large datasets and 20-40% on smaller datasets 
with unfiltered results [8, 10, 11, 12]).  

Analyst simulations provided a means to test tracing 
strategies prior to studies of actual human analysts 
performing tracing. Relevance feedback with multiple 
iterations and filtering to validate candidate TMs showed 
improvements in final TMs (results included links used for 
feedback.) [10]. Incremental approaches using document cut 
or threshold weight filtering with various feedback strategies 
showed that a significant amount of effort is required to 
retrieve all true links in the TM (results excluded links that 
were used for feedback, and in some cases feedback made 

results worse) [18]. This study identifies actual tracing 
strategies from the logs of analyst actions, providing 
guidance on tracing strategies for future simulation studies. 

Another analyst simulation study looked at how link 
ordering and analyst feedback affected results, measuring the 
effort required to achieve either a fixed recall level or to 
measure the recall achieved using a fixed amount of effort. 
Results showed that local ordering with feedback performed 
the best. It was observed that determining the stopping point 
is crucial, using feedback helps, and using a systematic 
approach helps [6]. Simulated analysts produced better 
results when evaluating links incrementally instead of the 
entire ranked list at a time [12].  

While the simulation studies above assumed that analysts 
made perfect decisions, studies of actual human analysts 
showed otherwise. Given higher accuracy candidate TMs, 
analysts produced slightly lower accuracy final TMs. Given 
lower accuracy candidate TMs, analysts produced 
significantly higher accuracy final TMs [1, 2, 3]. Analysts 
tended to produce final TMs that were near the precision = 
recall line, meaning they had final TMs that were about the 
size of the true TM [2]. Analysts were better at validating 
links as opposed to searching for missing links [4] and their 
accuracy did not depend on whether they had industrial 
experience or not (while experienced analysts were more 
correct on true links than those with less experience, both 
achieved less than 50% precision) [7]. Decisions were more 
likely to be correct when made quickly and most decisions 
were made on false links [4, 7]. Effort spent validating links 
did not correlate with trace accuracy [2, 7]. This study of the 
analyst differs from prior work in that we study analyst 
decisions during the tracing task through the logs of their 
actions.  

Recall and precision measures of the final TM reflect the 
number of links accepted by the analyst. These measures, 
however, do not indicate how many links the analyst actually 
examined and rejected. A particular measure of interest 
would be the number of true links rejected by the analyst as 
this indicates that the analyst did not acknowledge the 
relevance of the link. The following section proposes new 
measures that capture additional information about analyst 
decisions. 

III. NEW ANALYST MEASURES 

Throughout the tracing process, the analyst observes, or 

sees, numerous candidate links.  As stated earlier, however, 

the analyst is not expected to examine every link. Some true 

links may be among the candidate links not seen by the 

analyst. Thus, when it comes to validating true links, analyst 

accuracy is limited by the percentage of the true links seen. 

This percentage, dubbed potential recall, represents the 

upper bound on recall. It is defined as follows: 

Potential recall = TLs / TLt ,        (3) 

where TLs is the number of true links seen (accepted, 

rejected, or left undecided), and TLt is the total number of 

true links in the collection.  
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When we measure analyst accuracy with respect to the 

number of true links actually observed, we obtain a new 

measure, which we call sensitivity. Sensitivity is defined as: 

 

Sensitivity = TLa / TLs ,            (4) 

 

where TLa is the number of true links accepted and TLs is the 

number of true links seen. Note that while recall is a measure 

of accuracy of the final TM, sensitivity measures the quality 

of analyst decision-making on true links. For example, an 

analyst who sees 90% of the true links but accepts only 50% 

of them (50% sensitivity) has 45% recall. Contrast this to 

another analyst that sees 45% of the true links and accepts all 

of them (100% sensitivity) yielding 45% recall as well. 

Between these two analysts, the one with higher sensitivity 

does a better job at deciding on true links. High sensitivity, 

however, can easily be achieved by accepting all the links in 

the candidate TM (which would likely not be a good 

approach as tracing tools also retrieve many false links). 

Precision balances sensitivity in the same way it balances 

recall, by measuring how selective analysts are at accepting 

links into the final TM. 

