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Abstract—Adaptive security systems aim to protect critical
assets in the face of changes in their operational environment.
We have argued that incorporating an explicit representation of
the environment’s topology enables reasoning on the location of
assets being protected and the proximity of potentially harmful
agents. This paper proposes to engineer topology aware adaptive
security systems by identifying violations of security requirements
that may be caused by topological changes, and selecting a set
of security controls that prevent such violations. Our approach
focuses on physical topologies; it maintains at runtime a live
representation of the topology which is updated when assets
or agents move, or when the structure of the physical space
is altered. When the topology changes, we look ahead at a
subset of the future system states. These states are reachable
when the agents move within the physical space. If security
requirements can be violated in future system states, a configu-
ration of security controls is proactively applied to prevent the
system from reaching those states. Thus, the system continuously
adapts to topological stimuli, while maintaining requirements
satisfaction. Security requirements are formally expressed using
a propositional temporal logic, encoding spatial properties in
Computation Tree Logic (CTL). The Ambient Calculus is used to
represent the topology of the operational environment - including
location of assets and agents - as well as to identify future
system states that are reachable from the current one. The
approach is demonstrated and evaluated using a substantive
example concerned with physical access control.

I. INTRODUCTION

Adaptive security systems aim to protect critical assets in the
face of changes in their operational environment. They do so
by monitoring and analysing this environment and deploying
security controls that satisfy some security requirements. A
key characteristic for engineering adaptive security is the
topology of the operational environment [20] that can denote
the structure of a physical space, such as a building, the
location of assets and agents in that space and their structural
relationships. These relationships may determine whether as-
sets or agents are co-located (proximity), if an agent can access
a specific asset or location (reachability), or if an asset, agent
or an area is enclosed by another area (containment).

In addition to existing context models [1], topology can
provide a system with both structural and semantic awareness
of important contextual characteristics that can affect security
concerns. Security requirements can be expressed in terms
of proximity and reachability relationships among assets and
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agents; for example, a security requirement can specify that
an asset should never be co-located next to an unauthorised
agent who can harm its integrity. The location of agents, who
can harm the assets placed in their vicinity raises potential
security threats. For example, a threat can arise if a malicious
agent can reach a valuable asset from the area in which she
is located. Knowing where valuable assets are placed and
their relationships to other objects in their proximity is also
important in order to identify possible security controls that
can be enacted to protect them. For example, authorisation
mechanisms may be needed in some of the areas that could
be accessed by a malicious agent to harm an asset.

Changes in topology due to movements of assets or agents,
or due to changes in the structure of a space can affect
system security concerns and determine violations of security
requirements. For example, the movement of a valuable asset
to a different location may lead to a violation of the asset’s
confidentiality because illegitimate users can reach the new
asset’s location. Movements of agents and changes in the
structure of a space can also bring new threats. In particular,
agents’ movements may cause harm to the assets that can be
reached from their current location. Moreover, merging two
adjacent rooms can make a valuable asset located in one of
the rooms reachable by potentially malicious agents that can
access the other room.

This paper proposes to engineer adaptive security systems
by identifying and preventing violations of security require-
ments triggered by changes in the topology of the operational
environment. To achieve this aim, a live representation of the
topology is maintained at runtime and is updated when assets
are moved, agents perform actions, or the structure of the space
is altered. This allows reasoning on the consequences that
topological changes can have on the satisfaction of security
requirements at runtime. When the topology changes, we look
ahead at a subset of the future system states; these states
represent the topological configurations that are reachable
when agents perform a sequence of actions. If a security
requirement can be violated in one of the future system states,
a set of security controls is applied, by revoking from some
agents the rights to perform certain actions that lead the system
to undesired topological configurations. Security controls are
selected by using different criteria, such as whether they satisfy
other non-security requirements or minimise the cost (i.e.
minimise the number of security controls applied).
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This paper focuses on topologies describing the structure of
a physical area or a building, in contrast to digital topologies
which have been the subject of discussion elsewhere [20].
We propose a systematic model-based software engineering
approach to formally reason on system properties and enforce
security requirements satisfaction. The Ambient Calculus [6] is
used to represent the topology of the operational environment
- including location of assets and agents - as well as to identify
future topological configurations that are reachable from the
current one.

Requirements, expressing desired properties related to ac-
cess control, are formally expressed using Computation Tree
Logic (CTL) [9], where spatial properties are encoded by using
a set of atomic propositions. The proposed approach is illus-
trated and evaluated through a substantive example concerned
with physical access control. Our experimental results demon-
strate the effectiveness of the approach in selecting security
controls that avoid entering topological configurations where
security requirements are violated. The number of system
states to be analysed at runtime is also greatly reduced by
excluding agents’ actions and locations that do not influence
the satisfaction of security requirements.

The rest of the paper is structured as follows. Section II de-
scribes the case study adopted throughout the paper to explain
and evaluate our work, and Section III provides an overview of
our approach. Section IV introduces the formalisms adopted
to represent the topology of the operational environment, the
system state space and the system requirements. Section V
explains the threat analysis performed to detect potential
violations of security requirements. Section VI describes the
approach adopted to identify and select security controls. Sec-
tion VII provides experimental results, Section VIII describes
related work, and Section IX concludes the paper.

II. CASE STUDY

As a case study we consider a system regulating access to
a building hosting lecture theaters and staff offices. Figure 1
represents the map of the building floor layout in which access
to locations (rooms and areas) must be regulated. The building
is composed of an entrance area (Bld) and the offices areas
(A1 and A2). From the building entrance (Bld) one can access
lecture theaters LT1 and LT2, as well as the non-faculty offices
area (A1). From A1 it is possible to access the researchers’
offices (O1, O2, and O4), the printer room (O3), and the
faculty’s offices area (A2). From A2, it is possible to access
professors’ offices (O5 and O7), and a room were a safe is
located (O6).

