
Using Argumentation to Explain Ambiguity in
Requirements Elicitation Interviews

Yehia Elrakaiby‡, Alessio Ferrari∗, Paola Spoletini‡, Stefania Gnesi∗ and Bashar Nuseibeh‡§
∗ CNR-ISTI, Pisa, Italy, Email: alessio.ferrari@isti.cnr.it, stefania.gnesi@isti.cnr.it
† Kennesaw State University, Marietta (GA), USA, Email: pspoleti@kennesaw.edu

‡ LERO, University of Limerick (UL), Limerick, Ireland Email: yehia.elrakaiby@lero.ie, bashar.nuseibeh@lero.ie
§ The Open University (OU), Milton Keynes, UK Email: b.nuseibeh@open.ac.uk

Abstract—The requirements elicitation process often starts
with an interview between a customer and a requirements ana-
lyst. During these interviews, ambiguities in the dialogic discourse
may reveal the presence of tacit knowledge that needs to be made
explicit. It is therefore important to understand the nature of
ambiguities in interviews and to provide analysts with cognitive
tools to identify and alleviate ambiguities. Ambiguities perceived
by analysts are sometimes triggered by specific categories of
terms used by the customer such as pronouns, quantifiers, and
vague or under-specified terms. However, many of the ambiguities
that arise in practice cannot be rooted in single terms. Rather,
entire fragments of speech and their relation to the mental state
of the analyst need to be considered.

In this paper, we show that particular types of ambiguities can
be characterised by means of argumentation theory. Argumenta-
tion is the study of how conclusions can be reached through
logical reasoning. In an argumentation theory, statements are
represented as arguments, and conflict relations among state-
ments are represented as attacks. Based on a set of ambiguous
fragments extracted from interviews, we define a model of the
mental state of the analyst during an interview and translate
it into an argumentation theory. Then, we show that many of
the ambiguities can be characterized in terms of ‘attacks’ on
arguments. The main novelty of this work is in addressing the
problem of explaining fragment-level ambiguities in requirements
elicitation interviews through the formal modeling of the analyst’s
mental model using argumentation theory. Our contribution
provides a data-grounded, theoretical basis to have a more
complete understanding of the ambiguity phenomenon, and lays
the foundations to design intelligent computer-based agents that
are able to automatically identify ambiguities.

I. INTRODUCTION

Requirements elicitation is the process of gathering system

requirements from stakeholders [1], [2], and can be performed

through a variety of techniques, such as workshops, focus

groups, scenarios and prototypes [3], [4]. Interviews with

stakeholders are the most commonly used technique [5]–[8],

and considered among the most effective ways to transfer

knowledge [9]–[12]. Usually, requirements elicitation inter-

views involve a customer and a requirements analyst. The

goal of the interview is to transfer the customer’s knowledge

and needs to the analyst, so that the latter can collect precise,

correct and complete requirements, to be later conveyed to

a requirements document. The success of an interview de-

pends on several factors, such as the influence of domain

knowledge [5], [13], [14]; the trustworthiness, motivation,

and expressive ability of the customer [2]; the absorptive

capacity and communication skills of the analyst [4], [5];

and ambiguities in the dialogic discourse [2]. Ambiguity in

particular may play a negative or a positive role. Indeed, if

the analyst cannot detect an ambiguity in the words of the

customer, the knowledge transfer might be compromised [2].

Instead, a detected ambiguity can lead to the discovery of

tacit knowledge [15], which is unexpressed, system-relevant

information that needs to be elicited [16], [17]. For this reason,

it is important to provide a framework to explain the ambiguity

phenomenon and to give analysts the tools to recognise and

alleviate ambiguity. In our previous work [18], we showed

that some of the ambiguities occurring in interviews can be

rooted in the nature of the terms used by the customer. In

particular, we identified five categories of ambiguity cues,

namely (1) under-specified, (2) vague, (3) quantifiers, (4)

pronouns, and (5) domain-specific terms. However, about half

of the ambiguity episodes analysed in our study could not

be explained by focusing solely on the terms used by the

customer. To understand these episodes, the mental context

of the analyst, and its relation with the speech fragments of

the customer need to be taken into account.

This paper aims to provide a theory for explaining ambigu-

ity cases that cannot be rooted in single terms. To this end, we

propose to use argumentation theory [19], [20] as a formal tool

to show that these ambiguities can be represented as ‘attacks’

between arguments of a structured discourse that occurs in

the mind of the analyst. By means of argumentation, we

formalise one specific type of ambiguity, namely acceptance
unclarity [21]. This phenomenon occurs when the analyst

is not able to accept a speech fragment expressed by the

customer, either because it is inconsistent with their current

understanding of the problem space, or because it is insufficient
to comprehend the problem.

We performed our study using an approach that is in-

spired by grounded theory [22]. Grounded theory entails

an incremental process that focuses on a dialogue between

the researcher and the data at hand, in which concepts are

extracted from data, and theories are produced in terms of

connections among concepts. In this work, we used data

from 34 requirements elicitation interviews, involving domain

experts and computer scientists. From this data, we isolated

232 customer’s speech fragments that were classified as am-
biguous. In the study presented in this paper, we focused

2017 IEEE 25th International Requirements Engineering Conference2017 IEEE 25th International Requirements Engineering Conference



on the subset of those fragments where the ambiguity is not

triggered by a single term but by the entire fragment, and

that caused the acceptance unclarity phenomena. We inspected

those fragments and incrementally defined a theory based

on argumentation to explain them. In this paper, we present

our theory, together with examples taken from the interviews

to show how the different categories of ambiguity can be

explained by the theory. As with any qualitative study, the

current contribution is biased by the background, vision and

expectations of the authors. However, we believe that the

reported examples provide sufficient evidence of the soundness

of our approach. We believe that our contribution can be used

as a theoretical basis to understand the nature of ambiguities

in oral interviews. On the other hand, it can also act as a

baseline for the development of intelligent computer-based

agents that are able to detect particular types of ambiguities

occurring during requirement elicitation interviews, as well as

for detection of ambiguities in written requirements.

The remainder of the paper is structured as follows. In

Sec. II we provide some background on ambiguity in inter-

views, and on argumentation theory. In Sec. III we describe

the methodology followed in this study. Sec. IV presents our

argumentation-based theory of ambiguity. Sec. V exemplifies

the different categories of ambiguities and how they are repre-

sented and explained in the theory. Finally, Sec. VI discusses

related works, and Sec. VII presents our conclusions.