Additionally, we want to measure analyst effort and how 

it is spent throughout the tracing process. In order for 

analysts to make the best use of their time, the effort spent 

reviewing false links should be balanced by the effort spent 

reviewing true links. The following measure can be used to 

indicate how analysts spend their time during a tracing task 

in terms of the number of links seen: 

 

Effort distribution = FLs / TLs ,  (5) 

 

where FLs is the number of false links seen and the TLs is the 

number of true links seen. An analyst that sees an equal 

number of true links and false links has an effort distribution 

of one (1). We posit that analysts who view many false links 

are more likely to accept some of those links into the final 

TM, decreasing precision. Note, however, that an analyst 

may not go through the trouble of rejecting false links if they 

know that only accepted links are included in the final TM, 

which could result in higher effort distribution if they are 

skimming through links looking for specific keywords. 

Each analyst, without specific traceability training or 

guidance, approaches tracing in their own way. Often, an 

analyst uses some sort of strategy, either consciously or 

unconsciously, to complete the tracing task. Capturing these 

strategies (without detracting from the actual tracing task) 

provides insight as to which strategies produce the best 

results in terms of potential recall, sensitivity, and effort 

distribution. These strategies could also indicate the 

threshold that an analyst applies to what they consider to be a 

true link, which influences the precision of the final TM.  

In order to design reliable and accurate assisted tracing 

processes, we need to understand what factors contribute to 

analyst performance in tracing tasks. In our prior studies [1, 

2, 3], we varied the accuracy of the starting candidate TM 

for the tracing task and discovered that it strongly 

influenced the accuracy of the final TM. Meanwhile, almost 

no other factors related to individual analyst qualities, their 

environment, and their approach to tracing had any 

significant influence. In this study, we focus on the link 

validation task and drill down into analyst actions using logs 

of their tracing activity. By having participants work with 

the same starting candidate TM, any variability in responses 

can be attributable to other factors.   

We identify three categories of factors that can influence 

analyst performance: (i) personal characteristics, (ii) 

environmental characteristics, and (iii) tracing behavior. 

These sets of characteristics are measured in different ways 

in the data we collected. These characteristics, however, are 

not independent. In particular, the tracing behavior of 

analysts can be motivated by both their personal 

characteristics and environmental factors. 

Among the personal characteristics of the participants, 

we look at their grade level, software engineering 

experience, tracing experience, and confidence in tracing. 

Environmental characteristics in our study are essentially 

the study dataset and the study location/group. Logs and 

post-study surveys allow us to extract information about the 

tracing behavior of the participants. In this work we 

consider four tracing behaviors: time to complete the tracing 

task, link selection strategy, use of feedback, and average 

number of links viewed per high-level element. 

These motivations lead to the following questions: 

 

RQ1:  How do analysts creating the final TM perform using 

these new measures? 

RQ2:  What are statistically significant factors that affect 

analyst performance? 

RQ3:  Do better-performing analysts exhibit certain trends 

using these new measures? 

RQ4:  How do tracing behaviors affect the results of the 

tracing task? 

IV. STUDY DETAILS 

This section describes instrumentation, datasets, participants, 

study design, and data collection for the study.  

A. Instrumentation 

To address the research questions in the previous section, 

an experimental tool called SmartTracer was created to log 

participant actions while performing a tracing task. Fig. 1 

shows a screenshot of SmartTracer. SmartTracer presents a 

set of high-level documents (HDs) and a set of low-level 

documents (LDs) to the participant, allowing them to make 

decisions on each retrieved pair of documents. SmartTracer 

also allows the participant to make a decision on whether an 

HD is satisfied by the linked LDs. The simple user interface 

is designed to allow the participant to concentrate on the task 

of making decisions on trace links. 

