
Trace++: A Traceability Approach to Support
Transitioning to Agile Software Engineering

Felipe Furtado1, 2, Andrea Zisman1
1Computing Department, The Open University, Milton Keynes, UK

2Educational Department, CESAR (Recife Center for Advanced Studies and Systems), PE, Brazil
furtado.fs@gmail.com, andrea.zisman@open.ac.uk

Abstract—Agile methodologies have been introduced as an al-
ternative to traditional software engineering methodologies.
However, despite the advantages of using agile methodologies, the
transition between traditional and agile methodologies is not an
easy task. There are several problems associated with the use of
agile methodologies. Examples of these problems are related to (i)
lack of metrics to measure the amount of rework that occurs per
sprint, (ii) interruption of a project after several iterations, (iii)
changes in the requirements, (iv) lack of documentation, and (v)
lack of management control. In this paper we present Trace++, a
traceability technique that extends traditional traceability rela-
tionships with extra information in order to support the transi-
tion between traditional and agile software development. The use
of Trace++ has been evaluated in two real projects of different
software development companies to measure the benefits of using
Trace++ to support agile software development.

Index Terms—Traceability, agile methods, hybrid process.

I. INTRODUCTION
In the last twenty years, several agile methodologies have

been proposed to support software development [3][8][12]
[15][20][28][32][36]. Agile methodologies bring several ad-
vantages to the software development life-cycle including, but
not limited to, lightweight development processes, small num-
ber of documents, frequent deliverables, customer satisfaction,
and close communication among stakeholders.

However, despite the advantages of agile methodologies,
the transition between ‘traditional’ to ‘agile’ methodologies in
software development organisations is not an easy task. In his
paper, we use the term ‘traditional software engineering’ to
refer to methodologies that place more emphasis on processes,
tools, contracts, and plans. We consider two traditional para-
digms: Unified Process (UP) [27] and Project Management
Body of Knowledge (PMBOK) [33].

Several surveys have been presented in order to analyse the
advantages and challenges with agile methodologies[1][2][14]
[29][39][40]. As outlined in [14], 64% of the 200 industrial
participants in this survey found the transition to agile method-
ologies confusing, hard, and slow. In this survey, the partici-
pants stated that understanding the necessary amount of rework
to be executed is essential for the success and overall cost of
using agile methodologies. Other identified challenges in agile
adoption were concerned with the lack of team alignment,
documentation, and focus; constant changes in the development
cycle; and cultural acceptance. In [1][14][40], the participants
pointed out issues of the agile methodology related to commu-

nication problems, loss of management control, ability to scale
agile, and regulatory compliance.

Another problem that has been flagged is related to the
adoption of agile management practices [1]. For example, as
outlined in [4],“in the development of large systems, the ‘just
enough’ documentation goes beyond the traditional set recom-
mended by the agile methods, due to the diversity of elements to
be considered, as for instance geographic distribution of the
teams, necessity to comply with industry regulations, strict IT
governance programs, integration of the system being devel-
oped with others, or even the presence of not-so-agile people in
the teams”. According to [6], agile methodologies are well
known for early and frequently releases. However, in some
cases agile practicioners are not aware of how changes in func-
tional requirement may affect non-functional requirements, and
could cause breaches of security and performance in a system.

In this paper we present Trace++, a traceability approach to
assist with the transition from traditional to agile methodolo-
gies. Traceability of software systems has been recognized as
an important activity in software system development
[10][11][24][38]. Traceability relations can support several
software development activities such as evolution, reuse, vali-
dation, rationale, understanding, and change impact analysis.
Traceability relations can improve the quality of the products
being developed and reduce time and cost of development.

The use of traceability techniques in agile projects has been
advocated in [5][9][16][41]. In agile projects traceability can
help with change impact analysis, product conformance, pro-
cess compliance, project accountability, baseline reproducibil-
ity, and organisational learning [9]. In some cases, traceability
is seen as a heavy process by agile developers [4][5].

The work presented in this paper complements the work on
traceability for agile projects and proposes an extension of
traceability relations to represent extra information in order to
assist with the transition from traditional to agile methodolo-
gies. More specifically, we concentrate on four main problems
related to the adoption of agile methodologies and show how
Trace++ could assist with these problems. The work has been
developed based on observations and analysis of some real
world agile projects. We propose the necessary information to
be represented in traceability relations. The work has been
evaluated in other two real world agile projects.

The remaining of this paper is structured as follows. In Sec-
tion II, we describe the Trace++ approach including the types

of artifacts and traceability relations used in the work, and the
different problems tackled by the approach. In Section III, we
present an evaluation of the approach in two different agile
projects. In Section IV, we discuss related works. Finally, in
Section V, we present some conclusions and future work.

II. TRACE++

A. Overview of the Approach
In order to support the transition from traditional to agile

methodologies, we propose to use a traceability approach called
Trace++, between documents generated during traditional
software development and agile methodologies. The traceabil-
ity approach consists of extending traceability relations with
extra information. The work concentrates in four different
problems associated with the transition from traditional soft-
ware development to agile methodologies. These problems are
concerned with the (i) amount of rework that occurs per sprint,
(ii) understanding of the high level scope of a project before
beginning the sprints, (iii) lack of non-functional requirements
documentation, and (iv) loss of management control (see Sub-
section II.C).