II. BACKGROUND

A. Ambiguity in Interviews

In our previous work [21], a categorisation of ambiguities in

requirements elicitation interviews was provided. In this paper,

we will focus on the ambiguity category named acceptance
unclarity, which occurs whenever the analyst can understand

the meaning of the customer’s words, but cannot accept it for

some reason. For the sake of space, we provide an informal

definition only for this category. Formal definitions for all

categories are available in Ferrari et al. [21].

To understand the phenomenon of acceptance unclarity, it

is useful to provide a description of the process followed by

the analyst to understand the customer’s requirements. During

an interview, the customer articulates units of information, i.e.,

system-related needs or domain-related knowledge. A unit of

information is articulated by means of speech fragments, i.e.,

any consecutive set of words. Two main phases model the

process of understanding of a speech fragment by an analyst:

interpretation and acceptance. Interpretation is the phase in

which the analyst gives a meaning to the speech fragment of

the customer. Acceptance is the phase in which the analyst

considers whether that meaning is acceptable with respect to

their current understanding and knowledge of the problem

space. With the term acceptable we mean that the speech

fragment (a) appears sufficiently accurate to comprehend the

problem, and (b) the analyst does not register any type of in-

consistency with their current understanding of the problem, or

with their knowledge of the domain. For example, consider the

following speech fragment: The onboard system of the train

shall use a TCP/IP protocol to communicate. The fragment

can be interpreted, but it is not acceptable because it does not

specify the device with which the system should communicate

through the TCP/IP protocol. An analyst who hears the frag-

ment would perceive an insufficiency, since the information

that they have is insufficient to form a complete picture of

the problem. Now, consider the speech fragment: The train
shall be able to stop within 5 meters, after an obstacle is
detected on the line. The fragment can be interpreted, but it

is not acceptable by an analyst who knows that trains require

hundreds of meters to stop when they are going at their full

speed. In other terms, the analyst perceives an inconsistency.

An acceptance unclarity occurs whenever the analyst (a)

can assign an interpretation to the speech fragment of the

customer, (b) the interpretation matches the intended meaning

of the customer, but (c) the interpretation is not acceptable. The

cases of insufficiency and inconsistency exemplified above are

both cases of acceptance unclarity.

B. Argumentation

Argumentation theory [23] is a form of reasoning that makes

explicit the reasons for the conclusions that are drawn and how

conflicts between reasons are resolved. This can provide a

natural mechanism to handle inconsistent and uncertain infor-

mation and to resolve conflicts of opinion between intelligent

agents [20]. Argumentation in general has many uses [24] and

is a particularly useful tool for the modeling of human dialog

and phenomena such as negotiation and debate.

In argumentation theory, Dung’s abstract argumentation

framework [25] has been particularly influential, as it attempts

to capture the essence of the process of reasoning about

arguments and their acceptability, thus making it generally

applicable across different application domains [26]. In its

most simple form, the framework is a pair 〈A,D〉, where A is

a set of arguments, which may be viewed as statements, and

D is a set of attacks among those arguments. For example,

an argument A1 ∈ A stating that speed will be measured
using a laser device can be attacked by another argument

A2 ∈ A stating that no laser device may be used. This attack

is represented as (A1, A2) ∈ D. Based on its arguments and

attacks, argumentation frameworks enable the determination

of which arguments are acceptable (or justified). This is

performed through the calculation of the so-called extensions
of argumentation frameworks.

Due to the abstract nature of Dung’s framework, it is

generally necessary to instantiate it before its application to

a particular domain. As described in [26], the instantiation

of Dung’s framework typically consists of first transforming

a description of the application domain (the argumentation

inputs) (I), into an argumentation framework (AF), through

the application of some function (f). Dung’s machinery is then

used to determine possible sets of acceptable arguments (AA)

by calculating the extensions of AF, denoted by EX (AF). The

acceptable arguments are then mapped to outputs (O) through

the application of another function (g). The four steps of this

process are depicted in Fig. 1.



Fig. 1: Basic Argumentation System Overview

Fig. 2: Types of Attacks

The instantiation of arguments typically consists of provid-

ing arguments an internal structure in the form of inference

rules. In this paper, we consider the ASPIC+ framework [27]

for structured argumentation. In ASPIC+, basic arguments

may correspond to simple propositions or to inference relations

having the following elements:

• a set of assumptions or premises defining the conditions

of the applicability of the argument,

• a conclusion representing the claim of the argument and,

• a method of deduction defining when the conclusion is

entailed by the premises.

When arguments are described using the structure presented

above, several attack types may be distinguished. Those attack

types, depicted in Fig. 2, are briefly described as follows:

• Rebutting (Fig. 2-(a.1)): an argument (A2) rebuts some

argument (A1) whenever the conclusion of A1 cannot be

true if the conclusion of A2 holds.

• Undermining (Fig. 2-(a.2)): an argument (A2) undermines

some argument (A1) whenever one of the premises of A1

cannot be true if the conclusion of A2 holds.

• Undercutting (Fig. 2-(a.3)): an argument (A2) undercuts

another argument (A1) whenever the conclusion of A1

attacks the inference relation of A1.

An argument A indirectly attacks an argument B, if A attacks

an argument that is (below B) in the inference tree of B. An

example of an indirect attack is shown on the right hand side

of Fig. 2 where A2 indirectly attacks B2 and B3. Note that

B1 and B2 are called the proper sub-arguments of B3 and

that A2 is said to attack B2 (or B3) on (its sub-argument) B1.

Furthermore, an attack between two arguments A and B is

called a symmetric attack if A attacks B and B attacks A. It

is asymmetric if only A attacks B.

To summarize the working of ASPIC+: starting from

a knowledge base (or a set of propositions) and a set of

inference rules, a set of arguments is generated in the form

of inference trees, as depicted in Fig. 2. An attack relation

is then derived from the structure of the generated argu-

ments and a Dung’s abstract argumentation framework is

built. For example, the arguments in Fig. 2(b) generate the

argumentation framework AF = 〈A,D〉 where the set of

arguments is A = {A1, A2, B1, B2, B3} and the set of attacks

is D = {B1 ↔ A2}1. The extensions of AF are then

calculated. Of interest to us in this paper are the grounded
and preferred extensions. Intuitively, a grounded extension

contains the arguments that are always justified, i.e. it rep-

resents the skeptical semantics of argumentation frameworks.

A preferred extension is a (maximal) set of arguments that

can be collectively accepted. Note that whenever an argument

is not included in a preferred extension, then this argument

must be in conflict with (or is attacked by) the extension. For

example, AF has:

• the grounded extension {A1} and,

• the preferred extensions {A1, A2} and {A1, B1, B2, B3}.
This can be interpreted as indicating that A1 is always justified

whereas either A2 or {B1, B2, B3} may be accepted but not

both. We say that an argument is credulously accepted if it

belongs to at least one preferred extension. In this paper, a

simplified version of ASPIC+ is used where some features

such as rebutting attacks and preferences between arguments

are not considered and are left for future work.

