1708.08660v1 [cs.SE] 29 Aug 2017

arxXiv

Why Feature Dependencies Challenge the
Requirements Engineering of Automotive Systems:
An Empirical Study

Andreas Vogelsang
Institut fiir Informatik
Technische Universitidt Miinchen
Boltzmannstr. 3, 85748 Garching, Germany
vogelsan@in.tum.de

Abstract—Functional dependencies and feature interactions in
automotive software systems are a major source of erroneous and
deficient behavior. To overcome these problems, many approaches
exist that focus on modeling these functional dependencies in
early stages of system design. However, there are only few
empirical studies that report on the extent of such dependencies
in industrial software systems and how they are considered in
an industrial development context. In this paper, we analyze
the functional architecture of a real automotive software system
with the aim to assess the extent, awareness and importance
of interactions between features of a future vehicle. Qur results
show that within the functional architecture at least 85% of the
analyzed vehicle features depend on each other. They furthermore
show that the developers are not aware of a large number
of these dependencies when they are modeled solely on an
architectural level. Therefore, the developers mention the need
for a more precise specification of feature interactions, e.g., for
the execution of comprehensive impact analyses. These results
challenge the current development methods and emphasize the
need for an extensive modeling of features and their dependencies
in requirements engineering.

Index Terms—Functional specifications, feature interaction,
model-based development, automotive, empirical studies

I. INTRODUCTION

The behavior of software-intensive embedded systems is
characterized by its features and functions. Many model-
based specification techniques for software-intensive systems
utilize this notion of a system feature in order to structure a
specification (e.g., [Ll], [2], [3]). Although the notions in the
different approaches differ slightly and sometimes synonyms
such as “system function”, “feature”, or “user function” are
used, the approaches agree on structuring a specification into
subparts that contain extracts of the functionality as it is
perceived by the user or any other environmental system. We
will call these parts system features or vehicle features in the
remainder of the paper.

Dependencies and interactions between these features are
a major challenge in the industrial development of software-

This work was partly funded by the German Federal Ministry of Education
and Research (BMBF), grant “FoMoStA, 011S12028”.

Steffen Fuhrmann
BMW Group
Driving Dynamics

Dimensioning Functions Driving Dynamics and Driver Assistance

Knorrstr. 147, 80788 Miinchen, Germany
steffen.fuhrmann @bmw.de

intensive systems [4]. They increase the complexity of the
system and frequently entail unwanted and deficient system
behavior [S]]. Nevertheless, feature interactions are rarely con-
sidered in specifications of industrial systems. This leads to
increased efforts in late development phases like integration
or system test when these errors typically are revealed [S]]. We
use the terms functional dependencies and feature interaction
synonymously in this paper.

These dependencies play an important role especially in the
development of multifunctional systems such as automotive
software systems [6], [7]). However, dependencies induced
by multifunctionality are a major challenge even for the
development of embedded systems in general.

In order to handle functional dependencies, many ap-
proaches exist, which model such dependencies in early phases
of the development process, i.e., in the specification or the
system design (e.g., [LI, [2], [8]).

A. Problem Statement

Existing approaches towards modeling of functional de-
pendencies have been validated in specific examples and
applications. However, there is little empirical data on the
extent and distribution of such dependencies in industrial
software systems and their consideration in an industrial
development context. It is therefore not possible to thoroughly
assess the impact and influence of functional dependencies and
feature interactions on the development of modern software
systems. A comprehensive understanding of the awareness and
importance of such dependencies in system development is
further mandatory to evaluate existing modeling approaches.

In a previous study concerning the extent and characteristics
of functional dependencies in automotive software systems,
we observed a large number and a complex nature of such
dependencies [9]. For the further investigation of functional
dependencies and the validation of our earlier results, larger
systems with a more networked architecture should be evalu-
ated. Furthermore, the quantitative analysis of our former study
neglects a qualitative assessment of the feature interactions. A

qualitative study is thus necessary to discover the impact on
development methods and processes.

B. Research Objective

The purpose of our two-phase, sequential mixed methods
study is to obtain quantitative results from a sample and then
follow up with a few individuals to explore those results in
depth. In the first phase, a quantitative research question will
address the extent of feature dependencies in a modern auto-
motive software system. We aim at the identification of value-
based dependencies between vehicle features. We therefore
extract data flow dependencies from the functional architecture
of a software system and assess them concerning their value on
a vehicle level. In the second phase, qualitative interviews will
be used to probe the awareness of the found dependencies and
discover the importance for automotive software developers.