In our scenario, valuable assets need to be protected, such
as the safe’s security code and a new server that will be
positioned in office O2. Agents roaming in the building can
for example be postdocs or professors, or external entities
such as visiting technicians. The access control system should
restrict access to the various areas of the building to pursue the
following requirements, which here are informally expressed
in terms of structural relationships among assets and agents in
the physical space.

BldLT1 LT2

A1

O1

O2 O3 O4 O5 O6

O7

A2

Printer Safe

Alice (Postdoc) Eve
(Cleaner)

Trudy (Visiting Technician)

Bob
(Professor)

Mallory (Postdoc)

Fig. 1. Map of the academic building used in our case study.

Security Requirements aim to protect valuable assets in
the building from damage, theft or improper use. Specifically,

• SR1: To guarantee the confidentiality of the safe’s security
code, this security requirement asserts that no one can be
co-located in the safe room (O6) together with one of the
agents (e.g., Bob) who knows the safe’s security code.

• SR2: To preserve the integrity of the server, this security
requirement states that only when authorised staff are
present (e.g., Alice), other people can be in the same
room with the server.

• SR3: To prevent harm to persons or assets located in the
building, this security requirement claims that an external
visitor must always be in specific public areas or in the
room where she has to carry out her work. For example,
since the visiting technician (Trudy) has to fix the printer
located in O3, she can only be in Bld, A1, or O3.

Functional Requirements aim to guarantee that the re-
search centre staff can perform their own work. In particular,

• FR1: Alice must be able to access her office O2.
• FR2: Bob must be able to access the room O6, which

contains the safe.
• FR3: The visiting technician must be able to access the

room O3, where the printer to be repaired is located.

We envisage different scenarios characterised by topological
changes that might require adapting existing authorisation
permissions.

Scenario 1. Agents’ movements can change the security
controls that need to be applied. For example, if a professor
(Bob) enters in the safe room, no one else should be allowed to
access O6 until the professor exits, in order to satisfy security
requirement SR1. Similarly, if the cleaner (Eve) is in O6,
authorisation to access O6 should be revoked from Bob until
Eve exits, in order to guarantee the safe code’s confidentiality.

Scenario 2. A new asset (server) is placed in O2 and
introduces security requirement SR2 aiming to guarantee the
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server’s integrity. In this scenario, when a potentially mali-
cious, unauthorised agent (e.g., Mallory), enters the building
authorisation mechanisms must be adapted in order to avoid
Mallory being co-located with the server, without the presence
of an authorised person (e.g., Alice).

Scenario 3. A technician (Trudy) visits the building to fix
the printer and therefore security requirement SR3 must also
be satisfied. In this case, Trudy should be authorised to enter
only the areas that have to be traversed to reach O3.

III. TOPOLOGY AWARE ADAPTIVE SECURITY

Topology is the study of shapes and spaces, including prop-
erties such as connectedness and boundary. We define topology
aware adaptive security as the adaptation process that aims to
continue to satisfy security requirements at runtime, even when
the structure of the operational environment changes. Figure 2
depicts the activities of the MAPE (Monitoring, Analysis,
Planning, Execution) loop [13] supported by our approach
in order to engineer topology aware adaptive security. These
activities rely on a representation of the topology, which is kept
in sync with the structure of the physical space and the location
of assets and agents in that space. The system security and
non-security requirements (respectively S and NS in Figure 2)
are also modelled explicitly in order to configure the analysis
and planning activities.

LTS + 
Red States

Non Security 
Requirements

Selected
Security 
Controls

TopologyAgents' movements

Assets movements

Structure of the 
physical space

Monitoring

(Threat) Analysis
S Security 

Requirements
1. Generation of   
    future system  
    states 
2. Identification of 
    security req. 
    violations

Planning

Execution

Heuristics 

NS

1. Security  
    Controls 
    Identification 

2. Security 
    Controls 
    Selection

NS

Revoke Agents Permissions

Fig. 2. The MAPE loop to support topology aware adaptive security.

Every time a change in the topology of the operational
environment or in the system requirements is observed, a new
adaptation cycle through the MAPE loop is triggered. This
process is agnostic of previous adaptation cycles and security
controls are selected independently each time.

Monitoring captures topological changes that can be de-
termined by agents’ movements, assets movements, and al-
terations of the structure of a physical space, and updates
the model of the topology accordingly. Note that assets and

agents’ movements can be monitored automatically by using,
for example, smart cards. Alterations to the physical space,
on the other hand, require the manual intervention of a human
agent to be included in the representation of the topology.

Analysis is triggered by topology changes detected during
the monitoring activity and discovers potential threats that
may cause requirements violations. To achieve this aim, fu-
ture systems states are generated and violations of security
requirements are identified. The generation of future system
states is based on the look-ahead of subsequent executions
of actions (i.e. movements) by the agents within the physical
space. Assets movements and modifications in the structure
of the physical space are monitored as possible exogenous
topological changes that may occur. The threat analysis checks
that endogenous actions by agents do not lead to violations of
security requirements. States in which a violation takes place
are also identified (dark states in Figure 2). We also propose
a set of heuristics to reduce the system state space by not
considering parts of the topology which are not relevant for
the satisfaction of security requirements. Threat analysis can
also be employed at design time, when it is more feasible to
undertake an exhaustive look-ahead of all possible sequences
of actions that agents can perform. However, applying threat
analysis only at design time reduces effectiveness of detecting
unexpected security threats determined by changes in the
topology or in the security requirements arising at runtime.

Planning identifies security controls by detecting a suitable
set of actions that have to be forbidden to specific agents in
order to avoid security requirements violations. The configu-
ration of security controls that is selected should also satisfy
other non security requirements, if possible.