III. RESEARCH METHODOLOGY

The methodology adopted for this study is inspired by

grounded theory [22]. This is a qualitative research approach,

in which the researcher analyses the data, and, through an

iterative process of continuous confrontation with the data,

develops a theory that explains it. Our approach does not

strictly follow the guidelines of grounded theory as described

by Corbin and Strauss [22], but rather its spirit, in that each

category that composes a theory should be grounded on data.

Our deviation from grounded theory is mainly due to the type

of phenomenon considered, and the means adopted to analyse

it. Grounded theory focuses on social phenomena, while here

we are interested on a cognitive phenomenon, i.e., ambiguity.

In grounded theory, the data analysis is performed through a

process of coding, in which codes are conceptual categories

that explain the data. In our case, we elaborate the data through

a formal framework, i.e., argumentation, which explains the

data not just through categories, but by mapping the data to

a formal model. Below, we provide the details of the data

considered, and the methodology followed in our study.

a) Data: We used a dataset of 232 ambiguous speech

fragments, which we isolated in our previous study [21]. The

speech fragments were identified from a set of 34 unstructured

interviews that we arranged to study the phenomenon of

ambiguity. In all interviews, the 2nd author of the current study

acted as the analyst, while the customers were played by differ-

ent domain experts and computer scientists. More information

about the data is available in our previous publications [18],

[21]. For each fragment, the following information had been

1The notation of (A ↔ B) is used as a shortcut for (A,B), (B,A).



provided: a natural language description of the ambiguity

phenomenon that occurred; the category of ambiguity accord-

ing to Ferrari et al. [21] (interpretation unclarity, acceptance

unclarity, multiple understanding, undetected incorrect dis-

ambiguation, detected incorrect disambiguation); the category

of the term that triggered the ambiguity phenomenon in the

fragment (under-specified, vague, quantifier, pronoun, domain-

specific, or Fragment – in case the ambiguity could not be

rooted in any specific term). For the current study, we selected

only those fragments that belonged to the acceptance unclarity
category, and for which the trigger of the ambiguity was

Fragment. A total of 77 fragments was selected.

b) Methodology: The methodology applied in our study

follows a series of iterations, which are described below.

Preliminary Theory Definition. The 1st author was given a

first subset of 8 fragments from 6 interviews. He inspected

them and interacted with the 2nd author to better understand

the perception that the latter had had of the ambiguity cases

– we recall that the 2nd author acted as analyst during the

interviews. From this phase, the 1st author developed an initial

version of the theory presented in this paper. The theory

was composed of (1) a method for translating the ambiguity

phenomena into an argumentation framework and (2) a set of

categories of attacks that occur between arguments and can

explain the ambiguity phenomena. The structure of the theory

remained the same also in its final version.

Categories Assessment. Then, the 3rd author, together with

the 2nd author, inspected all the fragments. They annotated

them with natural language memos that clarified the ambiguity

phenomena that occurred, in light of the theory developed by

the 1st author. In addition, they annotated the fragments with

the categories of attacks defined by the first version of the

theory. The goal of this phase was to assess the fitness of

the categories on the data. Then, they went back to the 1st

author with fragments that did not fit the theory, and with

recommendations to improve the categories.

Method Assessment. Meanwhile, the 1st author was given

6 fragments belonging to 1 interview, in which he applied

the method for translating the ambiguity phenomena into

an argumentation framework. The goal of this analysis was

to asses the soundness of the method on a sample of the

data. Based on this analysis, he provided recommendations

to improve the method.

Theory Revision. The theory was revised to consider the

recommendations on the categories, and on the method. This

has resulted in an improved theory that is able to cover

and explain additional types of ambiguity. These iterations

were useful as they lead to the successive identification of

the different types of elements and relations of the model

described in Sec. IV-A, and the constraints in Sec. IV-C.

Theory Assessment. The 2nd and 3rd author re-annotated

the fragments according to the new categories of the theory,

to re-assess their fitness. The annotation was reviewed by the

1st author. Then, a sample of 7 representative fragments was

selected to be carefully analysed by the 1st author, who applied

the final method on these fragments to validate its soundness.

Those cases are the ones presented in this paper.

IV. AN ARGUMENTATION-BASED METHOD

In oral interviews, analysts try to construct a mental model

of the conversation based on information provided by cus-

tomers and certain assumptions made by the analyst. The

model includes both information about the system to be built

and about the application domain since, during the interview,

both aspects are discussed. The ambiguities on which we focus

are episodes of acceptance unclarity, as defined in Sec. II.

In this section, we first present the elements and relations of

the proposed mental model of the analyst. Those elements

and relations encode the analyst’s current understanding of

the problem space. Each time the analyst hears a speech

fragment, they interpret it and confront this interpretation with

their mental model of the system to be built. Conflicts that

arise in this phase are acceptance unclarity cases. We then

show how this model can be translated into an argumentation

theory so that we can reason about the model and make a

characterization of different acceptance unclarity cases.

A. Model Elements and Relations

The analyst’s mental model M includes two sets: a set of

elements E and a set of relations R.

a) Elements Types and Representation: The set of ele-

ments E = Es ∪ Em ∪ Er is composed of the following types:

• Statement (Es): statements can be optative, typically

when they refer to system requirements, or indicative,

typically when they refer to domain aspects [28].

• Motivation (Em): description of a rationale element for

a statement. The motivation answers why questions about

a statement. It can explain the goal for a requirement, or

provide the motivation for a domain aspect.

• Realisation (Er): description of a solution element to

realise a statement in practice. The realisation answers

how questions about a statement. It can be regarded as

a specification for a requirement, or as a realisation of

some domain aspect in the application domain.

Elements represent knowledge elements and are expressed

in the form of simple atomic propositions, e.g., a moti-

vation may be expressed as product procurement. Every

element e ∈ E is associated to its type through the func-

tion type : E → {statement, motivation, realisation},
e.g., type(product procurement) = motivation means that

product procurement is a motivation element. Whenever, a

speech fragment is interpreted by the analyst, an associated

knowledge element is added to their mind. Then, the analyst

assigns a type to the newly collected element and constructs

a model of the system based on this new knowledge ele-

ment, considering the knowledge already gathered through

previous interpretations of speech fragments, and also inferred

or assumed knowledge elements. In this paper, we do not

distinguish between explicit, implicit or inferred knowledge

elements. Considering these aspects is possible, and would

help assigning different degrees of confidence to knowledge



elements according to their type. However, this would unnec-

essarily complicate the model at this stage.

b) Relations Representation: The set R captures logical

relations between different elements in the model. A relation

is expressed in the form of an inference rule r ∈ R describing

a logical connection between a set of elements E ⊆ E , called

the premises, and an element e ∈ E , called the conclusion.