C. Contribution

We analyzed the functional architecture of a real automotive
software system in order to contribute
« data on the amount and distribution of functional depen-
dencies between vehicle features,
e an evaluation of how dependencies are considered
throughout the automotive development process.
The results of our study motivate the use of more extensive
modeling techniques for features and their dependencies.

D. Context

The study focuses on automotive software systems and
was executed at the BMW Group, a German manufacturer
of premium automobiles and motorcycles. We analyzed the
functional architecture of driving dynamics and driver assis-
tance systems that will be implemented in a future sports
utility vehicle (SUV). The functional architecture consists of
vehicle features, which are grouped into certain feature groups
building a hierarchy of vehicle features. The atomic vehicle
features in this hierarchy are realized by a network of logical
components that we refer to as leaf functions.

In our context, vehicle features and leaf functions build the
central elements for the specification of functional require-
ments. Subject to their level of detail, requirements must apply
either to the definition of a vehicle feature or a leaf function.
Dependencies within the functional architecture therefore en-
tail dependencies between functional requirements.

Within the driving dynamics and driver assistance domain,
an in-house developed database supports the design and im-
plementation of the functional architecture. Based on this data
backbone, a model-based development approach ensures the
realization of the functional architecture by program code,
sensors and actuators. For the analyses in our study, we used
a specific dataset that we extracted from the described data
backbone.

II. RELATED WORK

Except from our previous study [9] and to the best of our
knowledge, there is no comparable work on empirical data

or analyses of realistic automotive or embedded systems with
the focus on dependencies between system features. However,
there is a lot of work on approaches that try to model or specify
such dependencies.

Functional dependencies and feature interactions have
been extensively investigated in the telecommunication do-
main [10]. Jackson and Zave [1] introduced Distributed Fea-
ture Composition (DFC) as a modular, service-oriented archi-
tecture for applications in the telecommunication domain. DFC
relies on the notion that a user service request can be composed
of a set of smaller features, which are arranged in a pipes-
and-filters architectural style. This architecture is especially
designed for modeling interactions between different features.

Classical approaches like UML use cases, activities or se-
quences [11] specify system features more or less in isolation.
Dependencies between system features are neglected. This
makes it hard to reason about functionality that arises from
the interplay of multiple system features.

A well-known specification technique for requirements is
the software cost reduction (SCR) method [8]. In SCR, re-
quirements are specified by a set of specification tables.
The developers of SCR also noticed that understanding the
relationship between different parts of a specification can be
difficult, especially for large specifications [12]]. Therefore, a
Dependency Graph Browser in their tool displays the depen-
dencies among the variables in a given specification.

III. STUDY DESIGN

In this section, we formulate the research questions, describe
the study object as well as the data collection and analysis
procedures. We conclude with a description of validity proce-
dures.

A. Research Questions

The study examines the amount of functional dependencies
in automotive software systems and how dependencies are
handled in the development process. We assess the awareness
and importance of functional dependencies to justify the
application of feature modeling approaches. We structured our
study with the help of three research questions.

RQ 1: What is the overall extent and distribution of depen-
dencies between vehicle features?

The relevance of functional dependencies can be motivated
inter alia by an analysis of the overall number of interactions.
We define a dependency between vehicle features as an
influence on the behavior of a vehicle feature by the state
or data of another vehicle feature.

RQ 2: To what extent are developers aware of functional
dependencies?

Developers of automotive systems are not necessarily aware
of existing dependencies and interactions. We want to identify
existing feature dependencies that are unknown to developers
as well as known dependencies that are not represented within
the functional architecture and assess them with regard to their
plausibility.

—

-
|
|
|
|
|
|

—d

> i

o

Fig. 1. The leaf functions (rectangles) are connected by data channels (black
arrows) and form a functional architecture of the system (outer rectangle).
Vehicle features crosscut this architecture by the set of leaf functions that
contribute to their realization (dashed forms).

RQ 3: How important is a comprehensive understanding of
functional dependencies and feature interactions?

We have to investigate existing feature interactions concern-
ing their importance for the development process and design
decisions in order to reason an extensive modeling of feature
interactions.

B. Study Object

In our study we analyzed an automotive software system
of a future vehicle and especially its functional architecture.
Within the functional architecture we focused on the driving
dynamics and driver assistance domain. The system comprises
94 vehicle features and a total of 325 leaf functions. Leaf
functions may be used for the realization of more than one
vehicle feature.