Execution changes existing system authorisations by revok-
ing from agents the right to perform the actions forbidden by
the selected configuration of security controls. However, other
security controls [10] (e.g., obligation and dispensation) can
also be supported.

IV. MODELLING FORMALISMS

This section introduces the Ambient Calculus, Labelled
Transition Systems (LTS) and Computation Tree Logic (CTL),
which are the formalisms adopted to model the topology of
the operational environment, the system state space, and the
system requirements, respectively.

A. Ambient Calculus
The Ambient Calculus is a process algebra having a special

focus on mobility [6]. An ambient is an abstract entity that can
model different elements both in a physical space (e.g., agents
and locations) and in a digital space (e.g., programming scopes
and variables) [17]. Ambients reside in a hierarchy of locations
and form a tree structure that can be dynamically re-configured
when they exercise a set of capabilities (actions), such as
in, out, and open. In this work, a fragment of the Ambient
Calculus is considered where the communication primitives
and the open capability are neglected.

The syntax of the Ambient Calculus used in this paper
is described in formulae 1a to 1f, overleaf. A process P
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can simply do nothing (formula 1b), can be decomposed in
two processes running in parallel (formula 1c), or can be
enclosed into an ambient which is a particular kind of process
(formula 1d). A process can also execute a capability and then
proceed to the execution of another process. We assume that
the capabilities available are in and out (formulae 1e and 1f,
respectively).

P,Q,R ::= processes

| 0 inactivity

| P | Q parallel composition

| n[P ] ambient

| in n.P capability to enter n

| out n.P capability to exit n

(1a)
(1b)
(1c)
(1d)
(1e)
(1f)

An Ambient Calculus formula can represent both the de-
scription of the structure of an environment and its evolution.
The former expresses how ambients are structured and nested,
while the latter describes how the structure of the environment
can evolve through the execution of a given set of capabilities.

We represent the topological configuration of the operational
environment using Ambient Calculus formulae. The hierarchi-
cal relation is exploited to describe how different ambients
are nested. We explicitly distinguish among different types
of processes representing assets, locations, and agents. For
example, the topology of the building described in Section II
is encoded as Ambient Calculus formulae 2a-2c1. Formula 2a
denotes that locations LT1, LT2 and A1 are on the same
hierarchical level, since to access them an agent must be
located in the building entrance (Bld). These formulae also
specify the locations of the agents, namely that Trudy is inside
Bld, Alice and Mallory are in A1, Eve and Bob are in A2, and
the Server and the Safe are located in O2 and O6, respectively.

Bld[LT1 | LT2 | A1 | Trudy]

A1[Alice |Mallory | O1 | O2[Server] | O3 | O4 | A2]

A2[Eve | Bob | O5 | O6[Safe] | O7]

(2a)
(2b)
(2c)

We assume that assets and locations cannot perform any
capability, while agents can always execute any possible
capability depending on their current location. More precisely,
an agent can always enter (in) all co-located areas and exit
(out) from the current room or area. For example, in the
configuration described in formulae 2a-2c, Trudy can perform
out Bld, in LT1, in A1 or in LT2, while Bob and Eve can
perform out A2, in O5, in O6, and in O7. Therefore, we do
not explicitly represent capabilities into an Ambient Calculus
formula, as they can be inferred from how the ambients are
structured and from the types of ambients in the topology.

B. Labelled Transition Systems

Labelled Transition System [9] (LTS) is a modelling for-
malism used to describe systems and their evolution in terms
of states and transitions. States usually specify the possible
configurations of the system. Transitions describe how the

1Note that LT1, ..., O7 is used as a shortcut to LT1[0], ..., O7[0].

configuration of the system can change by moving from one
state to its successors.

Formally, given a set AP of atomic propositions, a LTSM
is formally described as a tuple M = 〈S, S0, R, L〉, where:
• S is a finite set of states;
• S0 ⊆ S is the set of initial states;
• R ⊆ S×S is a transition relation that must be total, that

is for every state s ∈ S there is a state s′ ∈ S such that
(s, s′) ∈ R;

• L : S → 2AP is a function that labels each state with the
set of atomic propositions that are true in that state.

C. From Ambient Calculus to LTS

Starting from an Ambient Calculus formula, interpreting
it over an LTS means describing the topological evolution
of the system based on execution of capabilities. Each LTS
state represents a different topological configuration. Atomic
propositions are used to describe where agents and assets are
located (spatial modalities). For example, atomic proposition
’Bob in O6’ is true when Bob is located in office O6.
LTS transitions connect different states and correspond to the
execution of capabilities by agents.

D. Computation Tree Logic

CTL [9] is a branching temporal logic used to specify
temporal properties that a system must satisfy. CTL includes
two types of formulae: state and path formulae. State formulae
are defined over a set of atomic propositions AP using the
grammar specified in 3, where a ∈ AP and ϕ is a path
formula. A state formula can be an atomic proposition a, the
special proposition true, the composition (∧) of two sub-
formulae, the negation (¬) of a formula, and a path CTL
formula prefixed by E (exists) or A (always) path quantifiers.
E predicates that ϕ must hold on at least one path starting
from the current state, while A asserts that ϕ must hold on all
paths starting from the current state.

Φ ::= true | a | Φ1 ∧ Φ2 | ¬Φ | Eϕ | Aϕ (3)

CTL path formulae are defined in 4. A state CTL formula
Φ prefixed by the next operator (X), and two CTL formulae
Φ1 and Φ2 linked by the until operator (U ) are valid CTL path
formulae.