We extend the standard definition of traceability relations
[10] with the notion of information set. The information set
contains information necessary to support the four different
problems of our concern. For example, in a certain type of
Trace++ relation, the information set may contain the percent-
age of rework in story points variations, in order to assist with
the problem of absence of metrics to indicate the amount of
rework that occurs in a sprint. More formally, the main ele-
ments of Trace++ are:

• P: An agile related problem;
• Λ: Trace relations composed of a source artifact, a

target artifact, a set of additional information, and a re-
lation type;

• S = {S1, S2 ... Sj} a set of all source artifacts;
• T = {T1, T2, ..., Ti} a a set of all target artifacts;
• I = {I1, I2, ..., Im} a set of all additional information;
• Y: Relations type.

A Trace (λ) relation for a Problem P is given as:

 (1)
where:

 (2)
and

ik ''{ }⊆ I (3)

with the maximum number of necessary elements to provide
information to each traceability relation. In some cases, a com-
plex problem may require various traceability relations. This
can be represented as the union between various traceability
relations, as shown below:

 Λ(P) = λ ' (P)∪ λ '' (P)∪ ...∪ λ (m) (P) (4)

In order to use the proposed Trace++ approach, for each
problem (P), the development team should collect the elements
represented in equation (1), and use these elements to analyse
the problem. Examples of the types of elements to be repre-
sented in equation (1) are shown in Subsection II.C. Guidelines
for the analysis of the elements are described in Section 0.

B. Artifact Types
The aim of the approach is to provide traceability relations

between artifacts generated in both traditional and agile meth-
odologies. We analysed various types of artifacts that are gen-
erated when using different types of agile methods, and arti-
facts that are generated when using traditional software engi-
neering methods, in order to identify the artifacts that are rele-
vant to the transition between both methods.

TABLE I. AGILE ARTIFACTS

Method Name E M Author

APM

Product Vision X X

[21]

Product Roadmap X X
Release Plan X X
Performance Card X
Project Datasheet X
Project Charter X

Scrum

Product Backlog X X

[36]

Sprint Backlog X X
Task Board X
Impediment List X
Retrospective Timeline X
Release Burndown/up Chart X
Sprint Burndown/up Chart X
Product Burndown/up Chart X

FDD

Feature Cards X

[28]
Domain Model (UML-color) X
Parking Lot Chart X
Feature Breakdown Structure X
Development Plan X

DSDM Functional Prototype X [15]

XP

Theme X

[8]

Epic X
User Stories X
Spyke/Research Stories X
Accpetance Criteria X
Theme Screening Matrix X
High Level Design X
Spyke Architectural X
Code Refactored X
Unit Tests X
Acceptance Tests X

Lean/
Kanban

Kanban System Board X
[32][3] Visual Card X

Cumulative Flow Diagram X

Common

Kano Matrix X [19]
Persona X [30]
Wireframe/Mockups X [22]
User Story Mapping X [31]
Risk Burndown/up Chart X

[13] Risk Radar Chart X
Risk Backlog X

λ(P) = sk ,tk ' ,{ik ''}, yk ''' |{ik '''}⊆ I{ }

sk ∈ S = s1,s2 ,…,s j{ }
tk ' ∈ T = t1,t2 ,…,ti{ }
ik '' ∈ I = i1,i2 ,…,im{ }

Table I shows the agile methods and the respective artifacts
that were used in this analysis. We have classified the artifacts
into two groups, based on the definition proposed in [37],
namely (i) engineering-related artifacts (E) such as require-
ments, design, coding, and testing specifications; and (ii) man-
agement-related artifacts (M) such as project management,
measurement and analysis, and management processes. These
groups are important to support traceability relations in the
various stages of the software development lifecycle.

The agile artifacts listed in Table I are mapped to artifacts
generated during traditional software engineering development,
in order to identify possible target artifacts. For this mapping,
we have considered artifacts based on several criteria: (a) arti-
facts that belong to the Unified Process (UP) [27] or the
PMBOK [33] paradigms; (b) artifacts that are related to engi-
neering and management groups, as per the definition in [37];
and (c) artifacts that appear in all the different stages of the
software development lifecycle.

C. Agile Problems
We have conducted a study involving work reported in 23

papers [6][9][16][23][41]1 and six industrial reports
[1][2][14][29][39][40]. Based on this study we identified sever-
al problems and challenges that undermine adoption of agile
methods. Examples of these problems and challenges are:
• Absence of the use of metrics to indicate the amount of

rework that occurs in each sprint [14];
• Abandonment of the project after several iterations due to

the misunderstanding on the high-level scope of the project
before beginning sprints [14];

• Constant changes in requirements [14][40];
• Large projects with distributed teams [1][40];
• Lack of sufficient documentation [29][40];
• Communication failure between the various stakeholders of

the project on the evolution of requirements [14][39][40];
• Loss of management control [29][39][40];
• Low quality of software maintainability in formal projects

in certain industries, e.g. financial services, healthcare, tele-
com and government [40].
The work in this paper tackles four of these problems. We

have selected problems that are often cited in the literature
[6][16][26][41], and that involve tracking information between
different types of artifacts generated during the software devel-
opment life-cycle. In the following we describe the four prob-
lems of our concern in terms of their context, associated source
and target artifacts, additional information set, and proposal to
establish traceability relations. Please note that these problems
are not only related to agile methodologies, but that they appear
during transition from traditional software development.