A “Recalculate” button in the tool allows the participant 

to use positive feedback they’ve already given to reorder the 
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LDs. The Rocchio feedback algorithm [19] with parameters 

α=1, β=1, γ=0 is used in SmartTracer, meaning that the full 

term weights of links provided through positive feedback 

(β=1) are used in the feedback calculation. Negative 

feedback (γ=0) is not used as studies have shown that 

standard relevance feedback techniques perform poorly with 

negative feedback [20, 21]. After the LDs are reordered, the 

next undecided LD is shown to the participant. The 

participant can choose not to use the “Recalculate” button 

and proceed to the next document in the list by clicking on 

the “Next” button or by directly clicking on another LD in 

the list. SmartTracer records a number of actions that can be 

performed by the participant: select an HD or LD, decide on 

an HD or LD, and press the recalculate button.  SmartTracer 

also records a timestamp for each individual action.  

 
Figure 1.  Screenshot of SmartTracer. 

B. Datasets 

Two datasets are used in the study. The first is a set of 42 

functional requirements (FRs) and 89 software requirements 

(SRs) for open source web archive file manipulation tools 

called WARC1. Eighteen (18) FRs that have two or more 

relevant SRs and all 89 of the SRs are used for the study. The 

excluded FRs have either one relevant SR that is phrased 

roughly the same as the FR or do not have any relevant SRs. 

The candidate TM contains 1535 links with 100% recall and 

3.6% precision. The answer set contains 55 links. FRs are 

used as HDs while SRs are used as LDs. 

The second dataset consists of 123 operational 

requirements (ORs) and 503 system specifications  

(SSs) for an Unmanned Aerial Vehicle Tactical Control 

System (UAVTCS)2. A subset of 20 ORs and 264 SSs is 

used for the study. The candidate TM contains 4621 links 

with 100% recall and 1.8% precision. The answer set 

contains 81 links. ORs are used as HDs while SSs are used 

as LDs. 

Candidate TMs are generated using a vector space model 

with term frequency and inverse document frequency 

weighting. The original TMs included in both datasets were 

revised by multiple graduate and undergraduate students 

                                                           
1 http://code.google.com/p/warc-tools/ 
2 http://www.fas.org/irp/program/collect/uav_tcs.htm 

until full consensus was reached on each link in the answer 

set. The original authors of the artifacts were not available to 

provide feedback on the revisions. 

C. Participants 

A convenience sampling procedure is used to recruit 

study participants. Participants are mostly junior- and senior-

level undergraduate and graduate students in computer 

science from the University of Kentucky (UK) and graduate 

students in computer science from DePaul University and 

Cal Poly.  The graduate students at UK and DePaul are 

mostly part-time graduate students that work full time in 

industry. Most graduate students at Cal Poly are full-time 

students with prior experience in industry through part-time 

or full-time employment or summer internships. The study 

was conducted during regular class time in a lab for three 

groups at UK. Participants at DePaul and Cal Poly were 

given instructions in a group setting but performed the 

tracing task on their own time. 

D. Study Design 

Table I presents the distribution of participants and 

datasets for the study. Participants were given the same 

starting candidate TMs. Participants were blocked on grade 

level (graduate and undergraduate) and dataset (WARC and 

UAVTCS) to reduce the effects of those factors on the 

dependent variables in Table II. Recall is not included as a 

dependent variable as it is the product of potential recall and 

sensitivity. A fourth university was to participate in the study 

(using the UAVTCS dataset) but was unable to recruit 

enough student participants, resulting in the unbalanced 

study groups. Almost twice as many graduate students 

worked with the WARC dataset compared to the UAVTCS 

dataset.  

TABLE I.  PARTICIPANT INFORMATION 

Location # of participants Dataset 

University Y Group A (grad) 6 WARC 

University X Group B (und) 10 WARC 

University Z Group E (grad) 8 WARC 

University X Group C (und) 15 UAVTCS 

University X Group D (grad) 8 UAVTCS 

TABLE II.  DEPENDENT VARIABLES 

Variable Scale 

Potential recall Ratio 

Sensitivity Ratio 

Precision Ratio 

Effort distribution Ratio 

 
Table III presents independent variables used in the 

study. Software engineering (SE) experience is based on the 
number of SE courses taken in college and industry 
experience. Tracing experience is based on the number of 
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tracing tasks performed to date. Confidence in tracing is a 5-
point Likert scale of the participant’s confidence in 
performing the tracing task with one being the lowest and 
five being the highest.    