Intuitively, a relation r means that the truth of the conclusion

e depends on the truth of the premises E.

Relations are specified using expressions of the form

e1, ..., en ⇒ e where e, e1, ..., en are elements. Relations state

that when the premises, i.e., e1, ..., en, are true, then, unless

there is some evidence to the contrary, the conclusion, i.e., e,

should hold.

B. Model Formalization in ASPIC+

The ASPIC+ framework [29] enables the definition of

argumentation theories that include structured arguments and

the generation of abstract argumentation frameworks [30],

as discussed in Sec. II-B. A basic ASPIC+ argumentation

theory is composed of a knowledge base KB, a set of inference

rules IR and a logical language L. Due to space limitations,

we do not present the formal semantics of ASPIC+ and

refer the interested readers to Modgil and Prakken [27]. In

this section, we briefly discuss the components of ASPIC+

argumentation theories and describe how the analyst’s mental

model M can be represented as one.

a) Logical Language: Let UE be the universe of ele-

ments of M, i.e., the set of all possible propositions from

which elements of E can be drawn. The logical language

composed of elements of UE and their negations is called

the ASPIC+ logical language of the model M.

b) Knowledge Base: An ASPIC+ knowledge base

KB = 〈Kn,Kp〉 consists of two disjoint subsets: Kn of axiom
premises and Kp of ordinary premises. Ordinary premises

represent fallible premises that can be attacked as opposed

to premises in Kn, which represent axioms that must always

be true. Let E be the set of elements of M, the knowledge

base 〈∅, E〉 is called the ASPIC+ knowledge base of M.

Notice that every element e ∈ E is included as an ordinary

premise, i.e., as an assumption and not as a certain fact.

c) Inference Rules: The set of inference rules of an

ASPIC+ argumentation theory is a pair IR = 〈Rs, Rd〉
where Rs is a set of strict inference rules and Rd is a set

of defeasible inference rules. Strict inference rules are of the

form φ1, ..., φn → φ and defeasible inference rules are of

the form φ1, ..., φn ⇒ φ where φ, φ1, ..., φn are well-formed

formulas of L [26]. LetR be the set of relations ofM. The set

IR = 〈∅, R〉 is called the ASPIC+ inference rules of M.

Notice that every r ∈ R is represented as a defeasible rule

in IR, i.e., their inferences may be attacked and withdrawn

when there is an evidence to their contrary.

d) ASPIC+ Argumentation theory: The argumentation

theory of a model M is the theory that is composed of the

ASPIC+ logical language, knowledge base and inference

rules of M.

C. Model Constraints

This section defines four constraints that models of M
should satisfy and describes how they can be incorporated

in the argumentation theory of a model M. These constraints

arguably encode completeness and soundness requirements.

They belong to two general categories: satisfaction constraints,

and realisation constraints. The former encodes the idea that,

when analysts hear a fragment that they interpret as a statement

or a motivation, they shall also be able to mentally refine the

content expressed in the fragment and identify a means to

realise it. The latter encodes the idea that when analysts hear

a fragment that they interpret as a statement or realisation,

they shall be able to abstract from the fragment to understand

the rationale behind it. Those refinement and abstraction

constraints emulate the process that analysts follow in order

to accept the different fragments that they hear.

a) Statement Satisfaction Constraint (SSC): this con-

straint means that every statement element, being it a domain

aspect or a system requirement, has to be realisable, i.e., can

be satisfied by some plausible set of realisation elements.

To check this constraint on the analyst’s mental modelM =
〈E ,R〉, we build an ASPIC+ argumentation theory AT ′ =
〈KB, IR,L〉 as follows:

• L is the ASPIC+ logical language of M,

• KB = 〈Kn,Kp〉 where Kn = ∅ and Kp = Er where Er is

the set of realisation elements in M, i.e., Er = {e | e ∈
E and type(e) = realisation},

• IR is the set of of relations R.

Let Es = {e | e ∈ E and type(e) = statement} be the

statement elements in M. A statement s ∈ Es is said to be

realisable iff s can be credulously inferred from AT ′, i.e., s
belongs to at least one of the preferred extensions of AT ′.
The set {unrealisable(s) | s ∈ Es such as s is not realisable}
is called the set of statement satisfaction constraint elements

generated from M, denoted Essc.

For example, let Er = {a, b, c}, Es = {s1} and R = {}
be the realisation elements, statement elements and relations

of M respectively. In this case, s1 is not credulously inferred

from the argumentation theory AT ′. Therefore, s is not real-

isable. In this case, the set of statement satisfaction constraint

elements generated from M is {unrealisable(s1)}.
Let AT = 〈〈Kn,Kp〉, 〈Rs, Rd〉,L〉 be the argumentation

theory of M, the argumentation theory of M extended with

statement satisfaction constraints is the theory AT ssc =
〈KBssc,Rssc,Lssc〉 such that:

• Lssc is the logical language L extended with the set

{unrealisable(s) | s ∈ UE and type(s) = statement}
and their negations,

• KBssc is the knowledge base KB extended with the state-

ment satisfaction constraint elements generated from M
represented as axiom premises in KBssc, i.e., KBssc =
〈Kn ∪ Essc,Kp〉 and,

• Rssc = 〈Rs ∪ Rssc, Rd〉 where Rssc =
{unrealisable(s) → −s | s ∈ Es}, i.e., the set of

relations (inference rules) R is extended with a strict



rule {unrealisable(s) → −s} for every statement

element of M.

b) Motivation Satisfaction Constraint (MSC): this con-

straint means that every motivation element must be satisfiable

in the model M. More precisely, it encodes the notion that

each motivation, being it a rationale for a domain aspect, or

a system goal, shall be satisfiable by some set of statement

elements. Violations of this constraint occur when the analyst

finds that, given the current statements, a certain system goal

is not satisfiable. Similarly, violations also occur when some

domain-specific goal is not satisfiable by some set of domain

aspects. This constraint can be defined in a similar way to

statement satisfaction constraints and, therefore, will not be

further discussed here for brevity.

c) Realisation Relevance Constraint (RRC): this con-

straint means that every realisation element must be relevant to

the satisfaction of some statement. Violations of this constraint

occur when the analyst cannot find a requirement that justifies

the need for a practical solution element (or specification) that

was suggested by the customer, or when the analyst cannot

find a domain aspect that justifies the need for some practical

realisation element. This constraint is defined as follows.