Problem 1 (P1): Absense of metrics to indicate the amount of
rework that occurs in each sprint.
Context: One of the premises of agile methods is concerned
with the fact that the cost and schedule of a project are fixed,

1 Due to space limitations, we reference here some of the main papers and industrial
reports. A complete list of these papers can be found at http://bit.ly/1RK7T4f.

but the scope varies. This is important to provide Product Own-
ers (PO) the flexibility to prioritize backlog items in the way
that best meets their business needs, without exceeding time
and cost of development [36][32]. This approach is important
to produce items of big business value. For example, some-
times the PO has prioritized in the beginning of a project a set
of requirements that may change along the sprint, due to market
needs, but as these changes do not interfere with the schedule
and cost of the project, the manager may substitute with anoth-
er backlog some items that do not have contract changes.
However, when there are no metrics that indicate the amount of
rework caused in each sprint, multiple items of the backlog are
moved to the bottom of the list as having lowest priority, and
may not be implemented until the end of the project, causing
customer dissatisfaction.
Source artifact: User story (US).
Target artifact: Software requirements specification, persona,
wireframe, class diagram.
Additional information: Percentage of rework (story points
variation), rework (business value variation), rework (new
personas, wireframes and classes involved in user story);
Proposal: At the end of the execution of each sprint or at the
next sprint planning meeting, the team and the Scrum Master
should calculate the percentage change of story points (and/or
business value) between what has been planned at the begin-
ning of the sprint and what actually was delivered at the end of
the sprint. In addition, the team members should calculate how
much was spent on rework activities due to changes requested
along the sprint. The same can be done with the number of new
personas, wireframes, and classes identified and created along
the sprint to meet business goals.

Problem 2 (P2): Lack of understanding about the high level
scope of a project before starting a sprint.
Context: In some cases a user story is developed during a
sprint, but its prioritization changes or it becomes an epic due
to its size. In this case, traceability relations could help in
providing more details about the user story and the scope of
activities to be implemented. Moreover, these traceability rela-
tions will help with impact analysis of changes in user stories,
which can cause impacts on architecture or test scenarios of the
system. The lack of understanding of the scope can cause aban-
donment of the project after a few iterations.
Surce artifact: User story.
Target artifact: Class diagram, sequence diagram, use case
diagram.
Additional information: Identification of the preceding
sprints, which the user story has been implemented.
Proposal: During the stage of sprint planning, the development
team will have access to all information about user stories from
previous sprints, as well as traceability relations between dia-
grams (eg.: class, sequence and use cases).

Problem 3 (P3): Lack of documentation about non-functional
requirements (NFR).
Context: The lack of documentation and incomplete infor-
mation on non-functional requirements before starting a sprint

may cause delay of important architectural decisions and / or
absence of identification of important development tasks.
Source artifact: User story, Story acceptance test.
Target artifact: Architecture design diagrams, test design;
Additional information: Story acceptance criteria (e.g.; per-
formance, security, usability).
Proposal: During the stage of sprint planning, the development
team will have access to traceability relations between user
stories, architecture documents, test scenarios, and the list of
acceptance criteria related to performance, security, and usabil-
ity, among others. Access to this information during the sprint
planning will give the team members the opportunity to make
architectural changes as soon as possible, to better define the
user story acceptance criteria, to validate test scenarios, and to
identify technical tasks that would only be identified in devel-
opment life cycle. This will avoid delays in completing the
sprint or avoid increasing costs to a project.

Problem 4 (P4): Loss of management control when the project
size set in the contract is measured with function point or use
cases point.
Context: Normally, in projects involving public companies or
more traditional institutions such as financial and telecom or-
ganisations, software contracts take into account standard
measures to define the size of a project. Typically, this is done
based on function point analysis [17] or use cases points [25].
In these projects, during the transition from traditional to agile
methods, there may exist conflicts when accounting for these
measures (eg.: story points, ideal days).

Source artifact: User story, epic, theme.
Target artifact: Software requirements specification, use case
specifications.
Additional information: Story points implemented, function
points or use case points implemented per sprint.
Proposal: During the stage of sprint planning, the development
team and the Scrum Master shall estimate the scope of the
sprint in story points and function points (or use case points).
At the end of the sprint, the same team must conduct a recount
in order to understand the variation of the size of the project
that has been implemented in relation to the planned project.
For every new sprint, these values should be presented to the
product owner and a comparison with the original value of the
contract is made in order to renegotiate previously agreed con-
ditions. This comparison will be based on the requirements
document traced with user stories, epics, and themes.

D. Traceability Relations
Based on the artifact mappings described in Subsection II.B

and the agile problems described in Subsection II.C, a large
number of traceability relations can be generated combining the
various artifacts. However, not every traceability relation can
support the transition from traditional to agile software engi-
neering processes. For example, a traceability relation between
project data sheet with project charter artifact, or a traceability
relation between risk burndown chart and risk management
data sheet, cannot assist with the transition process.

Figure 1 shows the artifacts and their relations that are rele-
vant to the work in this paper. In the approach, we propose

Fig. 1. Traceability Relations

TABLE II. TRACE++ TRACEABILITY RELATIONS

Problem Link (Trace) Source Target Additional information

P1 - Rework

P1(S1, T1, I1) S1 - User Story (Id) T1 - Software Requirements
Specification (Id, description)

I1 - % Rework (story points variation)

P1(S1, T1, I2) S1 - User Story (Id) T1 - Software Requirements
Specification (Id, description)

I2 - % Rework (business value variation)

P1(S1, T9, I8) S1 - User Story (Id) T9 - Persona (Id, name) I8 - % Rework (new personas involved in user story)

P1(S1, T10, I9) S1 - User Story (Id) T10 - Wireframe (Id, name) I9 - % Rework (new wireframes involved in user
story)

P1(S1, T2, I10) S1 - User Story (Id) T2 - Class Diagram (class name) I10 - % Rework (new classes involved in user story)

P1(S1, T1, I1) U
P1(S1, T1, I2) U
P1(S1, T9, I8) U

P1(S1, T10, I9) U
P1(S1, T2, I10)

