
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Managing Requirements Change the Informal Way:
When Saying ‘No’ is Not an Option

Waqar Hussain§, Didar Zowghi*, Tony Clear§, Stephen MacDonell§, Kelly Blincoeð
§School of Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand

*Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
Department of Electrical and Computer Engineering, University of Auckland, New Zealand
§ {whussain, tclear, smacdone} @aut.ac.nz, *didar.zowghi@uts.edu.au, ðkblincoe@acm.org

Abstract— Software has always been considered as malleable.
Changes to software requirements are inevitable during the
development process. Despite many software engineering
advances over several decades, requirements changes are a source
of project risk, particularly when businesses and technologies are
evolving rapidly. Although effectively managing requirements
changes is a critical aspect of software engineering, conceptions of
requirements change in the literature and approaches to their
management in practice still seem rudimentary.
The overall goal of this study is to better understand the process of
requirements change management. We present findings from an
exploratory case study of requirements change management in a
globally distributed setting. In this context we noted a contrast
with the traditional models of requirements change. In theory,
change control policies and formal processes are considered as a
natural strategy to deal with requirements changes. Yet we
observed that “informal requirements changes” (InfRc) were
pervasive and unavoidable. Our results reveal an equally ‘natural’
informal change management process that is required to handle
InfRc in parallel. We present a novel model of requirements
change which, we argue, better represents the phenomenon and
more realistically incorporates both the informal and formal types
of change.

Key words—Informal requirements change, scope creep,
requirements management, requirements change management.

I. INTRODUCTION

Requirements change is a recognized and accepted
phenomenon in contemporary software development. In fact,
change is welcomed and embraced in agile development
approaches, as a means of adding value and improving usability.
On the other hand, uncontrolled changes may pose a risk to cost
and quality of software [1, 2] and hurt organizations through
missed deadlines, budget overruns and wasted resources [3].

Requirements evolve due to a combination of internal and
external factors that trigger change [1]. Some of the unavoidable
changes that impact the development process are still
manageable because they are customer-initiated, externally
focused and assessable in terms of their impact. Therefore
communicating the implications of these changes to customers
is comparatively straight forward and establishing change
control policies or safeguards against them is possible [4, 5]. In
this study we have observed another class of requirements
change that we refer to as Informal requirements Change
(InfRC). InfRCs are more internally focused, potentially

subversive to the development process and therefore harder to
manage. We define InfRCs as those changes that bypass most of
the controls imposed by formal change management processes
(e.g. formal review and change impact analysis) and get
implemented in the resulting system.

Several factors contribute to the manifestation of InfRC in
software development projects. Sometimes they arise as a
consequence of prematurely ending RE activities [6] or
attempting a requirements ‘freeze’ earlier than usual in a project,
thus ‘latent’ but necessary changes spring up [5]. In other cases
InfRC might emerge as a consequence of skunkworks (work
hidden by managers to get something developed by making ad
hoc decisions and bypassing time consuming formalities [7]),
creeping requirements (a continuous influx of requirements
additions and changes) [8, 9], or creeping elegance [10]
(additions made without the consideration of delay in the
schedule and project cost [11]). InfRCs may also result from the
failure to create a practical process to help manage changes [12].

We posit that although many projects still use plan-driven
RCM processes for good reasons but they seem to lack adequate
support to recognize and manage InfRC. The overall objective
of this research is thus to explore the notion of InfRC by
conducting a case study. Our aim is to increase our
understanding of this complex phenomenon, discover its
sources, the reasons to accommodate them and the implications
of dealing with such changes in an informal manner. The
research questions for our study are:

RQ1. What are the sources of informal changes to requirements?

RQ2. How are informal changes handled in practice?

RQ3. What are the implications of managing requirements
changes informally?

In addition to presenting the findings of our exploratory case
study of managing InfRC in a software development project, this
paper also presents a more realistic change management process
model for InfRC. To our knowledge this is the first known model
that captures both formal and informal activities to manage
requirements.

This paper is organized as follows; Section II briefly
describes the unpredictable nature of requirements and presents
the classical perspective on requirements change management.
Section III describes the research methods used in this case
study. Section IV presents the research settings and profiles our
case study adopting a vendor’s perspective. Section V highlights
the findings and presents the model of requirements change
derived from this study, discusses the sources of InfRC, the
reasons to accommodate changes informally and its
implications. Section VI reflects on InfRC as an inevitable
phenomenon and the oversight with regards to InfRC in the
existing RCM models in literature. The limitations of this
research are covered next in Section VII, followed by the
implication of the results for research in Section VIII. Section IX
briefly concludes the paper.

II. BACKGROUND

Commercial bespoke projects continue to face an influx of
requirements change from elicitation through to delivery and
even beyond [1]. This reality shatters the rigid, and unnatural
formal change control policies superimposed by management on
the projects to keep them under control.

The reality of developing software is its innate malleability
and the emerging (sometimes arbitrary) nature of requirements.
The initial vision for a software solution evolves as the project
is explored through dynamic artefacts that clarify the initial
perception of reality [13]. Similarly stakeholders with different
opinions and priorities express their requirements in different
ways leading to ambiguities and inconsistencies [14]. Often
changes need to be made to resolve them. Some of these changes
are handled by a formal process while others follow a different
(sometimes informal) path.