Let Er = {e | e ∈ E and type(e) = realisation} be the set

of realisation elements of M and R′ ⊆ Er be a subset of it.

R′ is called a relevant realisation set for a statement s ∈ Es
iff (1) s can be credulously inferred from the argumentation

theory 〈〈Kn, R
′〉,R,L〉 and s cannot be credulously inferred

from any argumentation theory 〈〈Kn, R
′′〉,R,L〉 where R′′ is

a proper subset of R′, i.e., when R′′ ⊂ R′. Let RR(s) be the

union of all the relevant realisation sets for a statement s ∈ Es.

A realisation element r ∈ Er is said to be irrelevant iff it does

not belong to any relevant realisation set of any statement, i.e.,

�s ∈ Es such that r ∈ RR(s). The set {irrelevant(r) | r ∈
Er and r is irrelevant} is called the set of realisation relevance

constraint elements of M.

For example, let Er = {a, b, c, d}, Es = {s} and R =
{(a, b, c ⇒ s), (a, b ⇒ s), (d ⇒ s)}, then the relevant

realisation sets of s are S1 = {d} and S2 = {a, b} and

RR(s) = {a, b, d}. If s is the only statement, then the

realisation element c is irrelevant.

The argumentation theory of M extended with realisation

relevant constraints, denoted AT rrc, can be defined in a sim-

ilar way to the argumentation theory extended with statement

satisfaction constraints.

d) Statement Relevance Constraint (SRC): this constraint

means that every statement element must be relevant to the

satisfaction of some motivation element. It encodes the notion

that each requirement and domain aspect should contribute to

the satisfaction of some motivation element. Violations of this

constraint occur when the analyst cannot find a reason for the

existence of some statement. The definition of this constraint

is similar to the one of the realisation relevance constraint.

V. CATEGORIES OF AMBIGUITY

Acceptance unclarity stems from two main sources, namely

inconsistency and insufficiency. For the detection of inconsis-

tencies, a model of the analyst’s mental state M is defined,

as described in Sec. IV-A. This model is then translated into

its ASPIC+ argumentation theory, as presented in Sec. IV-B.

After arguments are generated from this argumentation theory,

inconsistencies take the form of symmetric attacks between the

generated arguments. On the other hand, insufficiencies take

the form of asymmetric attacks when the argumentation theory

of M is extended with constraints, as described in Sec. IV-C.

A. Inconsistency Categories

An inconsistency occurs whenever the analyst perceives a

contradiction after the introduction of a knowledge element

by the customer. Inconsistencies are detected when there are

symmetric attacks between the arguments built on the basis

of the argumentation theory of the analyst’s model M. In this

section, the notation S (X, Y), where X,Y∈ {m, s, r}, is used

to represent an attack between an element of types X and

another of type Y . For example, (S (m, s)) is an attack between

a motivation and a statement element. Notice that this is an

informal classification where an attack is said to be of type

(X, Y) if the inconsistency is perceived after the introduction

of an element of type X, leading to a situation where a choice

has to be made between this element and another of type Y.

According to this classification, there are 6 basic categories

of inconsistency – given by the number of possible unordered

pairs between element types. A more formal classification of

attacks is left for future work.

Example V.1 (S (s, s)). One of our customers wants to

develop a system to allow patients to measure the amount of

glucose in their blood, and then send the result to their general

practitioner. If the glucose level is above a certain threshold,

the practitioner pays a visit to the patient. The customer says:

On the doctor’s side, it (the system) is a PC program [...] In
one-two days the doctor sees the notification (s1). The domain

knowledge of the analyst tells him that the doctor might be

on holiday (r1). Hence, the notification might be severely

delayed (inference relation i1 with conclusion s2 = −s1).

The analyst asks for clarifications. The customer replies: The
general practitioner is substituted by another doctor who
accesses the same system.

We model this example as a model M which includes:

• the elements E = {s1, r1, s2},
• the relations R = {r1 ⇒ s2}.

The arguments constructed on the basis of the argumentation

theory of M, depicted in Fig. 3(a), are:

• B1: in one-two days the doctor sees the notification,

• A1: the doctor might be on holiday,

• A2: since the the doctor might be on holiday, the notifi-

cation might be severely delayed.

The Dung’s abstract argumentation framework AF generated

from this argumentation theory consists of:

• the arguments: {A1, A2, B1} and,

• attacks: {A2 ↔ B1} which intuitively means that there

is a (symmetric direct) attack between B1 and A2.



Fig. 3: Generated Arguments

The grounded and preferred extensions of AF are:

• the grounded extension: {A1} and,

• the two preferred extensions: {A1, B1} and {A1, A2}.
Thus, the calculation of the extensions of this mental model

reveals that A1 can be accepted unconditionally, but one has to

choose to accept either B1 or A2, i.e., either accept the relation

r1 ⇒ s2, i.e., “since the doctor might be on holiday, then the
notification might be severely delayed” or the statement s1,

i.e., “in one-two days the doctor sees the notification”.

Example V.2 (S (m, s)). One of the customers wants a

recycling-support system that, given the envelope of a product,

indicates to the user which trash bin should be used. One of

the system goals, made explicit during the interview, is to
avoid fines from the municipality for incorrect recycling (m1).

According to the domain knowledge of the analyst, trash bins
are placed along the streets (r1), and therefore there is no way
to trace the owner of the rubbish, once it is thrown in the trash
bin (inference relation i1 with conclusion s1). This goal was

in contrast with the domain knowledge of the analyst, who

could not see how the municipality identifies the person who
violates the aforementioned rule (s2 = −s1).

We represent this example as a model M which includes:

• the elements E = {m1, r1, s1, s2},
• the relations R = {r1 ⇒ s1}.

The arguments generated from ASPIC+ theory of M, de-

picted in Fig. 3(b), are:

• A1: trash bins are placed along the streets,

• A2: since trash bins are placed along the streets, garbage

cannot be traced back to their owner,

• B1: people who do not recycle should be fined,

• B2: to fine people, the municipality must be able to trace

products in trash bins back to their owners.

The Dung’s abstract argumentation framework AF corre-

sponding to this argumentation theory consists of:

• the arguments: {A1, A2, B1, B2} and,

• attacks: {A2 ↔ B1}.
The grounded and preferred extensions of AF are:

• the grounded extension: {A1} and,

• the two preferred extensions: {A1, A2} and

{A1, B1, B2}.

Thus, the calculation of the extensions of this mental model

reveals that A1 is unconditionally acceptable, but, if one

accepts A2, then {B2, B1} must be rejected, or the opposite.