S1 - User Story (Id) T1, T9, T10, T2 I1, I2, I8, I9, I10

P2 - High-
level scope

P2(S1, T2, I3) S1 - User Story (Id) T2 - Class Diagram (class name,
atributes, operations)

I3 - Previous sprint numbers that this US had been
developing

P2(S1, T3, I3) S1 - User Story (Id) T3 - Sequence Diagram (class
name, operation)

I3 - Previous sprint numbers that this US had been
developing

P2(S1, T4, I3) S1 - User Story (Id) T4 - Use Case Diagram (use case
Id, actors)

I3 - Previous sprint numbers that this US had been
developing

P2(S1, T2, I3) U
P2(S1, T3, I3) U
P2(S1, T4, I3)

S1 - User Story (Id) T2, T3, T4 I3 - Previous sprint numbers that this US had been
developing

P3 – Lack of
documenation

(RNF)

P3(S1, T5, I4) S1 - User Story (Id) T5 - Architecture Document
(NFR section -> Id, description)

I4 - Story Acceptance Criteria related to
<performance, security, usability, etc.)

P3(S2, T8, I4) U
P3(S1, T5, I4)

S2 - Story
Acceptance Test (Id)

T8 - Test Design (Test case Id),
T5

I4 - Story Acceptance Criteria related to
<performance, security, usability, etc.)

P4 – Loss of
management

control

P4(S1, T6, I5, I6) S1 - User Story (Id) T6 - Software Requirements
Specification (Id, description)

I5 - Story Points implemented, I6 - Function Points
implemented per sprint

P4(S1, T6, I5, I7) S1 - User Story (Id) T6 - Software Requirements
Specification (Id, description)

I5 - Story Points implemented, I7 - Use Case Points
implemented per sprint

P4(S1, T6, I5, I6) U
P4(S1, T7, I5, I6)

S1 - User Story (Id) T6, T7 I5, I6

P4(S1, T7, I5, I6) S1 - User Story (Id) T7 - Use Case Specification (Id,
name, scenario, flow, step)

I5 - Story Points implemented, I6 - Function Points
implemented per sprint

P4(S1, T7, I5, I7) S1 - User Story (Id) T7 - Use Case Specification (Id,
name, scenario, flow, step)

I5 - Story Points implemented, I7 - Use Case Points
implemented per sprint

P4(S1, T6, I5, I7) U
P4(S1, T7, I5, I7)

S1 - User Story (Id) T6, T7 I5, I7

P4(S3, T6, I5, I6) S3 - Epic (Id) T6 I5, I6

P4(S4, T6, I5, I6) S4 - Theme (Id) T6 I5, I6

different types of traceability relations and different types of
information sets, as follows:

• Type of traceability relation between artifacts: <is
atend>, <has>, <is one>, <is part of>, <is related
with>, <done when pass>, <is test by>, <uses>,
<serve>, <constrained by>, <implemented by>;

• Types of information sets: {actors}, {business rules},
{test case}, {functional requirement Id}, {class name},
{scenario}, {flow}, among others.

Table II summarises the various types of traceability rela-

tions in Trace++ with respect to the agile problems (P1 to P4)
relevant to this paper. The traceability relations were created
based on the elements of equation (1).

III. EVALUATION
Trace++ has been evaluated in two real projects (projects A

and B) in one telecom and in one banking organisation in Bra-
zil, located in Porto Digital2 in Recife. The main goal of the
evaluation was to analyse how Trace++ contributes to alleviate
the four agile transition problems described in this paper. More
specifically, the evaluation analysed if Trace++ can:
(a) improve decision-making on how to prioritize backlog items
and better visualize possible items that may not be implement-
ed (Problem P1);
(b) improve understanding of the project scope before the be-
ginning of the sprint, in order to prevent abandonment of the
project after a few iterations (Problem P2);

2 http://www.portodigital.org

(c) improve understanding of the non-functional requirements
before the beginning of a sprint in order to avoid delays in
important architectural decision and / or in the absence of iden-
tification of important development tasks (Problem P3); and
(d) provide better control of project scope and minimize con-
flicts that arise when traditional software development
measures are used instead of agile measures (Problem P4).

Problem P1: Absense of metrics to indicate the amount of rework that
occurs in each sprint.
Goal: improve decision-making on how to prioritize the backlog items
and better visualize what are the risk items;
Question: how much rework occurred along the sprint because
of requirement change requests?
Metrics (as per Table II):

• I1 - % Rework (story points variation);
• I2 - % Rework (business value variation);
• I8 - % Rework (new personas involved in user story);
• I9 - % Rework (new wireframes involved in user story);
• I10 - % Rework (new classes involved in user story).

Receiver: Product Owner (PO);
Supplier: Scrum Master / Team;
Periodicity: every sprint (weekly, fortnightly or monthly);
Collection time: at the end of each sprint;
Where it will be stored: XML format;
How will the metrics be collected: the Scrum Master will have a
form to fill in the data that should be collected in 4 phases: sprint
planning 1 and 2, daily meeting, and at the end of the sprint:

Sprint Planning 1: for each user story selected by the PO,
the team calculates the amount of story points;
Sprint Planning 2: the team breaks down each user story
into smaller tasks, preferably at most 16 hours;
Daily meeting: the Scrum Master register in the bug track
ing tool the changes in each story user (source) and the
number of classes, personas and wireframes (targets) that
have been added, as well as the amount of additional effort;
At the end of sprint: the team calculates the amount of sto
ry points, the effort for each user story and the percentage
increase.