Leaf functions describe the realization/implementation of
a vehicle feature in a purely logical fashion, i.e. without
any information about the hardware the system runs on. A
network of leaf functions describes the steps that are necessary
to transform the input data into the desired output data. An
example for a system that consists of 3 vehicle features, which
are realized by a network of 6 leaf functions is illustrated in
Fig. [I] The leaf functions are afterwards assigned to specific
software components, which execute the behavior of the leaf
functions. As a final step, these software components are
deployed to a set of electronic computing units.

The relation between a vehicle feature and a leaf function
in the context of this study is the following: A vehicle feature
is realized by a set of leaf functions that are arranged in
a data-flow network. A leaf function can contribute to the
realization of a set of vehicle features. Thus, there is an n : m
relation between vehicle features and leaf functions. The set
of all leaf functions and their connections form the functional
architecture of the system. The vehicle features crosscut this
architecture by the set of leaf functions that contribute to their
realization (see Fig. [T).

C. Data Collection Procedures

For the reliable acquisition of data, we need a precise
definition of what we consider as a dependency between
vehicle features. Our initial informal definition states that a

- LFs LF, %—»
 VF,

Fig. 2. The vehicle feature VF depends on the vehicle feature VF;, since
the leaf function LF; (part of VF;) sends values to the leaf function LF
(part of VF'2). Thus, the behavior of VF2 depends on data of VF;.

Fig. 3. Vehicle features VF'; and VFy share the leaf function LF's. This
might indicate a dependency between the vehicle features. However, this
cannot be verified without further knowledge about the behavior of LF's.

vehicle feature VF; depends on another vehicle feature VFy
if its behavior is influenced not only by its primary inputs
but also by the state or data of VF. Therefore, the vehicle
features have to communicate with each other. In our study,
we distinguish between two different ways of communication
between vehicle features.

1) A leaf function that is part of one vehicle feature has a
communication channel to a leaf function that is part of
another vehicle feature (see Fig. 2).

2) A leaf function is related to two or more vehicle features,
i.e., two or more vehicle features share a leaf function
(see Fig. [3).

However, a real dependency between two vehicle features
cannot be derived definitely from the shared use of a leaf
function. In that case, further knowledge about the concrete
behavior of the leaf function is needed in order to identify the
possible dependency. In the example of Fig. [3] the influence
of the data transmitted over the channel LF; — LF3 on the
data transmitted over the channel LFy — LF5 can only be
assessed with further knowledge about the behavior of LF';.

As we had no information about the precise behavior of
leaf functions in the context of our study, we focused on
dependencies of type 1, where a leaf function of one vehicle
feature has a communication channel to a leaf function of
another vehicle feature.

Based on this definition of a dependency between vehicle
features, we can extract a vehicle feature graph from the

N

Fig. 4. The vehicle feature graph extracted from the functional architecture

of Fig.

functional architecture, where each node is a vehicle feature
and a directed edge indicates a dependency between two
vehicle features. The resulting vehicle feature graph for the
example of Fig. [I]is illustrated in Fig. f]

In our study, we extracted the vehicle feature graph by
means of a simple tool, written in Java. The tool parses an ex-
ported data set from the company’s data backbone containing a
list of features associated with a set of leaf functions. The tool
transforms the data into a graph structure, extracts the feature
dependencies according to the definition given in this section,
and finally outputs a .csv file with the found dependencies. The
extraction was performed fully automated and the complexity
of the algorithm is quadratic in the number of vehicle features
and leaf functions. For the observed system, the extraction
took around 3 seconds on a standard laptop.

The second part of our study is based on four interviews
with feature experts from the BMW Group, who are involved
in the design of the functional architecture.

For RQ 2, we confronted the experts with a sample of
feature dependencies from their area of responsibility found
by our analysis. We let the experts classify these dependencies
into the following categories:

« plausible/implausible: A dependency is considered as
plausible if the expert finds a functional or physical
explanation for this dependency. If the expert has no
functional or physical explanation for this dependency,
it is considered as implausible.

« known/unknown: A dependency is considered as known
if the expert was aware of this dependency prior to the
interview. If the expert was not aware of this dependency
prior to the interview, it is considered as unknown.

Overall, we discussed 89 feature dependencies in depth.

For RQ 3, each interview transcript was analyzed through
a process of coding: breaking up the interviews into smaller
coherent units (sentences or paragraphs), and adding codes
(representing key characteristics) to these units. For this pur-
pose, we asked the experts for experiences in their work
where misconceptions about feature interactions led to errors
and increased efforts in the system design. This part of the
interview should provide information about the need for an
extensive modeling of feature interactions.