ϕ ::= XΦ | Φ1UΦ2 (4)

A state formula Φ is evaluated over a state s of the LTS.
For example, property Φ = Φ1 ∧ Φ2 is true in a state s if
and only if s satisfies both Φ1 and Φ2. Similarly, property
Eϕ is true in a state s of the LTS iff there exists a path π
starting from s that satisfies ϕ. Path formulae are interpreted
over infinite paths of the LTS. For example, given an infinite
path π, the property Φ1UΦ2 is true if there exists a state s in
the path that satisfies Φ2 and each state that precedes s on the
path satisfies Φ2. The interested reader can refer to [9] for a
complete description of the semantics of CTL.

In this paper CTL is used to specify security as well as
other requirements. For example, Formulae 5a-5c represent
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security requirements SR1-SR3. Variables Y and Z are used
to denote (implicitly universally quantified) agents (such as
Alice, Mallory, . . .) and locations (such as Bld, A1, . . .).
Moreover, an atomic proposition, such as ’Bob | Eve’ denotes
that Bob is co-located with Eve.

SR1 : AG(¬((Bob | Y ) ∧ (Bob in O6)))

SR2 : AG(¬((Y | Server) ∧ ¬(Alice | Server))

SR3 : AG(¬(Trudy in Z))

(5a)
(5b)
(5c)

Formulae 6a-6d represent security requirement SR1 by asso-
ciating Y with Alice, Mallory, Eve, and Trudy.

AG(¬((Bob | Alice) ∧ (Bob in O6)))∧
AG(¬((Bob | Mallory) ∧ (Bob in O6)))∧
AG(¬((Bob | Eve) ∧ (Bob in O6)))∧
AG(¬((Bob | Trudy) ∧ (Bob in O6)))

(6a)
(6b)
(6c)
(6d)

In this paper CTL is also adopted to express the functional
requirements of the case study. In particular, formulae (7a)-
(7c) express functional requirements FR1-FR3.

FR1 : EF (Alice in O2)

FR2 : EF (Bob in O6)

FR3 : EF (Trudy in O3)

(7a)
(7b)
(7c)

V. THREAT ANALYSIS

Threat analysis aims to predict potential violations of secu-
rity requirements that can take place in future system states.
This section describes the process adopted to generate future
system states reachable from the current topology. It also
explains how violations of security requirements - that can take
place in future states - are detected. The section concludes by
illustrating a set of heuristics that can be adopted to reduce
the state space analysed.

A. Generation of Future System States

Future system states are generated after changes in the
topological configuration of the operational environment take
place. Topological changes are continuously monitored and
the representation of the topology is updated at runtime
accordingly. Any subsequent execution of actions by the agents
within the physical space (agents’ intentions) is exhaustively
considered and the corresponding future system states are
generated. This is performed because future agents’ actions
cannot be predicted in advance. Movements of assets and
modifications in the structure of the physical space are not
considered, because they are conceived as possible exogenous
topological stimuli, and therefore cannot determine require-
ments violations spontaneously.

Future system states are generated in two distinct steps:
(I) exhaustive look-ahead of action executions by agents and
(II) LTS generation, which translates the representation of the
topological configuration into a formalism that is suitable for
verification. Exhaustive (limited scope) look-ahead of actions
execution depends on the structure of the physical space
and on the current position of agents. Each agent can enter

accessible areas with which she is co-located, and can exit
from the area where she is currently placed. However, the
exhaustive look-ahead is bounded by the number of steps
selected to be considered in the future by the agents. The
portion of the state space that is generated has a limited depth.
This corresponds to the execution of a predefined number of
actions per agent.

We assume a look-ahead bound of one step2 (i.e. each agent
always performs at most one action per location). In this way,
at one step in the future, capabilities that can be performed
with respect to all locations accessible directly by agents are
examined. For example, in Figure 1, Trudy can perform in LT1,
in LT2, in A1, and out Bld. Each action performed by an agent
at a specific step is considered to be performed in parallel with
those of the other agents at the same step, in a way that is
consistent with process calculi. Any possible ordering in which
capabilities can be executed by the agents is also considered.
Even though different sequences of the same capabilities can
lead to the same topological configuration, their ordering
is relevant because it can affect the satisfaction of security
requirements differently. More precisely, the generation of all
the possible action interleavings is fundamental to identify a
specific sequence of actions that lead to the violation of a
security requirement. For example, if both Mallory and Alice
enter O2 at the same time, the sequence of actions where
Mallory accesses O2 before Alice will determine a violation
of security requirement SR2. In contrast, the same requirement
holds if Alice enters O2 before Mallory.

Algorithm 1 sketches the procedure we use to look ahead
at capability executions and to generate all the sequences
of actions that agents (Ag) can perform from the current
topology Tc. For each agent a (Line 2), the set of relevant
movement intentions (Line 3) corresponding to accessing (in)
co-located locations or exiting (out) from the current location
are considered. Function f associates each agent with co-
located rooms and areas. For each of these locations (Line 4),
function GETACTION() returns the relevant action that an
agent can perform on it (Line 5). The set Aact (Line 6)
is populated with all the possible capabilities an agent can
do depending on the accessible locations ({〈a, action, s〉}).
Function z associates each agent with the possible actions she
can execute (Line 8). When multiple agents are present, the
product of their potential capabilities is computed (Line 10),
to account for different orderings of capability executions.
This is equivalent to inserting sets of capabilities into an
Ambient Calculus formula representing the current topological
configuration. Afterwards, given the current topology Tc, each
possible set of interleaving actions is mapped to the transitions
of the LTS (Line 11).

To generate the LTS, a set of states is subsequently iden-
tified starting from the current one representing the current
topology. The procedure used to accomplish this task is the
one described by Mardare et al. [16], [15], which uses sets

2One might also consider larger scopes, although the larger the scope the
more likely it is that exogenous changes happen and invalidate the analysis.
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A1[M], O2[A],
A2[B], O6[E]

O6[B], A2[E],
O3[A],  A1[M]

A2[E | B], 
O3[A], A1[M ]

M: in O2

...