How will the metrics be analyzed: during the planning meeting, at
which the backlog is prioritized, the PO will know how much of the
backlog has already been consumed. So he will have more elements to
support his decision-making and identify the backlog risk items.
Evaluation criteria: Given the rework percentage presented at every
new sprint, the PO will be asked if the approach provides more visibil-
ity of the increase of the project scope and, therefore, if it is helpful to
replan the backlog from previous sprints.

Fig. 2. Evaluation Guideline for Problem 1

Trace++ was evaluated based on the guidelines proposed in
[35], following four main steps: (i) planning, (ii) data collec-
tion, (iii) analysis of collected data, and (iv) recording of the
results. The planning step was executed based on GQM (Goal-
Question-Metric) paradigm [7]. For each agile problem we
describe a conceptual level (goal), an operating level (ques-
tion), and a quantitative level (metric). As an example, consider

the guideline for Problem P1 described in Figure 2. The guide-
lines for the other problems are available at
http://bit.ly/1RK7T4f.

Table III summarises information about the companies and
projects (A and B) used in the evaluation, as well as the meth-
ods used in these projects, the types of contracts, and the re-
spective agile problems associated with each project. For each
project, Table IV shows information about the number of
sprints, user stories, tasks, and function points that have been
collected during the evaluation phase. As shown in Table III,
project A was developed by a team of nine members, using
hybrid methodologies, and is related to problems P1, P2, and
P3; while project B was developed by three parallel teams, with
a total of nine people, and is related to problem P4. Project A
started in 2010 and it is still under development and mainte-
nance; Project B started recently and it is also under develop-
ment.

TABLE III. EVALUATED PROJECTS

Project Area Team Methods Contract
type

Problem
evaluated

A Telecom

9 people in
the project
team (project
manager,
team leader,
software
engineers,
designers and
test
engineers)

Hybrid
(UP,
Scrum and
XP)

Fixed price
and
schedule;
Flexible
scope.

P01, P02,
P03

B Bank

3 parallel
teams with 6
software
engeniners, 2
testers and 1
designer

Hybrid
(UP and
Scrum)

Fixed
price; 1100
functions
points.

P04

Project “A” is run by a company that develops solutions for

a telecom company in Brazil. The project is about the devel-
opment and maintenance of a billing system. The software
development process used by the client is based on the Unified
Process (UP), while the team's process uses a hybrid approach
of Scrum, XP and UP. The types of artifacts generated by the
project are: requirements document, use cases, user stories
(documented in the JIRA tool3 and team task board), ac-
ceptance criteria, class diagrams, sequence diagrams, test plan,
test design, and unit test.

Project “B” is run by another company that develops solu-
tions for public sectors in banking. The project is about the
development of a new system to a public bank with a contract
based on funcion points. The software development process
used by the three parallel teams is a hybrid approach of Scrum
and UP. This project has a public bidding contract with 1100
function points, which required documentation based on tradi-
tional processes. The project consists of three subsystems de-
veloped by three parallel teams of developers (six developers,
two testers, one designer). The user stories were prioritized so
that each subsystem would not last more than 30 days. Each
subsystem was divided into three sprints of 10 days each.

3 https://www.atlassian.com/software/jira

Given the data and documents available for projects A and
B, 69 Trace++ traceability relations were manually created for
the two projects used in the evaluation. Examples of these
traceability relations for each type of problem are shown in
Figure 3. In the figure, US is an identifier used by the project to
represent a user story, NFR stands for non-functional require-
ments, and FR stands for functional requirements. A complete
list of all traceability relations can be found at
http://bit.ly/1RK7T4f.

TABLE IV. PROJECT INFORMATION

Project Sprints User Stories Tasks Funcion Points

A

3
sprints,
15 days

each

9 user stories
totalizing 39, 29 and
32 story points per
sprint, respectively

264 hours
of
developme
nt effort

Not applicable

B

3
sprints,
10 days

each

24 user stories
divided into three
subsystems totaling
54, 51 and 50 story
points per subsystem

Not
collected

124, 132 and 115
function points per
subsytem for a total
of 1100 FP

Problem P1
P1(US001, FR007, 160%) U P1(US001, (Class1, Class2), 250%)

This example shows the highest effort variation (250%) during one
sprint caused by user story US001, function requirement FR007, and
additional classes “Class1, Class2”.
Problem P2
P2(US001, (Class-domain-model, Class1, Class2), (30, 31, 37)) U
P2(US001, (Class3, Class4), (30, 31, 37))

This example shows previous sprints (30, 31, 37) involving user story
US001 and related UML diagrams.
Problem P3
P3(US001, (NFR2-1, NFR4-2-3, NFR4-2-4), (AC1, AC2, AC3, AC4,
AC5))

This example shows a traceability relation between user story US001
and a non functional requirement (NFR2-1), that requires automation
scenarios related to SOAP and HTTP APIs, with an acceptance crite-
ria (AC1) that also needs to maintain automation scenarios.
Problem P4
P4(US001A, (FR001, FR002), 5, 41) U P4(US002A, (FR001, FR002,
FR006, FR008), 5, 41) U P4(US003A, FR013, 8, 41)

This example shows three user stories (US001A, US002A, US003A)
related to functional requirements FR001, FR002, FR006, FR008,
FR013, representing 18 story points (5+5+8), with the whole sprint
concluded with 41 functional points.

Fig. 3. Example of Traceability Relations

In the following we present the results of the analysis of the
collected data for each problem.

Problem 1 (P1): Absense of metrics to indicate the amount of
rework that occurs in each sprint.