The traditional RCM process models found in the literature
are geared towards handling requirements change based on
formal change control policies [5, 9, 15-17]. The drivers for
these models appear to be both commercial as well as project
management concerns of controlling cost and scope. The
underlying assumptions in almost all models is that changes only
occur when requirements are base-lined and therefore changes
should only be treated formally. However in reality, the
relationship between the change requestor and implementer and
the urgency or significance of change may not allow a change to
always follow a formal path for implementation [17, 18]. For
example prototypes can be informally “hacked together” by both
the customer and the developers. When clients or their
representatives have easy access to development teams they
often request additions to the requirements without going
through a formal change review process [10]. In such
circumstances customers often approach developers directly to
get their desired changes implemented into the system. Similarly
the developers can (informally) add features of their own choice
to the software by means of ‘gold plating’ [19]. Thus,
requirements can become unstable in ways that are not always
visible to project managers [10].

The existing requirements management process models do
not acknowledge or treat such informal changes. Under
conventional change management approaches, the prescribed

measures to efficiently manage scope creep include having a
single channel to handle change with a firewall to guard against
unwanted changes [5], base-lining requirements [9] and
checking, costing and approving changes. However none of
these approaches are specifically designed to handle informal
changes in requirements as described previously.

We have identified a context wherein informal changes in
requirements were inevitable and pervasive. A formal change
process may appear a ‘natural’ strategy to cope with changes in
requirements in a formal way. However, our study suggests that
there is also an equally ‘natural’ and parallel process that occurs
through which informal changes are handled.

III. RESEARCH METHODS

To answer our research questions, we performed a case study
of a software development project carried out across three
geographically distributed client and vendor sites in the USA
and Pakistan. An exploratory case study methodology [16] was
applied to gain a deeper understanding of the phenomenon of
requirements change, which we argue is an under-theorized area
in software engineering. Data was collected primarily from
semi-structured interviews, observation of the requirements
management process, and inspection of change related artefacts
(e.g. RM process documentation, Requirements Change Logs
and Issue Tracking System).

A. Interviews

The first author travelled to Pakistan to carry out interviews
of the key project stakeholders from the vendor side. Seventeen
semi-structured interviews of approximately 45 minutes each
were conducted in this case study. The interviewee roles
included the development manager, two team leads, two
developers and a quality assurance manager. To cover the
client’s perspective, the CEO of the company was interviewed
who also acted as a proxy client.
The interviews were guided by high level questions such as:
‘‘what are the practices of carrying out and managing
requirements change?” and “what are the challenges faced by
practitioners in managing requirements?”. The goal of these
interviews in general was to understand the change management
practices and to identify major challenges. However, during the
course of this study, an informal change management process
was identified which was later explored. The interviews were
recorded and transcribed in full for further analysis. The data
collection process spanned over 10 months (Feb 2013 to Jan
2014).

Thematic content analysis (TCA) technique [20], was
applied to analyze qualitative data collected from the semi-
structured interviews. During analysis the data was organized,
synthesized, evaluated, interpreted and categorized in order to
see patterns, identify themes and discover relationships [21].

The identified challenges for managing requirements
change, major factors contributing to these challenges and their
implications were placed under appropriate categories that
emerged from thematic analysis. Other emergent themes related
to actual practices, including InfRC were identified and explored

Figure 1. Requirements Collaboration among Stakeholders in WIS Project

further. The results of TCA carried out by the first author were
reviewed and confirmed by two other co-authors.

B. On-site Observations

Observations were made during client and development
team meetings, team collaboration over requirements and
change related activities. These observations regarding
activities, roles, sites and process were mapped using (activity
based) process mapping [22] technique to understand the RM
activities better and create CM model in practice (Figure 3).

C. Artefact Analysis

We inspected and analysed a range of artefacts related to RM
process using Artefact analysis techniques [23]. The main
artefacts included RM process documentation, requirements
specification, design specifications, change related emails
between the client, proxy client and the development team, from
an online issue tracking tool and Requirements Change Logs
(RCLs) containing around one hundred change requests.

D. Analysis Procedure

The analysis of the data obtained from these three sources
helped to ascertain the actual change management practices of
the project team and to identify any discrepancies from the
prescribed process (Figure 2). Table 1 describes the steps
involved in analysing data collected from these multiple
sources.

The existing change management practices of the project
identified through our analysis were mapped into a model
(Figure 3), which we call the Change Management Process
Model in Practice (CMMiP). This model depicts the lifecycle
activities of a requirements change based on the actual practices
and sequence of activities observed in the case study. The initial
draft of the CMMiP model was shared with the vendor’s
development manager for verification, and the model was
updated based on his feedback.

IV. RESEARCH SETTING

We studied a software procurement and development project
at Sync (a fictitious name invented to secure the anonymity of
the company). The project involved an enhancement of a web
based information system (WIS). The goal of the project was to
integrate the WIS interface with existing online tools to facilitate

TABLE1 PHASES OF THE ANALYSIS PROCESS

Phase Description of the process

Familiarization with
data:

Transcribing data (where necessary), reading
and re-reading the data, noting down initial
ideas.