...

Bld[A], A1[M],
A2[E | B]

A: out A1

Bld[A], A1[M], 
A2[E], O6[B]

Bld[A], O3[M], 
A2[E], O6[B]

B: in O6

M: in O3

E: in O6

A: in O2

A1[M], O2[A],
A2[E | B]

E: in O6

B: in O6

A1[M], O2[A],
O6[E | B]

A2[E | B],
A1[A | M]

1

4
2

A: in O3

B: in O6

6

...

a

3

O6[B], A2[E],
O3[A], O2[M]

Bld[A],O3[M], 
O6[B | E]

5

(a) Scenario 1 - Initial Configuration

O6[B], A2[E], O2[S],
O3[A],  A1[M] A1[M], O2[A | S],

A2[B], O6[E]

A2[E | B], O2[S] 
O3[A], A1[M ]

M: in O2

...

...

Bld[A], A1[M],
A2[E | B], O2[S]

A: out A1

Bld[A], A1[M], 
A2[E], O6[B], O2[S]

Bld[A], O3[M], 
A2[E], O6[B], O2[S]

B: in O6

M: in O3

E: in O6

A: in O2

A1[M], O2[A | S],
A2[E | B]

E: in O6

B: in O6

A1[M], O2[A | S],
O6[E | B]

A2[E | B],
 O2[S],
A1[A | M]

1

A: in O3

B: in O6

...

3
O6[B], A2[E],
O3[A], O2[M | S]

Bld[A],O3[M], 
O6[B | E], O2[S]

2

(b) Scenario 2

T: in LT1

O6[B], A2[E],  O2[S | 
A], A1[M], Bld[T]

A2[E | B], O2[S | A], 
A1[M], Bld[T]

M: in O2

A2[E | B],
O2[S], Bld[T]
A1[A | M]

1

A: in O2

B: in O6

O6[B], A2[E],
O2[A | M | S], Bld[T]

O6[B], A2[E], 
O2[S | A | M], LT1[T]

2

...

...

(c) Scenario 3

Fig. 3. Fraction of the LTS generated from the case study; violating states are in dark.

Algorithm 1 Exhaustive look-ahead of capability executions
1: function LOOK-AHEAD(Tc, Ag)
2: for a ∈ Ag do
3: Aact = {} ;
4: for s ∈ f(a) do
5: action = GETACTION(a,s);
6: Aact = Aact ∪ {〈a, action, s〉}
7: end for
8: z(a) = Aact

9: end for
10: for ac ∈ PRODUCT(z(·))) do
11: MAPONLTS(ac,Tc);
12: end for
13: end function

for the representation of state information. Each transition
corresponds to the execution of a capability by an agent,
while each state of the LTS describes a different topological
configuration of the operational environment; note that dif-
ferent states can also be associated with the same topology
in case this is reached by performing different sequences
of agents’ capabilities. Figure 3 partially represents the LTS
generated from different topological configurations identified
in the scenarios proposed in Section II.

B. Identification of Security Requirements Violations

The LTS representing agents’ potential movements is ex-
plored to identify those states where security requirements
can be violated. Such states are detected by checking the LTS
against CTL formulae representing security requirements. Fig-
ure 3 highlights in dark the states where security requirements
are violated3 in our scenarios. The attack scenarios appearing
in a possible evolution of the system can be summarised as
follows.
• In the first scenario (Figure 3a), Trudy is not in the

building and the server is not placed in O2 (state 1). The
first branch (from the left) of the LTS does not cause
any violation of security requirements because although
Mallory enters O2 the server is still not placed in it. The

3Self-loops on final states are added to comply with the LTS definition.

action sequences represented by the second and the third
branch cause violation of security requirement SR1. In the
second branch, Eve accesses O6 (state 3) and afterwards
Bob accesses the same room (state 4). In the third branch,
Bob accesses the safe room (state 5) and subsequently
Eve accesses the same room (state 6).

• In the second scenario (Figure 3b), the server (S) is placed
in room O2 (state 1). The action sequence represented by
the first branch from the left violates security requirement
SR2. This is because Mallory accesses O2 (state 3), where
the server is located, when Alice is not present, since she
is in O3 (state 2).

• In the third scenario (Figure 3c), Trudy accesses the
building (state 1). An action sequence that may cause a
violation of security requirements is when Trudy moves
to rooms (e.g., LT1) she is not supposed to traverse to
reach the printer room (state 2). This action sequence
violates requirement SR3.

The theoretical space complexity to identify security re-
quirements violations depends on the number of states and
transitions that are generated in the worst case. To compute the
number of transitions of the LTS it is necessary to remember
that each of them is associated with an action. Given a set
of agents Ag and locations L, in the worst case an agent
a1 ∈ Ag , can perform |L| actions that is entering or exiting
every location l ∈ L. Since each action performed by a1 can
be combined with every other action performed by another
agent, these actions can be aggregated in |L||Ag| sets of |Ag|
actions (one for each agent). It is also necessary to consider
the possible permutations of the agents’ actions (i.e. all the
possible orderings in which actions can be performed). More
precisely, a set of |A| actions can be ordered in |A|! ways.
Thus, the total number of transitions in the worst case scenario
is |Ag|! · |Ag| · |L||Ag|. Since each transition moves the system
to a new state, in the worst case scenario the total number
of states of the LTS is |Ag|! · |Ag| · |L||Ag| + 1, that is the
number of transitions plus the initial state representing the
initial topological configuration of the system.

Once a LTS is generated (e.g., M), the complexity of
verifying if a formula ϕ holds inM is O((|S|+ |R|) · |ϕ|) [9].
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Thus, in our case the time complexity is O((|Ag|! · |Ag| ·
|L||Ag|) · |ϕ|)).