D. Analysis Procedures

The procedure for the analysis of the functional architecture
varies for the three research questions:

For RQ 1, we analyzed the vehicle feature graph in order
to assess the ratio of vehicle features that are dependent on
another vehicle feature and to count the number of incoming
and outgoing dependencies between vehicle features. We also
measured the dependency fan-in and fan-out as well as the
PageRank [13]] for all vehicle features on the vehicle feature
graph in order to see whether dependencies are distributed
equally or if certain vehicle features are more central than
others. Thus, we obtain information about the extent and
distribution of functional dependencies in real automotive
software systems.

For RQ 2, we counted the number and ratio of dependencies
for each combination of category values, leading to a 2x2
matrix with the two categories as dimensions. We especially
investigated the ratio of plausible feature dependencies as an
indicator for the validity of our quantitative study and the
ratio of known feature dependencies as an indicator for the
awareness of feature dependencies in general.

For RQ 3, we developed a coding system with 7 codes
structured into 3 categories. We assigned these codes to the
units of the interviews. Only codes that appeared in more than
one interview were considered for the study results.

E. Validity Procedures

We analyzed the system under investigation at a final stage
of the development process where it was already subject to
several architectural reviews and testing procedures. Therefore,
errors and misconceptions in the functional architecture can
nearly be ruled out. However, our analyses show that vehicle
features might differ in the way how they are modeled within
the functional architecture. To ensure validity we presented
and discussed the results with feature experts at the BMW
Group, who assessed the found dependencies concerning their
plausibility. The evaluation of RQ 2 and RQ 3 is based on
semi-formal interviews with feature experts from the BMW
Group. In order to get representative results from the interview
partners we selected one expert from each area within the
domain of driving dynamics and driver assistance. These areas
are: lateral, longitudinal and vertical dynamics as well as driver
assistance features. The experts were responsible for a number
of 12-46 features.

IV. STUDY RESULTS

In this section the results of the study are presented. They
are structured according to the defined research questions.

A. Extent and Distribution of Dependencies (RQ 1)

Analyzing the vehicle feature graph, we found 1,451 de-
pendencies between the 94 vehicle features. Only 9 out of
the 94 vehicle features were completely independent from any
other vehicle feature. 81 vehicle features were dependent on
another vehicle feature (i.e., had incoming dependencies) and
72 vehicle features had an influence on another vehicle feature
(i.e., had outgoing dependencies). Table [[] summarizes these
results. There were 234 different logical signals that caused
the dependencies.

TABLE I
EXTENT OF DEPENDENCIES IN THE VEHICLE FEATURE GRAPH

Number | Ratio
all VFs 94 100%
VFs with incoming dependencies 81 86.2%
VFs with outgoing dependencies 72 76.6%
VFs with incoming and outgoing dependencies 68 72.3%
VFs without dependencies 9 9.6%

TABLE I
DISTRIBUTION OF DEPENDENCIES IN THE VEHICLE FEATURE GRAPH

Dependencies Dependencies PageRank
(Ingoing) (Outgoing)
Maximum 48 53 5.81%
Median 3 11 0.72%
Minimum 0 0 0.28%

Fig. 5. Vehicle Features and their dependencies visualized as an Edge Bundle
View. The outer ring represents the hierarchy of vehicle features. Each dot on
the inside of the outer ring is an atomic vehicle feature. The lines indicate a
dependency between two features.

The distribution of the dependencies shows that depen-
dencies between vehicle features are distributed all over the
system. However, there are some vehicle features that are
more central in the sense that they have a large number of
dependencies to other vehicle features. Table [I] shows that
a vehicle feature depends on up to 48 other vehicle features,
whereas on the other side vehicle features have a maximum of
53 other vehicle features that they influence, which accounts
for 56% of the system features. Most of the features have at
least 3 features they depend on and have at least 11 features
they influence. The computation of the PageRank [13] gives
an idea about the “importance” of single vehicle features
and deviates by a factor of almost 20. This intermeshed
structure becomes particularly visible when illustrating the
dependencies as an Edge Bundle View [14] (see Fig. [5).

B. Awareness of Dependencies (RQ 2)

Table [T summarizes the results of the expert interviews that
we conducted in order to assess the plausibility and awareness
of the analyzed feature dependencies.