Generating initial
codes:

Coding interesting features of the data in a
systematic fashion across the entire data set,
collating data relevant to each code

Searching for themes: Collating codes into potential themes,
gathering all data relevant to each potential
theme

Reviewing themes: Checking if the themes work in relation to the
coded extracts (Level 1) and the entire data set
(Level 2), generating a thematic ‘map’ of the
analysis.

Defining and naming
themes:

Ongoing analysis to refine the specifics of each
theme, and the overall story the analysis tells,
generating clear definitions and names for each
theme.

Producing the report: The final opportunity for analysis. Selection of
vivid, compelling extract examples, final
analysis of selected extracts, relating back of
the analysis to the research question and
literature, producing a scholarly report of the
analysis.

utilization of the available information and improve user
experience. The contract outlined high-level scope, objectives,
and deliverables for the project. The vendor therefore had to
elicit requirements from the existing system, from the
stakeholders (various client groups and general public) and other
available resources. A bridging role was deemed necessary to
mediate or liaise between the client and the offshore
development site especially for RE activities. The CEO of Sync,
who was onshore with the client in the USA played this role. A
mix of waterfall and evolutionary prototyping [24] was adopted
as the methodology for the development of WIS. The use of a
plan- driven [Waterfall] methodology instead of an agile
approach for this project resulted in more strict change control
policies.

The vendor team collaborated with three sets of
stakeholders: the client’s IT staff, domain experts (DEs) and
users (shown as ‘Stakeholders’ in Figure 1). DEs acted as
additional clients who participated in requirements-related
activities and performed verification and validation services for
software releases. Similarly, the client collaborated with two
groups of the stakeholders at vendor organization, the onsite
BA/proxy client and offshore development manager as well as
team leads. Figure 1 depicts the sites and key roles involved in
requirements related collaborative activities.

Sync is a CMMI Level–II certified software development
company based in USA with an offshore development team in
Pakistan. A CMMI based requirements management model [25]
was prescribed for use by the management of the vendor
organization (Figure 2). The activities shown in the model are
linear which start from gathering and analyzing requirements,
which are then signed off by the client. Change management
activities follow requirements sign off phase and after
completion of those activities requirements traceability is
managed. Corrective actions are taken if any inconsistencies are
identified in the process.

Figure 2. Requirements Management Process Model (Activity Diagram)

V. FINDINGS

Section A describes the actual RCM process observed in
practice and the differences identified between the prescribed
and actual practices. Section B describes the informal change
management process that runs in parallel with the formal one
giving details of the sources of InfRC, the reasons to
accommodate them and the consequences to the project.

A. Inconsistencies with Prescribed Process Model

During the analysis of the data from the interviews,
observations and artifact analysis, several differences were
identified between the prescribed model (Figure 2) and the
actual requirements management practices (Figure 3). Data
analysis also revealed that the prescribed process was not fully
followed in the vendor organization.

The main lifecycle activities of a requirement/change
observed in actual practice were: Elicitation, Analysis (and
Negotiation), Model & Design, Detailed Specification,
Negotiation and Prioritization, Implementation and Test & Fix
Cycle.

The RM process model prescribed for Sync however, did not
capture the complex and iterative nature of how requirements
were actually managed. The problems identified with the
prescribed model are discussed here:
Prescribed model lacks coverage for RM activities: The WIS
project methodology involved evolutionary prototyping.
Prototyping was also utilized to model, verify, validate,
negotiate and prioritize requirements as well as changes during
the project. Updated versions of design documents and
prototypes were shared with the client to obtain their official
approval prior to the development work. None of these activities
were captured in the prescribed model (Figure 2).

Differences in responsibility: The participant interviews and
other process artefacts revealed that at least five individuals from
two different sites contributed to elicitation and analysis
activities as opposed to the two roles shown in the prescribed
model.

On the other hand, according to the prescribed model,
members of both the development and management team were
responsible for creating change related documentation. However
the analysis of the RM documentation and the interview data
revealed that 12 out of 15 documents were produced by the
quality assurance department.
Differences in sequence of activities: Requirements traceability
is shown as the fifth activity that starts after the requirements
change management. However based on the change process
documentation, traceability started once the initial requirements
were signed off by the client and baselined.

Similarly, according to the contract, the design specification
sign off was to be at the end of the requirements elicitation.
However, in reality the alpha release testing and feedback were
used for elicitation, clarification and modification.
Prescribed model requires significant project documentation:
Design documents were collaboratively developed by the client
and the vendor during elicitation and analysis activities. As a
prescribed company practice, changes proposed during
elicitation and analysis should be reflected in the design
specification documents. However six out of the eight
participants reported that they did not have enough time to
update the design documents with all the changes. Furthermore
according to the prescribed practice changes in the design
specification documents were to be formally managed through a
Tailoring Request Template (TRT). However most of the
changes made to the design documents were not formally
approved, recorded or managed through the TRTs.