Example V.3 (S (s, r)). One of the customers wants to develop

an app to manage medical-related reservation (e.g., x-rays,

specialists visits, blood tests, etc.) in Tuscany. The analyst

assumed that the current reservation system, based on phone
calls, was centralised (s1). During the interview, this statement

was attacked by the description of a realization given by the

customer. More precisely, the customer says: depending on
where the examination/visit will be (r1), [The patient has to
call] Nottola or Siena (r2). The analyst could not understand

how this realization was possible since calling Nottola or
Siena (r2) means that the reservation system is not centralized
(inference i2 with conclusion −s1).

The arguments generated on the basis of the argumentation

theory of the mental model of the analyst for this example are

depicted in Fig. 3(c).

B. Insufficiency Categories

An insufficiency occurs whenever the analyst perceives

that they need more information in order to accept a new

knowledge element from the customer. Insufficiencies cannot

be detected by directly inspecting the model as it requires

a form of (meta) reasoning on the model. To enable this

kind of reasoning, we labeled knowledge elements and in-

troduced the different constraints in Sec. IV-C. Note that

this approach is somewhat similar in spirit to the meta-
argumentation approach proposed in [26]. However, the target

argumentation system in this paper is ASPIC+ and not

Dung’s argumentation framework. There are 12 categories of

insufficiencies, given by the rank of the cartesian product

between the number of constraints (4, namely SSC, MSC,

RRC, SRC – acronyms are defined in Sect. IV-C) and the

number of element types (3, namely m, s, r). Insufficiencies

are revealed by asymmetric attacks in the argumentation theory

of M when it is extended with constraints, as described in

Sec. IV-C. In the following examples, the notation A (Z, X)

where Z ∈ {SSC,RRC,MSC, SRC} and X ∈ {m, s, r} is

used to represent asymmetric attacks between some knowledge

element of type X and a constraint argument of type Z.



Example V.4 (A (SSC, s)). One of our customers is a

mechanical engineer who wishes to develop a system to

facilitate getting the quotes of mechanical components from

different vendors. When speaking about the implementation of

the system to get the quotes, he says: I should have the name of
the vendor, and an email address to contact (optative statement

s1). The analyst could not understand how, in practice, this

information could be retrieved. In other words, the analyst

was not able to find a realisation for this statement.

This simple example can be represented as a model M
which only includes the elements E = {s1} and an empty

set of relations R = {}. The ASPIC+ theory of M is

consistent in the sense that there are no attacks between its

arguments. In order to reveal this kind of ambiguities, we

construct the ASPIC+ argumentation theory with statement

satisfaction constraints AT ssc as described in Section IV-C.

The arguments built on top of this argumentation theory are

depicted in Fig. 3(d). which shows an asymmetric attack be-

tween the constraint B2 and the unrealised statement A1. This

argumentation theory has only one and the same grounded

and preferred extension, namely the extension {B1, B2} which

should be interpreted as follows:

• B1: statement s1 is not realisable,

• B2: therefore s1 cannot be accepted.

Example V.5 (A (MSC, s)). One of our customers is a

physician who wishes to develop a system for automatically

monitoring the diet of a representative sample of the popula-

tion for research purposes. Currently, the diet of this sample

is evaluated by means of a questionnaire, where people are

asked how often do they eat meat, vegetables, fish, etc. The

sample is randomly selected, and the customer says that the

problem is that people tell lies [about their diet] (domain

aspect s1). Hence, one of the goals of the system should

be to know exactly what people eat (motivation m1). She

suggests having a system in which people take pictures of their

meals (requirement s2). However, after some discussion, it

became clear that this system could not address the previously

agreed goal. In other terms, the analyst could not find a set of

statements that allows satisfying the motivation of the system

(therefore the satisfaction of the motivation is not entailed from

the collected knowledge).

The application of the motivation satisfaction constraints to

Example V.5 produced the arguments depicted in Fig. 3(e).

Note that if statement satisfaction constraints are verified, then

s1 and s2 would be detected as unrealisable.

Example V.6 (A (RRC, r)). One of our customers wants to

develop a Web-based platform to ease communication between

citizens and representatives of the parliament. When speaking

about the realisation of the idea, he makes the following

scenario: If I have many crimes in one area (r1), and I start
having many posts about security coming from that region
(r2), I can associate this [the crimes with the region] (s1).
The analyst could not understand what was the requirement

addressed by this scenario (the relation i1 with premises

0 

5 

10 

15 

S 
(m

, m
) 

S 
(m

, r
) 

S 
(r

, r
) 

S 
(r

, s
) 

S 
(s

, m
) 

S 
(s

, s
) 

0 
5 

10 
15 
20 
25 

A
 (M

SC
,s

) 

A
 (R

R
C

, r
) 

A
 (S

R
C

, s
) 

A
 (S

SC
, s

) 

(a) (b)

Fig. 4: Distribution of (a) symmetric and (b) asymmetric attacks.

{r1, r2} and the conclusion s1 is not accepted by the analyst),

since the main requirement understood up to that moment was

to allow citizens to send information to the representative of

the parliament. In other terms, a statement that can be satisfied

with the suggested realisation was missing.

The application of realisation relevance constraints to Ex-

ample V.6 produces the arguments depicted in Fig. 3(f).

Example V.7 (A (SRC, s)). One of our customers wants

to develop a mobile application that allows him to know

the closest and cheapest petrol station while he is driving

(m1). When speaking about the parameters that the application

should take into account, the customer says: Whether or
not you’re on the highway, which I think is also important
(s1). The analyst could not understand the motivation of

this statement (a relation between s1 and previously stated

motivations was not identified), since, in his experience, fuel
prices do not depend on whether you are on the highway or
not (r1). After asking for clarifications, the customer specified

that It [the fuel] is cheaper for you if you exit the highway.

The application of statement relevance constraints to V.7
produces the arguments depicted in Fig. 3(g).

C. Statistics on the Data

Among the 77 analyzed fragments, 39 were categorised as

symmetric attacks (inconsistency), 29 as asymmetric attacks

(insufficiency) while 1 included both conflicting and miss-

ing aspects. The remaining 8 (around 12%) could not be

represented within the framework: 4 cases were incorrectly

classified as acceptance unclarities due to fragments, while

they were rooted in terms; and the remaining 4 were insuf-

ficiency cases which detection requires the incorporation of

additional constraints in the framework. This extension is left

for future work. In Figure 4, we report the distribution of

(a) symmetric and (b) asymmetric attacks over the different

categories. In both cases, there is a category of attack that is

much more frequent than the others. Specifically, symmetric

attacks between statements (S (s, s)) represent almost half

of the symmetric cases. Attacks between a statement and

the constraint expressing the need to have a realisation for

a statement (A (SSC, s)) represent more than half of the

asymmetric cases.