C. State Space Reduction Heuristics

State space reduction heuristics aim to reduce the sequences
of actions that are considered, and consequently, the number
of LTS states generated. This paper proposes two types of
domain-specific techniques to achieve such reduction. Firstly,
we use the topology of the operational environment to avoid
considering agents’ actions that are irrelevant to the satisfac-
tion of security requirements. Secondly, a new type of analysis
that is reactive instead of proactive is enacted, when other
measures that aim to meet runtime demands are ineffective.

The first heuristic depends on the pattern adopted for the
specification of security requirements, which indicates how
agents, assets and locations are related to each other. In
particular, this heuristic only focuses on the agents’ actions
that can determine the violation of the specified security
requirements. Let us consider security requirements that are
expressed as AG(¬(ag in l)), whose violation is determined
in those states where agent ag reaches location l. The look-
ahead of the actions performed by agent ag can therefore
focus only on those allowing ag to reach location l within the
number of steps in the future that are analysed. For example,
to check security requirement SR3 assuming the topological
configuration where Trudy is in Bld, it is necessary to consider
only the actions that allow Trudy to reach accessible locations
l ∈ Y , such as Trudy in LT1 and Trudy in LT2.

Consider security requirements that are expressed as
AG(¬((ag1 | ag2) ∧ (ag2 in l))), whose violation is
determined when two agents (ag1 and ag2) are co-located in
the same place (l). In this case, the look-ahead can focus only
on those actions allowing ag1 and ag2 to reach location l in
one step. For example, to check security requirement SR2,
assuming the topological configuration shown in Figure 1,
look-ahead of agents’ actions will only include Bob in O6
and Eve in O6.

Consider security requirements that are expressed as
AG(¬((ag1 | as) ∧ ¬(ag2 | as))), whose violation is de-
termined when an unathorised agent (ag1) is co-located with
an asset (as), while an authorised agent (ag2) is not present.
In this case, the look-ahead of the actions performed by
ag1 will focus only on those that allow the agent to reach
the place where the asset is located, while the look-ahead
of the actions performed by ag2 will focus only on those
allowing her to exit the location where the asset is placed or
to enter the areas where the asset is not located. For example,
to check security requirement SR2, assuming the topological
configuration shown in Figure 1 when the server is in O2,
look-ahead of agents’ actions will only include Mallory and
Alice entering O2. Configurations where Mallory and Alice
enter rooms different than O2 are not taken into account. Note
that this heuristic alters function f adopted in Algorithm 1,
which specifies the locations on which an agent can exercise
a capability, by considering only those locations containing

assets and agents that are relevant for the satisfaction of
security requirements.

Another technique that can be employed is related to the
threat analysis strategy. To counter the complexity explosion
that can occur in certain configurations, the system might opt
for a reactive mode of operation. Since the theoretical number
of LTS states can be maximal in particular circumstances, the
proactive approach presented previously might not be effective
at runtime. Informally, this is likely to occur when the topo-
logical configuration requires the look-ahead of interaction of
multiple agents with several parallel locations. In such a case,
if a likely state explosion is observed in a part of the topology
a certain change in operation can be performed to mitigate it.

To handle these situations the system has to switch to
a reactive operation mode. More precisely, agents’ actions
are not considered and by default any action is assumed to
determine a threat. Therefore, all locations are considered
locked and agents have to request access in order to be able
to perform any movement. This way, security requirements
verification is performed when agents are attempting to move
(e.g., entering co-located areas or exiting from their current
place). In this case, the LTS is constructed only with respect
to the requested capability execution. Our approach decides to
switch to this reactive mode in case the state space exceeds a
certain pre-determined threshold. However, the reactive mode
is not always sustainable as it can compromise the system’s
usability by requiring each user to request access on every
attempt to change location.

VI. TOPOLOGY AWARE PLANNING

This section illustrates the algorithm adopted to identify
alternative configurations of security controls able to prevent
potential violations of security requirements. A candidate
configuration is selected among those that also satisfy relevant
functional requirements.

A. Security Controls Identification

Algorithm 2 uses the results obtained during the threat
analysis to identify alternative configurations of security con-
trols. This recursive algorithm prunes the LTS by progressively
removing states where security requirements are violated. This
process essentially removes future paths of execution that
should never be reachable from the current topology. R, S
and Sv indicate the transition relation of the LTS, its states,
and the set of states that violate the requirements, respectively.
Note that each state s of the LTS that is generated during
the threat analysis has exactly one predecessor. Signature
R(s)−1 returns the predecessor of state s. Recall that each
LTS transition represents the execution of a capability by an
agent on a specific location (e.g., 〈Eve, in,O6〉 corresponds
to transition a in Figure 3a). However, a similar transition
might occur in other parts of the LTS (e.g., the one entering
in state 3). We refer to such transitions that refer to the same
agent, action, and location, but occur on different parts of the
LTS as homologous. For each transition entering the violating
states (Sv), all its homologous transitions (including itself)
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are removed, including their successor states. For example,
for transition a in Figure 3a, states 3, 4, and 6 are removed.