Figure 4 shows the story point variation in terms of its size
per user story, and Figure 5 shows the task effort variation in
terms of hours per user story, for project A. The graph in Figure

4 shows a decrease in the range of changes between the first
and the other user stories (from 160% to 60%), when using the
traceability relations provided by Trace++. As shown in the
figure, some user stories did not have variations on the size.
This is attributed to the fact that the scope of these user stories
has already been well defined in the sprint planning. Although
60% is still a high value for changes, the approach provides a
better view of the amount of rework required and mechanisms
to reduce the rework over the next sprints in order to minimize
the backlog of product risk items.

A similar situation occurs in Figure 5, in which the effort
variation in the first user story was reduced from 250% to 46%.
This reduction was possible due to the amount of rework speci-
fied in the traceability relations, which was not known before.
In this particular case, the remaining variation peaks (100% and
133%, respectively) were related to low complexity in the user
stories (eight and three story points, respectively), which in
absolute numbers represented eight hours of additional work.

Analysis: The use of traceability relations from Trace++
demonstrated that in every sprint planning meeting, at which
the backlog was prioritized, the product owner (PO) knew
about how much of the total backlog was consumed. These
gave the PO more information to support decision-making and,
therefore, identify the risk items that could be left out of the
project. In addition, the PO confirmed that the approach pro-
vided more visibility about increase in the scope of the project
assisting with the replanning of the backlog in relation to previ-
ous sprints. It was also confirmed that it is not necessary to wait
until the end of the project to complete the analysis phase.

Another advantage of the approach was concerned with the
analysis of the consolidated data for all the sprints. In this case,
the PO noticed that there was a decrease in the size of the re-
work variation after the first sprint was evaluated (from 70% to
38%). The same occurred in relation to the task effort, in which
the variation of effort rework decreased after the first sprint was
evaluated (from 45% to 35%).

Other benefits highlighetd by team: The team that participat-
ed in the evaluation and in the development of project A, high-
lighted the following benefits of the Trace++ approach:
 (a) “The traces are created iteratively, at the end of each
sprint. Thus, it avoids an additional effort of creating a tracea-
bility matrix around the legacy system”;
 (b)“The percentages are presented and this has helped in
making the decision of what will be prioritized between the
choice of new items and changes in current items”;
(c)“The graphics with the percentage variation (story points
and effort) help at the time to replan the backlog and to identify
elements are most affected by the changes. For example, if a
particular class is being so affected by the changes, it may be
appropriate to hold a refactoring activity to optimize it, or
establish a pair-programming rotation so that more people
know of its contents, or to convince the team to perform TDD
(Test Driven Development) for creating more classes of tests in
order to automate the regression tests”.

Fig. 4. P1 – Story points (size) variation per User Stories

Fig. 5. P1 – Task effort (hours) variation per User Stories

Problem 2 (P2): Lack of understanding about the high level
scope before starting the sprint.

Analysis: In the case of problem P2, the team also agreed that
the Trace++ approach provides more visibility about the scope
of the sprint. The team affirmed that in some cases the ap-
proach could influence problem P1, since the improvement on
understanding the scope of the project may reduce the amount
of rework variation. This behavior was observed between two
consecutive sprints, where the effort variation reduced from
45% to 35%. In addition, during the second sprint planning
meeting, in which the tasks in the sprint backlog are detailed,
the team was able to have a better idea of the traceability in-
formation involving user stories and class and sequence dia-
grams, helping with the details of the tasks that were part of the
sprint backlog.

Other benefits highlighetd by team: The participants high-
lighted the following: “Considering the specific context of the
project, where the requirements have been evolved over the last
five years, some more experienced members of the team have
not made much use of information related to the class and
sequence diagrams. However, due to high staff turnover such
information can be essential to improve understanding of the
scope of each sprint backlog, as was the case of two developers
who recently joined the team”.

Problem 3 (P3): Lack of documentation about non-functional
requirements (NFR).

Analysis: In the case of problem P3, the use of Trace++ pro-
vided the team with information about user stories and non-
functional requirements previously defined in the project archi-
tecture document. Access to this information during sprint
planning stage gave the team the opportunity to review whether
there is a need for architectural changes in the system, and
better define acceptance criteria of user stories. These avoid
delays in completing the sprint and increase on project costs.

The team also agreed that this approach supports the align-
ment between the constraints and quality attributes defined in
the project architecture document and the acceptance criteria of
user stories.

Other benefits highlighetd by team: The participants high-
lighted the following: “In the specific case of the selected user
stories, although they were identified few architectural impacts,
the approach was also helpful for new members of the team
who could question alternative ways to meet certain non-
functional requirements, for example, the need to automate
some scenarios using the JUnit Framework4”.

Problem 4 (P4): Loss of management control when the project
size set in the contract is measured with function point or use
case points.

Analysis: In the case of problem P4, in every new sprint of
project B, the percentage of deviation of the number of function
points was presented to the PO in order to compare with the
original value specified in the contract. This was important to
allow the PO to plan each new sprint considering the consump-
tion of accumulated function points. In this exercise, the origi-
nal requirements document was used as a basis, considering the
requirements and user stories indicated on each traceability
relation. The traceability relations helped the team to see that
the requirements were enforcing more changes along the
sprints. The use of the relations assisted the team to have more
control over changes in the project scope.

The PO also commented that the above has helped him to
renegotiate the scope of the project with its senior manager,
since in every 10 days (sprint size), he was shown 1100 func-
tion points and, therefore, was able to avoid surprises at the end
of the project. Figure 6 shows the variation of function points
per sprint. As shown in the figure, at the end of the third sprint
the PO could be notified that an extra 69 function points were
developed. This will be used in the planning of the next sub-
sytem, which would initially have 805 function points availa-
ble, but will now be reduced to 736.