TABLE III.  INDEPENDENT VARIABLES 

Variable Abbreviation Scale 

Grade Level Grade Nominal {Undergrad, Grad} 

Software Engineering 

Experience 
SEExp Ordinal {0, 1, 2} 

Tracing Experience TRExp Ordinal {0, 1, 2} 

Confidence in tracing Confidence Ordinal {1, 2, 3, 4, 5} 

Dataset Dataset Nominal {WARC, UAVTCS} 

Location Location Nominal {UK, CP, DP} 

Time to perform 

tracing task 
Time Ratio {Minutes} 

Link Strategy LinkStrategy Nominal 

Level of relevance 

feedback 
Feedback Ordinal {0, 1} 

Average number of 

links viewed 
LinksViewed Ratio {Links} 

E. Data Collection 

Prior to the study, participants were given a pre-study 

survey with questions regarding their software engineering 

background, prior software engineering classes taken, their 

tracing experience, as well as an assessment of their 

confidence in performing the tracing task. Each participant 

was given a user ID to identify them in the study. Each 

participant was given a short training session on how to use 

the tracing tool. The overall goal of the study was explained 

and instructions were given for them to be mindful of how 

they perform the task. 

After completing the training, participants at University 

X were given 45 to 60 minutes to complete the tracing task. 

Upon completing the tracing task, participants submitted the 

final TM and trace logs. The logs track the time spent on 

each action and record the number of feedback recalculations 

per HD. Participants at University Y and Z performed the 

task on their own time. 

A post-study survey was given after completing the task, 

asking each participant to record: their overall tracing 

strategy, when they decided to stop looking for additional 

links, feedback on what additional tool features might be 

useful, and their confidence in performing tracing after 

performing the task. 

1) Data collection for RQ1 and RQ3: Potential recall, 

sensitivity, recall, precision, effort distribution, and final 

TM size are calculated at each participant’s decision point. 

Snapshots of participant decisions are captured at the 

nearest five-minute mark with the time of the last decision 

rounded down to the nearest five-minute mark to plot the 

charts in Figs. 3 and 4. 

2) Data collection for RQ2: Pre-study surveys are 

reviewed and coded into the scales in Table III. The level of 

relevance feedback is coded based on whether or not 

participants consistently used the “Recalculate” button. 

3) Data collection for RQ4: Trace logs and post-study 

surveys are analyzed to identify strategies used by 

participants and compared with data collected for RQ1. 

V. THREATS TO VALIDITY 

Threats to conclusion validity are issues that affect the 
credibility of the conclusions reached from the results. A 
possible Hawthorne effect (change in behavior when one is 
being observed) was introduced when participants were told 
that their actions were being recorded and that they were to 
be mindful of how they performed the tracing task. The 
small number of participants per group possibly limits the 
significance of the results, which is partially mitigated by 
running the study at multiple sites.  

Threats to internal validity relate to whether the trends 
we are seeing are indeed causal. Explaining the study 
procedures and having the participants perform the tracing 
task in a single session possibly influences the results of the 
study, partially mitigated by having participants in two of the 
three locations perform the task on their own time. 

Threats to construct validity involve questions of whether 
the study is designed to correctly measure what we set out to 
measure. A possible bias would be the use of a simple 
tracing tool that is not representative of full-featured tracing 
tools in use today. This decision was intentionally made to 
reduce possible nuisance factors that may arise from tool 
usage. A possible selection threat exists due to the selection 
of HDs used in both datasets in order to influence the 
performance of the relevance feedback mechanism. 

Threats to external validity deal with the generalization 
of results to other domains. Threats of this nature are 
mitigated through the use of two datasets from very different 
domains; a mission-critical system and a web content 
archival tool. The results of this study may not be 
generalizable to tracing tasks using other software 
engineering artifacts. Use of student participants does not 
significantly affect results as found in previous studies [3], 
though this study includes a number of participants who have 
industry experience. 

VI. RESULTS 

This section provides answers to the research questions 

formulated in Section III3. In group C, three participants 

were dropped from the study due to partial loss of results 

e.g., results were submitted without log files. 