Algorithm 2 Identification of Security Controls
1: function IDSECURITYCONTROLS(R, Sv , S)
2: sc = {{}} ;
3: for s ∈ Sv do
4: S′v = Sv \ s;
5: S′ = S \ s;
6: s′ = R−1(s)
7: c = cap(s′, s);
8: 〈S′v, S,R′〉 = PRUNE(S′v , R, S, c)
9: if S′v ∩ S = ∅ then

10: sc = sc ∪ {c} ;
11: else
12: sc′ = IDSECURITYCONTROLS(R′, S′v , S′);
13: for sc′′ ∈ sc′ do
14: sc = sc ∪ (sc′′ ∪ {c});
15: end for
16: end if
17: end for
18: return sc;
19: end function

The set sc contains the configuration of security controls
that is computed in the current iteration of the IDSECURITY-
CONTROLS procedure. First, the algorithm creates sc (Line 2).
If there are no states that violate the security requirements, the
empty set is returned (Line 18), as no security controls should
be applied. Each state s that violates a security requirement
(Line 3) is iteratively removed from the set of violating states
(Line 4) and from the set of states of the LTS (Line 5). To
make this state not reachable, its predecessor s′ (Line 6) is
analyzed and the capability c that labels the transition from s′

to s is identified (Line 7). The graph is pruned by removing
all the transitions that are homologous to c (Line 8). This
represents the effect of the security control associated with
c, which revokes from an agent the permission to perform
the action represented by c. If the new set of violating states
(S′v) does not contain any other state (Line 9), it means
that forbidding the capability c (alone) allows the satisfaction
of the security requirement, and thus it is added to the set
of security controls to be returned (Line 10). Otherwise,
additional security controls must be enforced. Thus, function
IDSECURITYCONTROLS is recursively called over the new set
of states S′ and violating states S′v (Line 12). When the set
of security controls is returned, each element sc′′ of the set of
computed constraints sc′ is analyzed (Line 13) and enriched
with the capability c (Line 14). Note that this procedure can
also terminate before all transitions entering in the dark states
(Sv) are considered, since some of the violating states targeted
by the remaining transitions might have already been removed
due to their presence as successors to transitions already
considered. The transitions used for pruning the LTS identify
a configuration of security controls: the actions indicated by
each transition are those for which authorisation should be
revoked from the corresponding agent.

However, recall that by removing the action that leads the
system to a violating state, the successors of the corresponding

homologous transitions are also removed. In other words, not
all the transitions entering violating states are necessary for a
configuration of security controls. Furthermore, the ordering in
which transitions are considered can lead to the identification
of different sets of security controls. For this reason, Algo-
rithm 2 returns alternative sets of security controls, for each
ordering in which the transitions entering in the violating states
(Sv) can be considered.
• In the first scenario (Figure 3a), to satisfy secu-

rity requirement SR1, security controls will forbid
〈Eve, in,O6〉 or 〈Bob, in,O6〉, depending on whether
a transition to state 4 or 6 is considered first, since both
of these transitions lead to violating states.

• In the second scenario (Figure 3b), 〈Mallory, in,O2〉,
will also be included in sets of security controls, to
comply with security requirement SR2.

• In the third scenario (Figure 3c), following the iden-
tification of violating states, 〈Trudy, in, LT1〉 and
〈Trudy, in, LT2〉 will additionally be forbidden, to com-
ply with security requirement SR3.

B. Security Controls Selection

This section illustrates possible criteria for selecting one of
the alternative configurations of security controls identified by
Algorithm 2. Even though different criteria can be employed,
such as minimisation of the number of security controls, in this
paper we propose a requirements-driven criterion that aims to
exclude those configurations of security controls forbidding
the satisfaction of non-security requirements (i.e. functional
requirements). Since we assume that all the functional require-
ments have a fixed structure (EF ag in l), which requires the
existence of a path that allows an agent ag to reach location
l, we can exploit this structure to detect the set of security
controls that do not contrast with these requirements. In other
words, the main idea is to compute the set of capabilities that
the agent ag must perform to access l and to filter the security
controls that do not remove these capabilities.

Considering our case study and the system functional re-
quirements (7a-7c) we notice that some configurations of
security controls violate stated functional requirements. For
example, the configurations that revoke from Bob the au-
thorisation to access area O6 violate functional requirement
FR2, which states that there should always exist a path that
allows Bob to reach office O6. To guarantee the satisfaction of
this requirement candidate configurations of security controls
should never revoke Bob the authorisation to traverse the
areas necessary to reach O6 from his location. Note that the
security controls selection can be performed together with the
identification of security controls. In this case, Algorithm 2
can terminate as soon a configuration of security controls that
satisfies all system requirements is identified.

Since it may not always be possible to satisfy all the
functional requirements at the same time, a selection criterion
can aim to identify a configuration of security controls that
satisfies the requirements having highest priority. Another
alternative is to aim for less disruption to a specific subset
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of agents (e.g., those having highest importance), as a kind of
quality-of-service principle. For example, to satisfy security
requirement SR1, potential security controls can revoke from
Bob or Eve the authorisation to access the safe room. This
happens because both are placed in A2, and can potentially be
co-located in O6. If we assume that Bob has a higher priority
than Eve, access to O6 will be only revoked to Eve even if
she requires to enter O6. Another selection criterion can aim
to minimise the number of security controls that are placed in
a candidate configuration. This is motivated by the fact that
the application of security controls could be expensive (e.g.,
in terms of energy consumption).

VII. EVALUATION

This section evaluates our proposed approach along two
dimensions: (I) applicability of the approach and effective-
ness of the adaptation procedure, and (II) classes of security
requirements that can be handled in the adaptation process.

To evaluate the applicability and efficiency of the approach,
we realised it by developing a prototype application. Starting
from an Ambient Calculus formula that represents the current
topology of the system and its requirements specified using
CTL formulae, the application computes the security controls
to be employed to protect the system. The implementation
includes the set-theoretic procedure described by Mardare et
al. [16], [15] and briefly introduced in Section V to generate
the LTS, the algorithm to detect and select the security controls
to be employed, and uses a third party prototype of the CTL
model checking algorithm to identify violations of security
requirements. The prototype is realised as a pure Python
stand alone application using4 the MrWaffles CTL checker
and NetworkX as a graph library backend.