TABLE III
PLAUSIBILITY AND AWARENESS OF THE ANALYZED FEATURE
DEPENDENCIES (N=100)

’ H known ‘ unknown H sum ‘
plausible 41.0% 48.0% 89.0%
implausible 1.0% 10.0% 11.0%

| sum] 420% | 580% [100% |

The results indicate that our analysis produced reasonable
results as only 11% of the examined feature dependencies
were considered as implausible, i.e., the dependencies were
a result of our analysis but the experts considered them as
not correct or at least they were not able to give account
of them. Of the 100 feature dependencies that we examined,
42% were known to the experts and 58% were unknown.
Most of the feature dependencies that we examined were
considered as unknown but plausible, i.e., the experts were
not aware of the dependency between the features but when
examining the affected signals and leaf functions they found
reasonable explanations for them. One examined dependency
was considered as known and implausible as the expert were
aware of it but had no explanation why this dependency exists.

C. Importance of Dependencies (RQ 3)

Our interviews reveal that the knowledge about feature
dependencies is especially important for impact analyses on
features and signals. The experts for example mentioned:
“Feature dependencies are important for the assessment of the
complexity, especially when considering the impact of errors”
and “It is important to know who uses the signals that features
in my responsibility provide”. However, the interviews also
revealed several problems in the elicitation and revelation of
these dependencies. Two main reasons for that are incomplete
documentation and dependencies that arise from architectural
decisions. The experts said: “Many dependencies arise from
specific local signals that are provided by a central leaf
function and used by a lot of features” and “Dependencies
between features that are known to function correctly together
are not explicitly documented”. As a major potential benefit of
a rigorous documentation of feature dependencies, the experts
named the precise tracing of logical signals and architectural
decision to requirements. They said: “Tracing links between
requirements and architectural decisions would be very useful”
and “A back-link from logical signals to the requirements that
caused them would be beneficial”.

V. DISCUSSION
A. Threats to Validity

A threat to the internal validity is the fact that the analyzed
model is already a realization/implementation of the system
features. Dependencies might thus be a consequence of a
design decision made by a developer and not an integral
part of the system features itself. Another threat pertains to
the definition of dependency as given in this paper. Besides
the explicitly modeled dependencies that are in the focus of

this paper, there may also be dependencies between vehicle
features that occur when features are implicitly connected
through a feedback loop through the environment.

A threat to the external validity is that we performed this
study in a development and tooling context specific to the
Driving Dynamics and Driver Assistance department of the
BMW group. This context might not be transferable to other
companies or domains. However, from our experience, we
are confident that the definition of system features that are
implemented by a network of functional blocks is pretty much
standard in the development of automotive software systems.

B. Impact / Implications

The conclusions we draw point at a number of problems that
occur in today’s development of automotive software systems.
Current development processes handle vehicle features more
or less as isolated units of functionality [[6]. This has to some
extent historical reasons as the automotive industry managed
to make their different functionality as independent as possible
such that vehicles could be developed and produced in a highly
modular way. With the coming up of software-based functions
in the vehicle this independence disappeared [6].

Furthermore, our results show that developers consider the
knowledge about functional dependencies as important, espe-
cially for tracing purposes and impact analyses. Architectural
decisions hide and scatter these dependencies, which leads to
the large number of unknown feature dependencies as reported
in the last section. An interesting point is that the reasons for
feature dependencies that were considered as implausible can
also be related to architectural concerns. Leaf functions are
architectural elements, which are subject to reuse and thus
related to a number of features. Developers use leaf functions
without considering other vehicle features that might also
affect or be affected by this leaf function. The emerging feature
dependencies were, in most cases, considered as implausible.

Therefore, we argue that these dependencies need to be
modeled precisely on the level of vehicle features, still in-
dependent from any architectural design decisions (cf. [15]]).

C. Relation to Existing Evidence

The results of RQ 1 reflect the results of a study we have
performed with another automotive company, in which we
analyzed the software architecture of a truck [9]. In that study,
vehicle features showed a comparable extent of dependencies,
ie., at least 69% of the analyzed vehicle features depend
on other vehicle features or influence other vehicle features.
The analyzed software system of that study was smaller and
contained only 55 vehicle features.

Our results back up the challenges mentioned in [16] and
[6], where the authors state that features do not stand alone,
but exhibit a high dependency on each other, so that a vehicle
becomes a complex system where all functions act together.