Other benefits highlighetd by team: The participants high-
lighted the following: “This approach is allowing the team to
continue using normally story points to track the progress of
the sprint backlog through the burndown chart and only at the
end of the sprints we count the function points. This helps the
PO and Scrum Master with the visibility of the project scope
variation”.

4 http://junit.org

Fig. 6. P4 – Function points variation per Sprint

IV. RELATED WORK
Several approaches and techniques have been proposed to

support software traceability [10][11][18][24][38]. However,
the majority of existing approaches mainly discuss the use of
traceability techniques in traditional software development
processes and not in agile projects. More recently, some ap-
proaches have been proposed to use traceability in agile pro-
jects [4][6][9][18][23][26][34][41].

The work in [9] provides general guidelines for using trace-
ability in different types of agile projects, depending on the
size, longevity, complexity, and criticality of the project.

According to [18], the application of traceability concepts
to agile projects is still novice. In their work, the authors pro-
posed a roadmap to provide guidelines to simplify traceability
tools and provide traceability relations relevant to agile pro-
jects. The work focuses on Scrum [36] and XP [8] methodolo-
gies and proposes different types of traceability relations be-
tween: Stakeholder-User story, User story-User story, User
story-Acceptance criteria, User story-Test cases, and Test cas-
es-Refactoring. The different traceability relations were not
seen with the same level of importance by the various agile
developers, and some stakeholdres created more relations than
others.

In [23], the author introduces the concept of traceability
types identified through interviews conducted with developers,
testers, configuration managers, product owners and Scrum
Masters from multiple agile projects. The author concluded the
importance of the following traceability types: Stakeholder-
Requirement; Requirement-Version; Requirement-
Requirement; Requirement-Code; Requirement-Test cases;
User evaluation-Version.

The work in [4] describes a traceability management tool to
ensure traceability among user stories, traditional requirements
documents, test specifications, architecture design, and source
code. However, to guarantee a non-invasive traceability, the
authors understand that “traceability techniques should be
minimally intrusive, in the sense that people should be able to
keep using the tools they are used to for creating the artifacts
and still be able to maintain traceability among the artifacts
produced”.

In [6], the authors present a Traceability Process Model
(TPM), which is compatible to agile development processes
such as Scrum and FDD, to support traceability of non-

functional requirements. In [34] the authors propose an auditing
model for ISO 9001 traceability requirements that is applicable
in agile (XP) environments. The work in [41] analyses the
benefits against the challenges of using traceability in agile
software projects. The authors advocate the use of traceability
to help software companies with more focused customers. The
work in [26] integrates traceability within Scrum development
process.

Despite some advances in the topic, the works involving
traceability and agile processes are still imature. Our Trace++
approach contributes to the area by providing traceability rela-
tions between artifacts generated during traditional and agile
software development, and by assisting the problem of transi-
tioning from traditional to agile projects, since some organisa-
tions use hybrid processes.

V. CONCLUSIONS AND FUTURE WORK
In this paper we present Trace++, a traceability technique

that extends traditional traceability relationships in order to
support the transition from traditional to agile software devel-
opment. We concentrate on four real problems that exist in
agile projects, namely (i) lack of metrics to measure the amount
of rework that occurs per sprint, (ii) lack of understanding
about the high level scope of a project before starting the sprint,
(iii) lack of documentation about non-functional requirements,
and (iv) lack of management control. The work has been evalu-
ated in two agile projects involving two organisations. The
results of the evaluation are discussed in the paper.

Currently, we are extending the work to support the genera-
tion of Trace++ relations in an automatic way and evaluate the
cost of generating these relations. We also plan to evaluate the
use of Trace++ with respect to different characteristics of a
project such as size, complexity, and clarity, as proposed in [9].
Another area is concerned with the evaluation of when in the
life-cycle of agile projects traceability relations should be cre-
ated. The work is also being extended to support other types of
problems relevant to industry. Moreover, the approach should
allow for an extensible approach in which the definition of a
new problem does not require the identification of new tracea-
bility relation types, but instead, it should allow for reuse of
existing Trace++ information.

ACKNOWLEDGMENT
This research work was supported by the Brazilian National

Research Council (CNPq) of the Ministry of Science, Technol-
ogy and Innovation of Brazil, process #206556/2014-4. The
international cooperation with the Open University was part of
the Science without Borders5 program.

REFERENCES
[1] S. Ambler, “Agile adoption survey”, 2014a,

http://bit.ly/1MSNg5s.
[2] S. Ambler, “Test driven development survey”, 2014b,

http://bit.ly/21s1a47.
[3] D. Anderson, Kanban – Successful evolutionary change for your

technology business. Blue Hole Press, Washington, 2010.

5 http://www.cienciasemfronteiras.gov.br/web/csf

[4] P. O. Antonino, T. Keuler, N. Germann and B. Cronauer, “A
non-invasive approach to trace architecture design, requirements
specification and agile artifacts”, 23rd Australasian Software
Engineering Conference, 978-1-4799-3149-1/14 IEEE. DOI
10.1109/ASWEC.2014.30, 2014, pp. 220-229.

[5] B. Appleton et al, “Lean traceability: a smarttering of strategies
and solutions”, Configuration Management Journal, 2007.

[6] A. F. B. Arbain, I. Ghani and W. M. N. W. Kadir, “Agile non
functional requiremnents (NFR) traceability metamodel”, 8th
Malaysian Software Engineering Conference (MySEC). 978-1-
4799-5439-1/14. IEEE, 2014, pp.228-233.