The prescribed RM policy required all functional and non-
functional requirements to be recorded in RM workbook
however only ninety five requirements (estimated to be 20% of
the total) were noted in the RM workbook. It resulted in a
disconnect between the RM workbook, the initial high level
requirements and the detailed design specifications.
Prescribed CM process lacks support for informal changes:
According to the prescribed model (Figure 2), changes in
requirements could only be managed after requirements sign off.
However significant changes were made to the project
requirements from the time of the contract award to the actual
requirements sign off. In a procurement model of software
development, where only high level requirements are
incorporated in contractual documents, a natural process of joint
requirements understanding and evolution follows. It leads to
modifications in existing requirements and scope. In our case
study some of these changes were informally accommodated
into the existing scope without invoking the formal change
management process by the vendor or were deferred by mutual
agreement.
In case of informal change accommodations no documents (such
as change request forms) were produced. Similarly the client
was not billed for the additional effort required for
implementing such changes. In such cases the actual practice

Figure 3. Change Management Model in Practice (CMMiP)

differed from the prescribed practice which was not captured by
the prescribed model (Figure 2).

B. Informal Requirements Change – A Reality in the WIS
Project

A key finding from our analysis of the actual change
management process is the emergence of Informal Requirements
Change (InfRC). The practices to implement and manage InfRC
emerged when participant interview data, the prescribed RM
model and change related artefacts were analysed. The analysis
helped in ascertaining the actual change management practices
and identifying any discrepancies from the prescribed process.
This information was mapped out and codified to empirically
construct the ‘Change Management Process Model’ (CMMiP)
in practice shown in Figure 3.
The model in Figure 3 depicts informal requirements change
management activities within the two clouded regions. On the
right hand side of the main lifecycle activities, informal change
activities are depicted (in the clouded region). These activities
take place prior to the design specification document signoff. If
the change is accommodated by the vendor it returns to the
requirements lifecycle activities circle otherwise it undergoes a

negotiation cycle before being reprioritized or deferred by
agreement. On the left hand side of main lifecycle activities
again show the activities for accommodating change as
previously noted (in the clouded region). Since many contractual
requirements upon elaboration became changes, they passed
through the informal activities’ cloud (top right of Figure 3).

Changes in requirements continued from elicitation through
to implementation and deployment. Accordingly, the decisions
to treat changes in contractual requirements formally or
informally were also taken throughout the project lifecycle.
Therefore even some of the changes identified during testing and
release went through the informal change management activities
(bottom left clouded region of Figure 3).

From the vendor’s perspective, changes in requirements
identified which the vendor considered as out of (contractual)
scope, had to be negotiated with the client. This negotiation
resulted in a decision to either include or exclude the change in
requirement in the existing scope. To proceed with the contract
the choices available for the vendor were either to get the client’s
approval to reprioritize requirements, convince the client to
adjust the existing cost and project schedule or bear the cost of
these changes. In some cases the vendor agreed to accommodate

such change requests, which they considered outside the initially
agreed contractual project scope. Such accommodations of
changes in requirements were treated informally and were
carried out without charging the client or invoking the formal
change management process. According to the development
manager none of the changes identified during elicitation, design
and specification period were considered formal, he stated

“Changes that come during the requirements or design
phase are not considered ‘changes’, they are better
understandings of (the same) requirements. That is why we
do not put those changes into our formal change
management process”

Similarly, changes in requirements requested by the proxy
client (CEO of the vendor company) were handled informally
and implemented without (officially) adding extra time and
effort to the existing project plan.

C. Sources of Informal Requirements Change (InfRC)

Several sources of InfRCs were identified in this case study.
We also observed an imbalance of power relationship between
the development team and the proxy client, as discussed below.

Imbalance of power relationship between the development
team and the proxy client. One of the main reasons for the
project going through many informal change implementations
was the role of the proxy client. There was an asymmetrical
power balance between the proxy client and the development
team [26]. Having the domain knowledge and familiarity with
the client’s culture and language earned the proxy client respect
and gave him a sense of power over the members of the offshore
development team. The development team members often relied
on his domain knowledge, discernment and comprehension for
verification and clarification purposes of their understanding of
requirements.

The position of the proxy client as a CEO of the company
afforded him the advantage of suggesting and having informal
requirements implemented. The power difference made it
difficult for the development team members to say ‘no’ to his
informal change requests. One of the managers discussed how
these informal requirements kept coming in and getting changed
by the proxy client almost on a daily basis.

“The proxy client says that we would build graphs to
present the data, and the next day we are told to create a
certain type of graph and the following day the proxy client
would say no develop a 3D graph. So almost every second
or third day the requirements are changed.”

He continued to explain that such frequent informal changes
were not even considered changes by the proxy client.

“He [proxy client] does not even consider those as
requirements change…he says there is no harm in tweaking
the UI.”