VI. RELATED WORK

This section discusses related work on ambiguity, inconsis-

tency, insufficiency and argumentation.
a) Ambiguity: Ambiguity in natural language has been

studied extensively in RE, especially in relation to its oc-

currence in written requirements. In particular, strategies

were defined to prevent ambiguities by means of formal

approaches [31]–[33] or constrained natural languages [34],

[35]. Other approaches aim to detect ambiguities in require-

ments. These approaches are mainly rule-based, i.e., based on

linguistic patterns to be matched within requirements [36]. Au-

tomated tools such as QuARS [37], SREE [38] and others [39],

[40] were developed according to this philosophy. Other

work [41], [42] focuses on the usage of statistical approaches

to detect particular types of ambiguity cases, the so-called

innocuous ambiguities – i.e., linguistic ambiguities that have

one single reading in practice. All the cited work focuses on

ambiguities in written texts that can be rooted in terms. Our

work differs since we focus on ambiguities that depend on the

context, referred to as pragmatic ambiguities [36].
b) Inconsistency: Inconsistency occurs when a require-

ments document contains conflicting, contradictory descrip-

tions of the expected behavior of the system to be built or

of its domain [43]. The majority of techniques developed

to detect inconsistencies focus on the usage of formal log-

ics [43] or models [44]–[46] to evaluate the overall consis-

tency of formalised requirements, specifications and domain

assertions. Tools for the detection of inconsistencies, such as

EA-Analyser [47], were also developed. The majority of the

cited work focuses on the analysis or negotiation phases of

the RE process, when (part of) the requirements are already

documented. Our work focuses on the early elicitation phase.
c) Insufficiency: In RE, insufficiency is explicitly studied

by Pitts and Browne [48] in the context of requirements

elicitation interviews. In particular, they studied how analysts

with different degrees of expertise have different cognitive

strategies to assess the sufficiency of the information that they

receive from the customer. To our knowledge, insufficiency

is not treated by other studies. However, insufficiency is

closely related to the concept of requirements completeness.

In a sense, insufficiency is the perception of some form

of incompleteness in the requirements from the point of

view of the analyst. Studies about requirements completeness

provide several definitions of the concept [49]–[51]. In these

studies, completeness is regarded as an objective property

of the specification, although its evaluation requires domain

expertise, e.g., to build a domain model against which the

completeness of a specification has to be evaluated. Our

paper emphasizes a subjective aspect of incompleteness. For

this reason, in line with Pitts and Browne, we use the term

insufficiency. However, while we focus on insufficiency of

single fragments of information received, Pitts and Browne

focus on the determination of the sufficiency of the overall

information received during the interview.
d) Argumentation: Two forms of argumentation have

been often considered for modeling and reasoning about

RE artifacts: Toulmin arguments and Dung’s argumentation

frameworks. One of the first works on argumentation in RE is

that of Haley et al. [52] where security satisfaction arguments
are proposed as a means to convince a reader that a system sat-

isfies its security requirements. Franqueira et al. [53] extended

this work and introduced a risk assessment method (RISA),

which identifies rebuttals and mitigations needed to satisfy

security requirements. Mirbel and Villeta [54] proposed an

approach for the management of requirements artifacts based

on argumentation-theory. Given goal-oriented requirements

models, where goals are associated using different relations,

an extended argumentation framework is generated and pos-

sible alternative sets of consistent requirements are identified.

Ingolfo et al. [55] propose a five-step iterative process to sys-

tematically establish compliance of system requirements with

law through discussions among stakeholders. Jureta et al. [56]

proposed the ACceptability Evaluation Framework (ACE) to

represent, in the form of a graph, information exchanged in a

discussion about the relative validity of an RE artifact. Bagheri

and Ensan [57] model interaction and inconsistencies between

requirement statements using Dung’s abstract argumentation

framework. They also propose techniques to rank and select

between the framework’s preferred extensions, when more

than one exists. In comparison, firstly, our aim is to model

the phenomenon of ambiguities arising in oral interviews.

Secondly, we consider ASPIC+ for structured argumentation

which builds on the foundational work of Dung. This arguably

provides our modeling language a high-level of expressiveness

and, at the same time, enables us to profit from a large amount

of theoretical work in this highly active research field.

VII. CONCLUSION

Ambiguity in natural language is a complex phenomenon

that has been studied by philosophers, linguists and computer

scientists. However, most previous work on the topic has fo-

cused on ambiguities in written text, specifically, those caused

by ambiguous natural language terms. Our work advances

the state-of-the-art by focusing on ambiguities that occur in

oral communication that cannot be rooted in single terms.

We showed that argumentation theory can be used to explain

these cases of ambiguity, which are particularly common

in requirements elicitation interviews. Our future work will

provide the basis to automate the method described in this

paper. We are aware that a full automation would require

advanced natural language processing (NLP) technologies that

can perform semantic tasks, which are not currently avail-

able [38]. Hence, we will focus on identifying (a) the tasks of

the method that can be automated, and (b) those that require

human intervention, to come to a semi-automated process.

Further automation of this process will be possible when the

required NLP technologies are available.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation

Ireland grant 13/RC/2094 and ERC Advanced Grant 291652.



REFERENCES

[1] I. Sommerville and P. Sawyer, “Viewpoints: principles, problems and
a practical approach to requirements engineering,” Annals of Software
Engineering, vol. 3, no. 1, pp. 101–130, 1997.

[2] A. Distanont, H. Haapasalo, M. Vaananen, and J. Lehto, “The engage-
ment between knowledge transfer and requirements engineering,” IJKL,
vol. 1, no. 2, pp. 131–156, 2012.

[3] S. Robertson and J. Robertson, Mastering the requirements process:
Getting requirements right. Addison-wesley, 2012.

[4] D. Zowghi and C. Coulin, “Requirements elicitation: A survey of tech-
niques, approaches, and tools,” in Engineering and managing software
requirements. Springer, 2005, pp. 19–46.

[5] I. Hadar, P. Soffer, and K. Kenzi, “The role of domain knowledge in
requirements elicitation via interviews: an exploratory study,” Require-
ments Engineering, vol. 19, no. 2, pp. 143–159, 2014.

[6] R. Agarwal and M. R. Tanniru, “Knowledge acquisition using structured
interviewing: an empirical investigation,” JMIS, vol. 7, no. 1, 1990.

[7] G. J. Browne and M. B. Rogich, “An empirical investigation of user
requirements elicitation: Comparing the effectiveness of prompting
techniques,” JMIS, vol. 17, no. 4, pp. 223–249, 2001.

[8] W. R. Friedrich and J. A. Van Der Poll, “Towards a methodology to
elicit tacit domain knowledge from users,” IJIKM, vol. 2, no. 1, 2007.