A. Results for Research Question 1 

Table IV shows the average potential recall, average 
sensitivity, average recall, average precision, and average 
effort distribution by dataset and grade level. Each 

                                                           
3 Due to space restrictions, detailed tables representing results of analysis 

were not included. They can be found in the full version of the paper at 

http://selab.netlab.uky.edu/TechReports/techreport520-12.pdf 
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participant, on average, saw 79% of all true links in the 
candidate TM but only accepted 77% of them, resulting in 
the average final TM having 61% recall. This is a significant 
18 percentage point drop due to participants not reviewing 
some of the true links and rejecting some of the true links. 
The final TMs had an average 54% precision, meaning that 
46% of the links in the TM were false links incorrectly 
accepted by the participants. Participants viewed, on average, 
close to five times as many false links as true links.  

A significant difference in sensitivity exists between 

WARC and UAVTCS datasets (two-sample t-test, 

alpha=0.05, p=0.042), while the differences in other 

measures (recall, potential recall, precision, and effort 

distribution) are not statistically significant. A statistically 

significant difference in sensitivity and recall exists between 

grade levels (A, D, E vs. B, C), with undergraduates having 

higher averages (two-sample t-test, alpha=0.05, p=0.02 for 

sensitivity and p=0.004 for recall).  Between datasets, grade 

level had no statistically significant effect on any of the 

dependent variables for UAVTCS.  Grade level had a 

statistically significant effect on sensitivity, recall, and 

precision on WARC: graduates had higher average 

precision while undergraduates had higher average recall, 

which indicates that undergraduates tended to accept more 

links than graduates. For the UAVTCS dataset, however, 

graduate and undergraduate students performed similarly 

without any significant difference in any of the measures. 

TABLE IV.  STATISTICS FOR EACH PARTICIPANT GROUP 

Pot. Recall Sensitivity Recall Precision Eff. Dist.

Overall 0.79 0.77 0.61 0.54 4.8

Dataset

WARC 0.81 0.73 0.60 0.56 4.4

   Undergrad. (B) 0.83 0.78 0.65 0.46 5.8

   Grad. (A, E) 0.79 0.70 0.56 0.63 3.4

UAVTCS 0.78 0.82 0.63 0.51 5.3

   Undergrad. (C) 0.82 0.85 0.70 0.52 2.8

   Graduate. (D) 0.71 0.78 0.53 0.49 9.0

Grade Level

Undergrad. 0.83 0.82 0.68 0.50 4.2

   WARC (B) 0.83 0.78 0.65 0.46 5.8

   UAVTCS (C) 0.82 0.85 0.70 0.52 2.8

Grad. 0.76 0.73 0.55 0.58 5.4

   WARC (A, E) 0.79 0.70 0.56 0.63 3.4

   UAVTCS (D) 0.71 0.78 0.53 0.49 9.0
 

B. Results for Research Question 2 

We observed differences in analyst performance based 

on environmental factors: the combination of the dataset 

they were working with and, for WARC, their specific 

group. Among the personal characteristics of participants, 

grade level had statistically significant effect on participant 

performance. Additionally, for the UAVTCS dataset, 

tracing experience, when controlled for software 

engineering experience and post-study tracing confidence, 

had a significantly negative effect on sensitivity. 

Statistical analysis of precision, time spent tracing, and 
effort distribution revealed a significant relationship between 
those three measures. Multiple regression showed that when 
considering both datasets, time to trace and effort 
distribution jointly explain 41.6% of precision (with r2

adj = 
38.7), which is statistically significant. A significant negative 
correlation with precision exists between both time to trace (-
0.52) and effort distribution (-0.57).  

Looking at individual datasets, however, provided some 

additional insight. For the WARC dataset, multiple 

regression showed effort distribution to be significant for 

precision (r2 = 36.7, r2
adj = 30.6) when controlling for time. 

At the same time, when controlling for effort distribution, 

time spent tracing was not a significant influence on 

precision. For UAVTCS, the situation was reversed.  

Controlling for time, multiple regression showed effort 

distribution to be not significant for precision, while 

controlling for effort distribution, time spent tracing was a 

significant influence. We observed a similar discrepancy 

between graduates and undergraduates. For graduates, 

multiple regression showed effort distribution to influence 

precision significantly when controlling for time (r2 = 58.1, 

r2
adj = 52.9), while time was not a significant influence on 

precision.  For undergraduates, the opposite held. 