Preliminary results demonstrate the applicability of the
approach and encourage further investigation. For example, for
our case study the process took under two seconds on a test
machine Intel i5 (2.5GHz) having 4GB RAM. The set of the
security controls that is returned by the procedure forbids the
following actions: “Trudy in LT1”, “Trudy in LT2”, “Mallory
in O2”, “Eve in O6”. Note that the reference implementation
is not optimised with respect to computation time or space;
these can be reduced rather significantly, for example by using
state of the art model checking tools (e.g., NuSMV) as well as
high performance data structures capable to handle large state
spaces efficiently. Furthermore, this time can also be reduced
by acting on the heuristics used to generate the state space or
to select the security controls that can be chosen with respect
to the specific case study.

The expressivenes of the proposed approach in terms of se-
curity policies that it can enforce was also evaluated. Cuppens
and Cuppens [10] classify security policies in four categories:
permission, prohibition, obligation and dispensation. In this
paper security controls only support permission and prohi-
bition as they grant or revoke from agents the authorisation
to perform a specific action. However, our approach is also

4mrwaffles.gforge.inria.fr, networkx.lanl.gov

amenable to support obligation and dispensation. In particular,
obligation can be applied by forcing agents to perform actions
that lead to a topological configuration that is less close -
in terms of number of transitions - to a state where security
requirements are violated. Dispensation is conceived as a per-
mission to neglect a security requirement. It could be applied
by tolerating some violations of some security requirements.
This can be supported by not including during the selection
of security controls the states in which a violation of security
controls can be tolerated.

VIII. RELATED WORK

The role of topology [23] has been investigated in several
domains that are not directly related to software engineering.
A representation of topological network connections has also
been adopted to manage large scale distributed systems. For
example, Tapestry and Pastry construct a topology-aware over-
lay by choosing nearby nodes for inclusion in their routing
tables [8]. Topology has also been extensively taken into
account in the wireless sensor networks community, where it
is used not only for sensor area placement [14], but also in the
context of security. For example, adaptation in sensor network
clustering in response to spam attacks has been proposed [12].

However, as far as we are aware, from a software en-
gineering perspective, explicit focus on topology to support
adaptive security has not been considered. In particular, Sale-
hie et al. [21] proposed a requirements-driven approach for
dynamically re-estimating the risk of harm depending on assets
and context changes. Predetermined security controls are also
adjusted at runtime depending on the varying risk of harm.
Architecture-based self-protection (ABSP) [24] aims to detect
and mitigate security threats based on an architectural repre-
sentation of the software that is kept in sync with the running
system. The architectural model provides information related
to the impact of a security breach on the system and allows
engineering security controls by applying specific architectural
design patterns. However, this work does not take into account
topological changes as a trigger for adaptation and is based on
the assumption that security controls are predetermined. Our
approach, instead, monitors changes in topology and reasons
about their impact on the satisfaction of security requirements.
This allows us to discover new security threats and deploy
security controls that have not been previously planned for.

Existing work on dynamic access control has considered
contextual information to adapt security policies. Samuel et
al. [22] use contextual parameters, such as time and location
to identify emergency situations for which users’ authorisation
might require to be relaxed or made stricter. Similarly, the
Organization Base Access Control (OrBAC) [10] allows asso-
ciating security rules with conditions expressed on time, user’s
location and previous behavior. These conditions provide the
flexibility to enable/disable security rules dynamically. Unlike
existing access control approaches, our work avoids specifying
security rules in advance. It looks ahead at potential users’
actions that can be performed from the current topology and
identifies undesired states where security requirements can be
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violated. Adequate security rules are identified dynamically by
revoking from relevant agents the right to perform actions that
can lead the system to undesired states.

The Ambient Calculus has been extended to represent
security relevant properties. For example, ambient types [7]
can be used to identify confidential ambients that cannot
be opened. Boxed ambients [5] delimit the perimeter within
which communication can take place, while boundary ambi-
ents [2] prevent information leakage. However, the decision to
assign a specific type to an ambient in order to satisfy specific
security properties is pre-determined and cannot be modified at
runtime. Conversely, our approach is able to detect whether to
allow or forbid the execution of agents’ capabilities depending
on potential threats brought by the current topology.

Several analysis techniques have been proposed in literature
to verify if a system modelled as a set of Ambient Calculus
formulae satisfies some security requirements. For example,
Nielson et al. [11], [19] propose a technique to check whether
an Ambient Calculus specification allows only some processes
to be contained into other ones. This technique has also
been employed for checking if the behaviors of firewalls are
compliant with their security policies [18]. Braghin et al. [2],
[3] define a verification technique able to identify violations of
confidentiality determined when sensitive data can be moved
outside a boundary ambient. Other work [4] verifies whether
security policies expressed according to Bell-LaPadula model
are satisfied in a program that leverages a specific network
configuration. However, all the proposed model checking
techniques have only been employed to verify security policies
but they have not been adopted to assess security risks or
to suggest possible security controls that can be applied for
specific topologies of the operational environment.

IX. CONCLUSIONS

This paper has proposed an approach aimed to engineer
topology aware adaptive security systems. A live model of the
topology of the operational environment is used at runtime to
look ahead at changes which represent future system states.
Potential violations of security requirements are identified in
future topological configurations reachable from the current
one. A set of security controls is proactively applied to
prevent the system from reaching those states where security
requirements can be violated. Our approach leverages existing
formalisms such as the Ambient Calculus to represent the
topology and CTL to represent system requirements. Prelimi-
nary results demonstrate the viability of the approach in identi-
fying security requirements violations and appropriate security
controls for a realistic physical access control scenario. We
aim to improve the expressiveness of our approach in order
to manage obligation and dispensation security policies, and
ameliorate the performance by building on state of the art
model checkers. We believe that the approach presented con-
tributes to opening new dimensions in reasoning on systems
where topology is a first class entity. Whereas so far the focus
has been on physical systems, we aim to apply this initial

approach to digital topologies to prevent threats that can arise
in digital and cyber-physical systems.
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