The implementation of these informal change requests (in a
‘timely’ manner) was also a cause of contention between the
development team and the proxy client. Often the proxy client

would argue with the team members and ask why “this sort of
small change has not been done in two weeks?”
Changes with low implementation effort: Another source of
informal changes was the modifications to the requirements that
required low implementation effort. These changes were often
identified during elicitation and design phase but had a ‘minor’
impact on cost and schedule. These were not considered as
formal changes by the vendor and hence were treated informally
often bypassing the complexities or regulations of the formal
change management process that required involving the CCB
and getting change request approvals). The development
manager reported that such changes were accommodated within
the existing scope of the project without charging the client.

“We (the client and the vendor) have some initial
understanding of the requirements scope and budget. If we
see that there is a small change /difference [in scope] which
is absorbable by the initially proposed budget to the client
then we implement the change on our end with no additional
cost to the client”.

If the change demanded a significant effort based on an
informal evaluation it was renegotiated with the client

“If we see that it is going outrageous and we need much
more effort and resources then we let the customer know…
it then becomes a business decision which takes its own
[formal or informal] path.”

Requirements with subjective nature: The project involved
development of a web interface with better presentation and
improved user experience (UX). The exact definition of the UX
remained elusive as it was not clearly defined. Given the
subjective nature of the desired UX often many requirements in
the studied case had to be ‘invented’. One of the software
developers explained:

“The project we have is more of a product than a project in
which we have to innovate the requirements. The customer
has simply given us the data that we need to present it in a
useful, appealing and better way.”

The conception, formulation and discovery of the hidden
user needs came through inventing new product features using
innovative technical solutions.

D. Reasons to Accommodate Informal Change Requests

In the case of informal change, the cost of implementation
was not charged to the client. The development team members
provided various reasons for accommodating informal changes
and managing them informally.
Low Implementation Effort: If the team members perceived the
change to be implemented required ‘low’ effort (up to five
hours) it was accommodated without charging the client.

“So if it is one to four hours’ work, we tend to accommodate
it.”

UI Changes: UI changes were considered ‘low’ effort and were
implemented without invoking any formal process.

“The changes which come within UI, we do not consider
them changes at all… the changes to the workflow are a part
of the change management process.”

Business Relationship & Goodwill: Change requests made by
the client (considered low in impact), especially during
elicitation and design phases were often implemented without
any cost to the client. This was meant to establish good client
relationship and to retain the client.

“The owner of the company who is directly dealing with the
client, takes that decision [to accommodate
change]…obviously it is based on the business relationship
with the client.”

“to facilitate the customer…to create some goodwill…
[and] yes to retain the client.”

Nature of the Client: Changes were also accommodated if the
client was perceived to be ‘stubborn’.

“It [the response] also depends on the client, you know
some clients are good they quickly understand [the impact
and effort] and tell you ok you can take your time and we
will pay for that. Others are a bit stubborn and then you
have to accommodate them.”

Peer Pressure & Internal Threshold to Save Documentation
Effort: The vendor’s offshore team was also faced with an
implicit internal threshold about when to use a change request
form. The development team members were ‘encouraged’ to
simply carryout ‘small’ development tasks that involved a
development effort of four to five hours.

“For minor work we make the CRF but we don’t bill it. …
If the change is just a four hours work, we do not bother
sending a CRF to the client… sometimes we are
[informally] told to just implement it.”

“See first there has to be a consensus from our CCB
members, to see if it really is a change [worth going through
the process of CRF].”

E. Implications of Informal Requirements Change
Management

Several implications of informally managing requirements
changes were identified in the studied project. These
implications included: added pressure on the team to meet
deadlines, extra time and (uncompensated) effort, delay in
release dates, misunderstanding and conflicts among the team
members, problems in change understanding, confusion during
testing and lack of requirements traceability.

Continued accommodation of informal change requests from
the client were portrayed as a business strategy, a relationship
building activity and an internal mechanism for efficiency.
Similarly, InfRCs received from the proxy client were hard to
refuse for the development team.
Added pressure on the team: the added impact of even ‘low
effort’ change requests put pressure on the development team.

“Yes these [informal] changes put pressure on the team
especially when they come at the tail end of the project”.

Delivery date delays: the required extra effort often contributed
to delays in delivery.

“We have to put in the extra time … if the change was of
twelve hours and the client asked us to it in six 6 hours, and
we agreed, then obviously the delivery deadlines are
extended”.

Miscommunication, misunderstanding and conflicts: handling
informal changes also contributed to team issues including
miscommunication, misunderstandings and conflicts.

“The first and foremost problem is that we don’t know that
a change has arrived. The proxy client discusses and
decides a change with the development manager who
(casually) writes it down on the paper or note pad. When the
developer comes next day he is asked to implement that
change. The change gets implemented and the QA
department does not even know that a change has
occurred.”

Traceability related challenges: Our artifact analysis revealed
that, for informal change requests, often changes were carried
out in the code itself, but design specifications, use cases and test
cases were not updated. This practice resulted in breaking the
traceability links between the aforementioned artefacts. In the
interviews, the quality assurance department also spoke of the
lack of traceability.

The QA Manager noted that the constant influx of informal
changes, especially related to user interface, prevented the
appropriate traceability matrix updates.

“We do not or cannot develop or maintain a traceability
matrix because we get bombarded with many
requirement…generally if it is UI change, the traceability
coverage is limited,”

Testing related challenges: Testing informal change
implementation was quite challenging in the absence of critical
information such as what and where the changes were made.