We observed that on the WARC dataset, the increase in 

the number of observed links and thus the decrease in 

precision primarily came from participants who viewed 

more false candidate links, but it was not affected by how 

long the participants worked on the tracing task.  On the 

other hand, for UAVTCS dataset, increase in the number of 

links viewed and decrease in precision primarily came from 

participants electing to spend more time viewing links, but 

not necessarily viewing more false candidate links 

percentage-wise. Similarly, graduates decreased their 

precision whenever they wound up viewing more false 

candidate links, but not when they worked longer.  

Undergraduates decreased their precision with time spent 

tracing, but not with how many more false candidate links 

they saw. 

C. Results for Research Question 3 

Fig. 2 is a matrix visualization of the decisions that 

participants made on true links for both datasets, allowing us 

to explore individual participant behavior. Each row 

represents a participant and each column represents a true 

link in the candidate TM (20x81 for UAVTCS, 24x51 for 

WARC). True links that were never seen are marked in black 

and true links that were seen but rejected are marked in gray. 

The remaining ‘white space’ represents true links that were 

correctly marked.  

For the UAVTCS dataset, twelve links were never seen 

by more than half of the participants, of which three links 

were never seen by all participants, and one link was only 

seen by one participant (as indicated by black vertical line 

segments). Most of these links had low weights and the HD 

in each of these links was also linked to a number of other 
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LDs that fully satisfied each respective HD. One participant 

did not see more than 90% of the true links and another 

missed about 45% of the true links (both from Group D). 

Both participants spent most of their time on a few HDs and 

responded in the post-study survey that they did not feel 

sufficiently trained on the task. Two other participants each 

did not see about 25% of the true links but the missing links 

were spread out over the dataset (as indicated by black 

horizontal line segments). The logs show that both 

participants viewed an average of 6-7 LDs per HD, missing 

any additional links further down the list. These twelve links 

and four participants together account for about 18% out of 

the 22% of lost potential recall.  

 
For the WARC dataset, all true links were seen by at 

least one participant, but six of those links were never seen 

by more than half of the participants (also due to the same 

reason as the twelve links in UAVTCS, although some were 

somewhat related). Three participants did not see more than 

half of the true links and two participants did not see about 

35% of the true links (also due to viewing anywhere from 4-

8 LDs per HD). Five participants rejected at least one-third 

of the true links that they saw, and fourteen true links were 

rejected by at least 25% of the participants. Most of these 

rejections were because the LDs in each link were only 

somewhat relevant to their respective HDs, causing some 

participants to waver in their decision.  

Fig. 3 shows individual participant performance on the 

WARC dataset by group on a lattice chart, tracking potential 

recall, distribution and TM size (on secondary vertical axis) 

on the lower cell at five-minute intervals.  The number of 

links in the answer set is represented as a line intersecting 

each bar representing TM size at each time interval. 

Participant results are sorted by increasing TM size.  

For example, participant B4 had about 5% recall and 

65% precision five minutes into the tracing task and 

correctly identified all the true links seen up to that point. 

Thirty minutes into the task, recall went up to about 30% 

while precision dropped to about 30% as well. At about 50 

minutes (at the end of the task), recall went up to 60%, 

precision increased to about 40%, but potential recall was 

about 90%, i.e., the participant missed about 30% of the true 

links they saw (66% sensitivity). Effort distribution steadily 

increased but leveled off half way through the tracing task, 

coinciding with the increased recall and decreased sensitivity 

(seeing more true links but rejecting some of them as well). 