[7] V. R. Basili, G. Caldiera and H. D. Rombach, "The Goal
Question Metric Approach"m 2nd ed., Wiley-Interscience,
Encyclopedia of Software Engineering, 2001. p. 528-532.

[8] K. Beck, Extreme programming explained: embrace change. 2a
edição, Boston, MA, Addison-Wesley Professional, 2005.

[9] J. Cleland-Huang, “Traceability in agile projects”, DOI
10.1007/978-1-4471-2239-5_12, Springer-Verlag London, 2012.

[10] J. Cleland-Huang, O. Gotel and A. Zisman, Software and
systems traceability. ISBN: 978-1-4471-2238-8 (Print) 978-1-
4471-2239-5 (Online), 2012.

[11] J. Cleland-Huang et al. “Software traceability: trends and future
directions”, The 37th International Conference on Software
Engineering, ICSE, Hyderabad, India, 2014.

[12] A. Cockburn, Crystal clear: a human-powered methodology for
small teams. 1a Edição, Addison-Wesley Professional, 2005.

[13] M. Cohn, Succeeding with agile: software development using
Scrum. Addison Wesley, 1st edition, Boston, ISBN-13: 978-
0321579362, 2010.

[14] L. Dronzek and T. Lanowitz, Market snapshot report: agile
realities. Voke research, 2012. http://www.vokeinc.com.

[15] Dynamic systems development method (DSDM) consortium.
DSDM atern handbook, 2013, http://www.dsdm.org/dig-
deeper/book/dsdm-atern-handbook.

[16] A. Espinoza and J. Garbajosa, “A study to support agile methods
more effectively through traceability”, Innovations in Systems
and Software Engineering, v. 7, n. 1, 2011, pp. 53-69.

[17] D. Garmus, Function point analysis: measurement practices for
successful software projects, Addison-Wesley, 1st Edition,
ISBN-13: 978-0201699449, 2000.

[18] A. Ghada and S. Zeinab, “A multi-faceted roadmap of
requirements traceability types adoption in Scrum: an empirical
study, The 9th International Conference on INFOrmatics and
Systems (INFOS), 15-17 December, Software Engineering -
Challenges of Openness Track, 2014.

[19] M. Griffiths, PMI-ACP Exam Prep. RMC Publications, Inc.
EUA, 2012.

[20] J. Highsmith, Agile software development ecosystems, Boston,
EUA, Addison-Wesley, 2002.

[21] J. Highsmith, Agile project management – creating innovative
products, EUA, Addison-Wesley, 2004.

[22] IDF – Interaction Design Foundation, https://www.interaction-
design.org.

[23] M. Jacobsson, “Implementing traceability in agile software
development”, Department of Computer Science Lund
University, Faculty of Engineering, LTHSE-221 00 Lund,
Sweden www.lth.se.

[24] W. Jirapanthong and A. Zisman, “XTraQue: traceability for
product line systems”, Softw Syst Model (2009) 8:117–144, DOI
10.1007/s10270-007-0066-8, Springer-Verlag, 2007.

[25] G, Karner, Metrics for Objectory, University of Linköping,
Sweden. No. LiTH-IDA-Ex-9344:21, 1993.

[26] M. Kodali, “Traceability of requeriments in Scrum software
development process”, Malardalen University School of
Innovation Design and Engineering Vasteras, 2015.

[27] P. Kruchten, The Rational Unified Process: an introduction (3rd
edition), ISBN-13: 078-5342197709, Addison Wesley Signature
Series, December, 2003.

[28] J. D. Luca, Feature driven development, Nebulon Pty Ltd., 2002,
http://www.featuredrivendevelopment.com.

[29] C. O. Melo, V. A. Santos, H. Corbucci, E. Katayama, A.
Goldman and F. Kon, Métodos ágeis no Brasil: estado da prática
em times e organizações. Technical Report RT- MAC-2012-03.
Science Computing Department, IME-USP, May, 2012.
Portuguese Version Only.

[30] L. Nielsen, Engaging personas and narrative scenarios. PhD-
Series, 2004.

[31] J. Patton, User story mapping: discover the whole story, build
the right product, O'Reilly Media, 2014.

[32] M. Poppendieck and T. Poppendieck, Lean software
development: an agile toolkit, EUA: Addison-Wesley, 2003.

[33] Project management institute (PMI), PMBOK - A guide to the
project management body of knowledge, 5th edition, Newtown
Square, PA, 2013.

[34] M. Qasaimeh and A. Abran, “An audit model for ISO 9001
traceability requirements in agile-XP environments”, Journal of
Software, Vol. 8, No. 7, July 2013, pp. 1556-1567.

[35] P. Runeson, M. Höst, “Guidelines for conducting and reporting
case study research in software engineering”, Empir Software
Eng, 14:131–164, DOI 10.1007/s10664-008-9102-8, Springer,
2009.

[36] K. Schwaber, Agile project management with Scrum. EUA:
Microsoft, 2004.

[37] Software engineering institute (SEI), CMMI for development,
version 1.3, staged representation, 2010. Pittsburgh, PA,
CMU/SEI-2010-TR-033.

[38] G. Spanoudakis and A. Zisman, "Software traceability: a
roadmap," in S. K. Chang, ed., Handbook of Software
Engineering and Knowledge Engineering, August, 2005.

[39] Versionone, The 8th state of agile development survey, 2014,
http://bit.ly/250N4eJ.

[40] Versionone, The 9th state of agile development survey, 2015,
http://bit.ly/1owKxb6

[41] D. H. Vuong, “Traceability in agile software projects”,
University of Gothenburg Chalmers University of Technology
Department of Computer Science and Engineering SE-412 96
Göteborg, 2013.