The tester gets to know about the change only when he looks
at the actual screen itself and goes like ‘why is this screen
appearing or behaving different?’ Then he realizes that the
screen was changed as a result of the last night’s meeting.”

Due to lack of traceability, the testing team was often unaware
of the informal requirement changes. As per participant
interviews, these changes, therefore, were often reported as bugs
during testing. This not only caused tensions between the
development and testing team members, it also required
significant amount of coordination overhead and testing rework
to resolve these issues.

VI. DISCUSSION

In this section we discuss the inevitability of InfRC, the
relatively limited coverage of InfRC in the literature, why
InfRC appears to be a pervasive phenomenon, why developers
accommodate InfRC and the implications for researchers and
practitioners.

Figure 4 Requirements Change Log (RCL) Version 2

A. Inevitability of InfRC

Project requirements may never be complete, in fact
sometimes they are purposefully left incomplete that leaves
room for multiple interpretations and change [27]. An effective
RE process must deal with situations where formalized
description of both functional and nonfunctional requirements
may not be available [27]. In software procurement and
development projects “open-target requirements” are
recommended since it is hard to specify requirements in detail
upfront [28]. In such context the customers specify their
demands and expectations and the vendor respond with how
they can meet the demands. Again, this approach leaves plenty
of room for requirements elaboration and change, some of
which may end up being informal change requests.

As Wiegers states [9], implementing requirements change is
not free. The recommended strategy to cope with (the ‘forced’
and unwanted) informal changes according to Weinberg [29],
is to say ‘no’. However, in the studied case the powerful role
ofthe proxy client did not allow the development team members
to have the option to say ‘No’.

Although a formal CMMI-based change management
process was in place, informal changes requested by the proxy
client bypassed this process. Furthermore, these informal
changes were implemented within the same time and scope.
This scope creep could have resulted in many unwanted
outcomes of blown out project cost and missed deadlines. The
project however was kept on course for an on-time delivery at
the expense of the development team’s unrewarded extra work.
Fearing admonishment by the proxy client or even worse, losing
their jobs, the team members did not say ‘no’ to these informal
requirements. This could also have been because “people done
like to say ‘no’,“ and development teams can receive intense
pressure to always say “yes” as noted in [9].

In the studied case, most of the informal changes in
requirements requested by the proxy client were treated as
‘emergency fixes’ which had to be carried out immediately.
This meant that almost all formal change management steps had
to be bypassed. Harjani and Queille [18] consider change
requests that bypass certain formal steps as variants of the
formal or instantiated process. These fixes however are used to
prevent a disaster or to modify software urgently. Time

constraints on these changes make them incompatible for a
formal process of maintenance hence a short procedure
becomes necessary. None of these were applicable for the
informal change requests made by the proxy client in the
studied project.

Describing the minimal steps involved, Harjani and Queille
report that, when emergency changes are deemed necessary
(which was almost always the case in this case study) only a
minimal solution and impact analysis is carried outdone by the
most experienced staff followed by change implementation and
testing.

Sommerville [17], suggests that implementing changes
quickly and directly into the system without following a formal
change management process adversely affects the system. Since
changes are made directly to program code without modifying
the requirements or design; the design and code become
inconsistent. Furthermore, in situations where a quick and
workable solution is chosen instead of the best solution, it
accelerates software ageing [17]. As noted in section V, not
communicating informal changes resulted in traceability issues
and confusion among stakeholders.

Sabaliauskaite et al. [30] note that when requirements
engineers do not inform developers and testers about changes
in requirements, it creates several challenges for testing. Testing
teams face extreme difficulties to identify the right people who
have change related information or developers who have
implemented the changes. Since change related information is
not updated testers are not aware about the changes that have
occurred. It further causes traceability and requirements
verification to be a big issue. Similarly Bjarnason et al.
colleagues [31] note that lack of change communication
between requirements engineering and testers contribute to
wasted effort and frustration as well as lack of motivation to
work. Furthermore it often results in quality issues for the
software output in terms of meeting client expectations [31].
Surprisingly, even from the client side, some of the formalized
and accepted changes were implemented without any cost to the
client (See CRF00049 and CRF00056, Figure 4). The possible
reasons could be any of the previously stated rationale such as
creating goodwill, nature the client or building relationship as a
business strategy as noted in Section V.

B. InfRC and Formal Change Models

The focus on formal RCM that is prevalent in the literature
[17] has meant that informal RC has received very limited
treatment. Requirements change in general is often viewed
negatively [32]. Handling of informal changes is similarly
viewed as a negative activity infamously associated with “scope
creep”, “Gold plating”, creeping elegance [5, 9] and
“skunkworks activity” [7]. Approaches to its treatment therefore
appear to have been overlooked, apart from the agile movement
and its focus on permitting and even encouraging change [33].
While agile processes address a change orientation they typically
have some notion of a baseline, and apply practices of time-
boxing and prioritization as the primary RCM mechanisms [34].
So literature shows a contrast between the traditional and agile
approaches, with the former focused on task and control and the
latter on people and practices.