Similarly, Fig. 4 shows participant performance on the 

UAVTCS dataset. Participant D8 achieved about 5% recall 

and 60% precision five minutes into the task with 100% 

sensitivity. After 30 minutes, precision and sensitivity 

plunged to about 20% and 30%, respectively. Additional log 

analysis revealed that the participant spent about ten minutes 

on the first two HDs looking through many LDs, as indicated 

by the spike in effort distribution. The participant then 

started skimming through the remaining HDs, as indicated 

by the plunge in sensitivity, adding false links into the final 

TM, as indicated by the plunge in precision, before spending 

another 20 minutes on the first two HDs, as indicated by the 

stagnant recall. The second half of the time saw a sharp 

increase in recall as the participant went through the 

remaining HDs much faster, accepting many of the true links 

seen earlier but continuing to accept many false links, as 

indicated by increasing recall and sensitivity while lowering 

precision. The participant ended the task with a final TM 

containing 246 links with about 80% recall, 94% sensitivity, 

and 30% precision. A number of participants showed similar 

trends where significant differences between potential recall 

and recall early in the tracing task (B1, E2, D4, D8) can be 

attributed to participant actions of reading through each HD 

first before starting to mark links. This can be seen mostly 

when sensitivity starts low or drops suddenly before 

increasing steadily as the task progresses. 

WARC participants who performed well (A4, B3, E2) 

averaged about 75% recall, 59% precision, and 83% 

sensitivity while UAVTCS participants who performed well 

(D1, C1, C2) also averaged about 76% recall, 58% precision, 

and 84% sensitivity. These participants increased recall at a 

consistent pace, while keeping other measures stable. 

In Fig. 4, participants D2 and D6 did not complete the 

tracing task as they spent most of their time on the first few 

HDs, as indicated by the rapid increase in effort distribution. 

Participant D2 changed strategies about 35 minutes into the 

task (effort distribution peaked and started coming down) 

and managed to achieve about 50% recall at the end of the 

task. Participant D6, however, spent almost all of their time 

reviewing false links. Both participants had low precision 

from adding many false links into the final TM. 

D. Results for Research Question 4 

SmartTracer directs its users to consider candidate links 

by HD, consistent with other tracing software used in 

similar studies [4, 10, 22]. We observed that participants 

articulated a number of different strategies for selecting 

links. The observed strategies are briefly outlined below. 

Figure 2. Matrix visualization of participant true link decisions 
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First good link. Participants looked through the list of 

candidate links associated with a single HD only until they 

discovered the first good link (one they think satisfies the 

HD) before switching to the next HD. 

Accept-focused. Participants tended to only submit accept 

decisions for candidate links, not bothering to reject links in 

SmartTracer, possibly understanding that not accepting a 

link is essentially equivalent to rejecting it. 

Figure 4. Participant performance over time on UAVTCS. 

Figure 3. Participant performance over time on WARC. 
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Preview. Participants previewed their task by reading 

through the list of HDs and some LDs before starting to 

make any decisions on links. 

Iterative. Participants revisited most of the HDs more than 

once to review or change their decisions. 

Some participants used multiple strategies. For some, a 

distinct strategy could not be established (Unknown). We 

also looked at whether participants used feedback 

(“Recalculate” button) during their work.  Participants were 

divided into three categories based on the average number 

of links per HD they considered: less than 10, 10 to 20, and 

more than 20. 

Table V presents the results of the study broken down by 

participant strategy. For example, two participants using the 

First good link strategy achieved, on average, 40% potential 

recall, 22% recall, 81% precision, and 1.9 effort distribution. 

This strategy led to fast task completion (average 15 

minutes) but at the cost of not observing a significant number 

of true links. On the other hand, participants who used 

multiple strategies were able to achieve high potential recall 

(87% on average) with moderate (4.4. on average) effort 

distribution.  

A significant difference in potential recall and recall 

exists between those that used feedback and those who 

didn’t, but most of the difference can be attributed to the two 

participants who used the First good link strategy and the 

participant who only observed two HDs (neither used 

feedback.) When comparing participants by the average 

number of links viewed, the 10-20 strategy was most 

common and achieved high potential recall and moderate 

effort distribution.  

TABLE V.  RESULTS FROM TRACING STRATEGIES 

Strategy 
Pot. 

Recall 
Recall Precision 

Eff. 

Dist. 

# of  

particip. 