VI. CONCLUSIONS AND FUTURE WORK

The results of this paper show that dependencies between
vehicle features pose a great challenge for the development

of automotive software systems. Not only that almost every
vehicle feature depends on and/or influences another vehicle
feature, we have also seen that modeling the dependencies on
an architectural level is insufficient for analyzing them, leading
to a 50% chance that a developer is not aware of a specific
dependency. In our study this was particularly striking when
the feature dependencies arose from architectural decisions.
Considering these conclusions we plan to further discuss our
results with the developers in order to integrate the modeling
of dependencies on the level of vehicle features. Therefore,
we have to specify features more precisely, for example by
annotating them with inputs and outputs, and define the de-
pendencies based on this notion of a vehicle feature (cf. [[15]).
We especially plan to integrate features into a feature hierarchy
and describe the dependencies between features by means
of a mode concept [17]. This structured specification models
dependencies independently from architectural decisions and
thus facilitates the modeling of feature interactions in require-
ments engineering.

REFERENCES

[11 M. Jackson and P. Zave, ‘“Distributed Feature Composition: A Virtual
Architecture for Telecommunications Services,” IEEE Trans. Software
Eng, vol. 24, no. 10, 1998.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software En-
gineering Institute, Carnegie Mellon University, Tech. Rep., 1990.

[3] B. Schitz, “Modular functional descriptions,” Electronic Notes in The-
oretical Computer Science, vol. 215, 2008.

[4] P. Zave, “Requirements for Evolving Systems: A Telecommunications
Perspective,” in 5th IEEE International Symposium on Requirements
Engineering. 1EEE Computer Society, 2001.

[5] S. Benz, “Generating Tests for Feature Interaction,” Ph.D. dissertation,
Technische Universitidt Miinchen, 2010.

[6] M. Broy, “Challenges in automotive software engineering,” in Proceed-
ings of the 28th international conference on Software engineering. New
York, NY, USA: ACM, 2006.

[71 M. Broy, 1. Kriiger, A. Pretschner, and C. Salzmann, “Engineering
Automotive Software,” Proceedings of the IEEE, vol. 95, no. 2, 2007.

[8] C. Heitmeyer, “Using the SCR* Toolset to Specify Software Require-
ments,” Industrial-Strength Formal Specification Techniques, 1998.

[91 A. Vogelsang, S. Teuchert, and J. Girard, “Extent and characteristics
of dependencies between vehicle functions in automotive software
systems,” in Modeling in Software Engineering (MISE), 2012 ICSE
Workshop on, 2012.

[10] M. Calder and E. H. Magill, Eds., Feature Interactions in Telecommu-
nications and Software Systems VI. 10S Press, 2000.

[11] M. Fowler and K. Scott, UML distilled - a brief guide to the Standard
Object Modeling Language (2. ed.). Addison-Wesley-Longman, 2000.

[12] C. L. Heitmeyer, J. Kirby, and B. G. Labaw, “The scr method for for-
mally specifying, verifying, and validating requirements: Tool support,”
in ICSE, 1997.

[13] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks and ISDN Systems, vol. 30, 1998,
proceedings of the Seventh International World Wide Web Conference.

[14] D. Holten, “Hierarchical edge bundles: Visualization of adjacency rela-
tions in hierarchical data,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 12, no. 5, 2006.

[15] M. Broy, “Multifunctional software systems: Structured modeling and
specification of functional requirements,” Science of Computer Program-
ming, vol. 75, no. 12, 2010.

[16] A. Pretschner, M. Broy, I. H. Kriiger, and T. Stauner, “Software
Engineering for Automotive Systems: A Roadmap,” in 2007 Future of
Software Engineering. 1EEE Computer Society, 2007.

[17] M. Broy, W. Damm, S. Henkler, K. Pohl, A. Vogelsang, and T. Weyer,
“Introduction to the SPES Modeling Framework,” in Model-Based
Engineering of Embedded Systems. Springer Berlin Heidelberg, 2012.

	I Introduction
	I-A Problem Statement
	I-B Research Objective
	I-C Contribution
	I-D Context

	II Related Work
	III Study Design
	III-A Research Questions
	III-B Study Object
	III-C Data Collection Procedures
	III-D Analysis Procedures
	III-E Validity Procedures

	IV Study Results
	IV-A Extent and Distribution of Dependencies (RQ 1)
	IV-B Awareness of Dependencies (RQ 2)
	IV-C Importance of Dependencies (RQ 3)

	V Discussion
	V-A Threats to Validity
	V-B Impact / Implications
	V-C Relation to Existing Evidence

	VI Conclusions and Future Work
	References