In the classic requirements change management models [16]
formal processes driven by CCBs and CRFs is a typical
approach and ignores informal processes for dealing with
requirements change. So why are the findings in this study
different? For instance, the model presented by Niazi et al. [16]
was extracted solely from interview data and their interpretation
of how the studied organizations managed requirements
changes. In contrast our study draws upon multiple empirical
data sources and methods which are mutually supporting:
interview data, electronic artefacts, process mapping and close
observations of practices based on significant periods in the field
setting. This closeness to practice enabled us to see the
divergence between practitioners’ actions and the classical
models of requirements change.

C. InfRC and Evolving Practices for Managing Change

Previously [32] we discussed the role of spreadsheets in the
evolution of requirements management practices in a Global
Software Engineering setting. It was evident from tracking the
requirements change logs over time (6 years) that the team had
developed increasing sophistication in managing and in effect
formalising InfRC, by recording time spent by developers on
changes which were not billed to the client. We can see from
Figure 4 that the development team’s practices evolved to
introduce effort hour estimates invested in implementing InfRC.
These estimates were not present in the earlier version of their
Requirements Change Log. So it is apparent that the
practitioners were not only aware of the implications of InfRC
but they had also started to develop some mechanisms for coping
with them.

VII. LIMITATIONS

The findings in this study are drawn from a single case and
while our observations and synthesis with the previously
published research suggest its wider relevance, subsequent
studies would be needed to demonstrate the validity of the
phenomenon and the applicability of the model in other settings.
The researchers had limited access to the end client which
resulted in our deriving these finding mostly from the vendor’s
perspective. The client perspective was able to be seen through
the vendor role acting as the proxy client. A more direct end

client interaction in the offshore site may have provided
additional insights.

VIII. IMPLICATIONS FOR RESEARCH

In this study the role of proxy client appeared to generate a
large amount of InfRC whether that is specific to this case or a
more general deficiency in a proxy client’s boundary spanning
role would be a fruitful area for research.

In addition, better understanding of InfRC and its
applicability in software development projects in other domains
needs further investigation. We have argued that agile
methodologies largely deal with InfRC through prioritization
mechanisms and by time boxing but we believe that InfRC still
presents challenges in agile projects and warrants closer
investigation.

The market driven software aspects of this study as covered
in [33], have highlighted challenges which seem to drive InfRC.
It is necessary to find a good trade-off between requirements
corresponding to perceived user needs and new, invented ones
that may provide a competitive advantage through ground-
breaking technology. Finding a good balance between
technology-driven and needs-driven requirements may be a
delicate challenge. Research into market driven software
development approaches and management of InfRC could help
address these challenges.

More generally it appears that requirements change as a
phenomenon is both under theorised, and poses challenges in
practice. The refined understanding developed in this study
could lead to a deeper study with a focus on developing a broader
theory of change in software, possibly akin to that proposed in
an organizational context by [35].

IX. CONCLUSIONS

In this paper we have presented the phenomenon of informal
requirements change. We have presented a novel process model
for both formal change management and InfRC which draws
upon a procurement and software development context from a
vendor perspective. In this setting InfRC represents an under
reported and variably managed project dimension of hidden
work which demands suitable buffers to accommodate such
activities in development projects. Informal requirements
change contrasts with the classical perspective of requirements
change management, which involves highly formalized and
rigorous change processes. Moreover in change oriented agile
development settings we believe that InfRC is an under
researched phenomenon (not to mention the whole notion of
requirements change).

We argue that InfRC is endemic to software development
and imposes pressures on development teams. Therefore there is
a need for further research to better understand this phenomenon
and develop suitable guidelines for practice. We also need to
recognize that informal requirements change serves a necessary
and useful purpose, rather than simply being a product of poor
development practice and weak project management. Thus we
need to develop strategies and practices to accommodate its
prevalence in practice.

REFERENCES

[1] S. McGee and D. Greer, "Towards an understanding of the causes
and effects of software requirements change: two case studies,"
Requirements Engineering, vol. 17, pp. 133-155, 2012.

[2] F. Paetsch, A. Eberlein, and F. Maurer, "Requirements
engineering and agile software development," in 2012 IEEE 21st
International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, 2003, pp. 308-308.

[3] B. P. David, " Requirements Management — A Core Competency
for Project and Program Success " Project Management Institute,
Newtown Square, Pa 19073-3299 usa2014.

[4] K. E. Wiegers, "Karl Wiegers describes 10 requirements traps to
avoid," Software Testing & Quality Engineering, vol. 2, 2000.

[5] D. Leffingwell and D. Widrig, Managing software requirements:
a use case approach: Pearson Education, 2003.

[6] D. M. Berry, K. Czarnecki, M. Antkiewicz, and M. AbdElRazik,
"Requirements determination is unstoppable: an experience
report," in 18th IEEE International Requirements Engineering
Conference (RE'2010), 2010 2010, pp. 311-316.

[7] M. Bommer, R. DeLaPorte, and J. Higgins, "Skunkworks
approach to project management," Journal of Management in
Engineering, vol. 18, pp. 21-28, 2002.