Time 

Spent 

Link Selection 

  First good link 40% 22% 81% 1.9 2 15 

  Accept-focused 79% 65% 64% 2.3 4 30 

  Preview 81% 47% 67% 3.4 2 40 

  Iterative 85% 67% 53% 2.9 4 34 

  Multiple 87% 68% 60% 4.4 5 43 

  Unknown 80% 62% 49% 5.9 27 44 

Feedback 

  Used feedback 84% 66% 53% 4.3 31 43 

  No feedback 68% 47% 56% 5.9 13 33 

Links Viewed 

  Under 10 67% 46% 72% 1.8 11 28 

  10-20 87% 67% 51% 3.9 26 42 

  20+ 72% 60% 38% 12.6 7 54 

VII. OBSERVATIONS 

From the results of the previous research questions, we 

observed that links are more likely to be missed when there 

are multiple LDs for an HD and when some of those LDs 

fully satisfy the HD. This possibly causes participants to 

decide at some point that they have enough LDs to mark the 

HD “satisfied.” This is especially characteristic of those who 

never investigate far down the ranked candidate link list. 

This insight may provide guidance for when other software 

artifacts are generated from requirements. As a software 

artifact is generated to satisfy a requirement, a search for 

other similar artifacts would determine if there is a need for 

the additional artifact or a modification of an existing artifact 

will suffice.  

We also observed that participant decisions fell into three 

categories: obvious true links, obvious false links, and 

troublesome gray links, i.e., links that seem to cause 

significant amount of deliberation for the analysts. Without 

proper training and direction, analysts may spend too much 

time on these links and may vary in how selective they are in 

determining what constitutes a link, possibly because they do 

not really know how the TM is to be used. The issue of gray 

links is also a concern for researchers when building answer 

sets (Does the answer set include gray links or not?). We 

posit that an analyst that has knowledge of how the final TM 

is going to be used would be better equipped to reject or 

accept gray links they find to trigger the appropriate 

successor activities to resolve those concerns. One way to 

study these decisions would be to have a third decision 

option that separates these gray links from the “Yes it’s a 

link” and “No it’s not a link” decisions. We can then 

measure how accurate the analyst is at making decisions on 

links that they think are obvious versus links they think are 

“suspect.”  

One of the things we can do about the analyst other than 

to embrace them is to change them [1]. When TM usage is 

defined, analysts can be trained to produce final TMs that fit 

the desired final TM characteristic based partially on the 

final TM size. A final TM size that is close to the true TM 

size will have nearly equal precision and recall. Given an 

estimate of the true TM size (based on historical data or a 

starting estimate), analysts may be more aware of their 

selectiveness when adding links into the final TM, adjusting 

the thresholds they apply to links as they proceed through the 

tracing task. Learning and applying tracing strategies to 

tracing tasks is another way to change the analyst. Once we 

know how tracing strategies affect results, analysts will be 

able to apply appropriate strategies for the desired tracing 

task outcomes.  

VIII. CONCLUSIONS AND FUTURE WORK 

An important step in improving traceability practice is to 
understand how analysts work with TMs. In this study, we 
presented a set of measures that focus on the quality of the 
analyst working to produce final TMs, visualizing and 
analyzing analyst trace logs to detect trends. We measured 
how environmental, personal, and behavioral factors affected 
results, finding significant interactions between time spent on 
tracing, effort distribution, and precision. We visualized 
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analyst trace logs to show where analysts make correct and 
incorrect decisions on true links, and then analyzed the 
possible causes for the links that were never seen and the 
links that were rejected. Actual analyst tracing strategies 
obtained from trace logs provide insight into how analysts 
performed the tracing task.  

Based on these results, we now have an initial measure of 
the imperfect analyst that misses roughly one out of every 
four true links they observe (77% sensitivity). Future studies 
using relevance feedback will measure how simulated 
techniques fare using the tracing strategies mined from trace 
logs along with imperfect feedback to validate technique 
effectiveness. Analysts are more likely to miss links when 
TMs have multiple relevant LDs per HD. Future studies will 
focus on ways to encourage the analyst to continue looking 
for these additional links. Future studies will also include the 
investigation of a “gray link” decision as a possible decision 
during the tracing task where the analyst is given guidance 
on final TM usage. There is still much to be done in the 
study of the analyst, and further findings will continue to 
lead to the improvement of tracing as a practice. 
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