[8] D. X. Houston, G. T. Mackulak, and J. S. Collofello, "Stochastic
simulation of risk factor potential effects for software
development risk management," Journal of Systems and
Software, vol. 59, pp. 247-257, 12/15/ 2001.

[9] K. Wiegers and J. Beatty, Software Requirements: Microsoft
Press, 2013.

[10] B. Curtis, H. Krasner, and N. Iscoe, "A field study of the software
design process for large systems," Communications of the ACM,
vol. 31, pp. 1268-1287, 1988.

[11] K. Skytte, "Engineering a small system," Spectrum, IEEE, vol.
31, pp. 63-65, 1994.

[12] D. Leffingwell and D. Widrig, Managing software requirements:
a unified approach: Addison-Wesley Professional, 2000.

[13] A. M. Davis and K. V. Nori, "Requirements, Plato's Cave, and
Perceptions of Reality," in Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International,
2007, pp. 487-492.

[14] A. Aurum and C. Wohlin, "Requirements engineering: setting the
context," in Engineering and managing software requirements,
ed: Springer, 2005, pp. 1-15.

[15] W. Hussain and T. Clear, "GRCM: a model for Global
Requirements Change Management," in 2nd International
Requirements Engineering Efficiency Workshop (REEW 2012),
ed. Essen, Germany, 2012.

[16] M. Niazi, C. Hickman, R. Ahmad, and M. Ali Babar, "A model
for requirements change management: Implementation of CMMI
level 2 specific practice," Product-Focused Software Process
Improvement, pp. 143-157, 2008.

[17] I. Sommerville, Software Engineering. Boston, Massachusetts:
Pearson/Addison-Wesley, 2011.

[18] D.-R. Harjani and J.-P. Queille, "A process model for the
maintenance of large space systems software," in Software
Maintenance, 1992. Proceerdings., Conference on, 1992, pp. 127-
136.

[19] T. Addison and S. Vallabh, "Controlling software project risks:
an empirical study of methods used by experienced project
managers," in Proceedings of the 2002 annual research
conference of the South African institute of computer scientists
and information technologists on Enablement through
technology, 2002, pp. 128-140.

[20] A. Sparkes, "Narrative analysis: Exploring the whats and the
hows of personal stories," Qualitative research in health care, vol.
1, pp. 191-209, 2005.

[21] V. Braun and V. Clarke, "Using thematic analysis in psychology,"
Qualitative research in psychology, vol. 3, pp. 77-101, 2006.

[22] S. Biazzo, "Process mapping techniques and organisational
analysis: Lessons from sociotechnical system theory," Business
Process Management Journal, vol. 8, pp. 42-52, 2002.

[23] J. Whitehead, I. Mistrík, J. Grundy, and A. van der Hoek,
"Collaborative software engineering: concepts and techniques,"
in Collaborative Software Engineering, ed: Springer, 2010, pp. 1-
30.

[24] V. S. Gordon and J. M. Bieman, "Rapid prototyping: lessons
learned," IEEE software, vol. 12, p. 85, 1995.

[25] CMMI Product Team, "CMMI for Development, version 1.2,"
2006.

[26] M. Ravishankar, S. L. Pan, and M. D. Myers, "Information
technology offshoring in India: a postcolonial perspective,"
European Journal of Information Systems, vol. 22, pp. 387-402,
2013.

[27] C. Ebert, "Requirements before the requirements: understanding
the upstream impacts," in Requirements Engineering, 2005.
Proceedings. 13th IEEE International Conference on, 2005, pp.
117-124.

[28] S. Lauesen, "COTS tenders and integration requirements,"
Requirements Engineering, vol. 11, pp. 111-122, 2006.

[29] G. M. Weinberg, "Just say no! improving the requirements
process," American Programmer, vol. 8, pp. 19-19, 1995.

[30] G. Sabaliauskaite, A. Loconsole, E. Engström, M.
Unterkalmsteiner, B. Regnell, P. Runeson, et al., "Challenges in
aligning requirements engineering and verification in a large-
scale industrial context," in requirements engineering: foundation
for software quality, ed: Springer, 2010, pp. 128-142.

[31] E. Bjarnason, K. Wnuk, and B. Regnell, "Requirements are
slipping through the gaps—A case study on causes & effects of
communication gaps in large-scale software development," in
Requirements Engineering Conference (RE), 2011 19th IEEE
International, 2011, pp. 37-46.

[32] W. Hussain and T. Clear, "Spreadsheets as collaborative
technologies in global requirements change management," in 9th
International Conference on Global Software Engineering
(ICGSE) 2014 2014, pp. 74-83.

[33] B. Regnell and S. Brinkkemper, "Market-driven requirements
engineering for software products," in Engineering and managing
software requirements, ed: Springer, 2005, pp. 287-308.

[34] R. Pichler, Agile product management with scrum: Creating
products that customers love: Addison-Wesley Professional,
2010.

[35] A. H. Van de Ven and M. S. Poole, "Alternative approaches for
studying organizational change," Organization studies, vol. 26,
pp. 1377-1404, 2005.