[9] A. Sutcliffe and P. Sawyer, “Requirements elicitation: towards the
unknown unknowns,” in RE’13. IEEE, 2013, pp. 92–104.

[10] A. Davis, O. Dieste, A. Hickey, N. Juristo, and A. M. Moreno,
“Effectiveness of requirements elicitation techniques: Empirical results
derived from a systematic review,” in RE’06. IEEE, 2006, pp. 179–188.

[11] J. Coughlan and R. D. Macredie, “Effective communication in require-
ments elicitation: a comparison of methodologies,” Requir. Eng., vol. 7,
no. 2, pp. 47–60, 2002.

[12] A. M. Hickey and A. M. Davis, “A unified model of requirements
elicitation,” J. Manage. Inf. Syst., vol. 20, no. 4, pp. 65–84, Mar. 2004.

[13] A. M. Aranda, O. Dieste, and N. Juristo, “Effect of domain knowledge
on elicitation effectiveness: An internally replicated controlled experi-
ment,” TSE, vol. 42, no. 5, pp. 427–451, 2016.

[14] A. Niknafs and D. M. Berry, “An industrial case study of the impact of
domain ignorance on the effectiveness of requirements idea generation
during requirements elicitation,” in RE’13. IEEE, 2013, pp. 279–283.

[15] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity as a resource to
disclose tacit knowledge,” in RE’15. IEEE, 2015, pp. 26–35.

[16] M. Polanyi, The Tacit Dimension. Garden City, NY: Doubleday, 1966.
[17] V. Gervasi, R. Gacitua, M. Rouncefield, P. Sawyer, L. Kof, L. Ma,

P. Piwek, A. De Roeck, A. Willis, H. Yang et al., “Unpacking tacit
knowledge for requirements engineering,” in Managing requirements
knowledge. Springer, 2013, pp. 23–47.

[18] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity cues in requirements
elicitation interviews,” in RE’16. IEEE, 2016, pp. 56–65.

[19] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artificial intelligence, vol. 77, no. 2, pp. 321–357, 1995.

[20] S. Modgil and H. Prakken, “The ASPIC+ framework for structured
argumentation: a tutorial,” Argument Comput., vol. 5, pp. 31–62, 2014.

[21] A. Ferrari, P. Spoletini, and S. Gnesi, “Ambiguity and tacit knowledge
in requirements elicitation interviews,” REJ, vol. 21, no. 3, pp. 333–355,
2016.

[22] J. M. Corbin and A. Strauss, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory, 3e. Sage, 2007.

[23] I. Rahwan and G. R. Simari, “Argumentation in artificial intelligence,”
Argumentation Artif. Intell., vol. 171, pp. 1–493, 2009.

[24] S. E. Toulmin, “The Uses of Argumentation,” Cambridge Univ. Press,
vol. 37, no. 2, pp. 168–182, aug 1959.

[25] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
IJCAI, vol. 77, no. 2, pp. 852–857, 1993.

[26] G. Boella, D. M. Gabbay, L. van der Torre, and S. Villata, “Meta-
argumentation modelling I: Methodology and techniques,” Stud. Log.,
vol. 93, no. 2, pp. 297–355, 2009.

[27] S. Modgil and H. Prakken, “The aspic + framework for structured
argumentation: A tutorial,” 1 2014, vol. 5, pp. 31–62.

[28] M. Jackson, “The meaning of requirements,” Annals of Software Engi-
neering, vol. 3, no. 1, pp. 5–21, 1997.

[29] S. Modgil and H. Prakken, “A general account of argumentation with
preferences,” Artif. Intell., vol. 195, pp. 361–397, 2013.

[30] P. M. Dung, “On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games,”
Artif. Intell., vol. 77, no. 2, pp. 321–357, 1995.

[31] L. Kof, “From requirements documents to system models: A tool for
interactive semi-automatic translation,” in RE’10, 2010.

[32] V. Ambriola and V. Gervasi, “On the systematic analysis of natural
language requirements with Circe,” ASE, vol. 13, 2006.

[33] L. Mich, “NL-OOPS: from natural language to object oriented require-
ments using the natural language processing system LOLITA,” NLE,
vol. 2, no. 2, pp. 161–187, 1996.

[34] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak, “Easy approach
to requirements syntax (ears),” in RE’09. IEEE, 2009, pp. 317–322.

[35] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated check-
ing of conformance to requirements templates using natural language
processing,” TSE, vol. 41, no. 10, pp. 944–968, 2015.

[36] D. M. Berry, E. Kamsties, and M. M. Krieger, “From contract drafting
to software specification: Linguistic sources of ambiguity,” 2003.

[37] S. Gnesi, G. Lami, and G. Trentanni, “An automatic tool for the analysis
of natural language requirements,” IJCSSE, vol. 20, no. 1, 2005.

[38] S. Tjong and D. Berry, “The design of SREE a prototype potential
ambiguity finder for requirements specifications and lessons learned,”
in REFSQ’13, ser. LNCS, 2013, vol. 7830, pp. 80–95.

[39] B. Gleich, O. Creighton, and L. Kof, “Ambiguity detection: Towards a
tool explaining ambiguity sources,” in REFSQ’10, ser. LNCS, vol. 6182.
Springer, 2010, pp. 218–232.

[40] H. Femmer, D. M. Fernández, S. Wagner, and S. Eder, “Rapid quality
assurance with requirements smells,” JSS, vol. 123, pp. 190–213, 2017.

[41] F. Chantree, B. Nuseibeh, A. N. D. Roeck, and A. Willis, “Identifying
nocuous ambiguities in natural language requirements,” in RE’06, 2006,
pp. 56–65.

[42] H. Yang, A. N. D. Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
“Analysing anaphoric ambiguity in natural language requirements,”
Requir. Eng., vol. 16, no. 3, pp. 163–189, 2011.

[43] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in natural
language requirements,” TOSEM, vol. 14, no. 3, pp. 277–330, Jul. 2005.

[44] A. Van Lamsweerde, R. Darimont, and E. Letier, “Managing conflicts
in goal-driven requirements engineering,” TSE, vol. 24, no. 11, pp. 908–
926, 1998.

[45] S. Easterbrook and B. Nuseibeh, “Using viewpoints for inconsistency
management,” SEJ, vol. 11, no. 1, pp. 31–43, 1996.

[46] G. Perrouin, E. Brottier, B. Baudry, and Y. Le Traon, “Composing
models for detecting inconsistencies: A requirements engineering per-
spective,” in REFSQ’09. Springer, 2009, pp. 89–103.

[47] A. Sardinha, R. Chitchyan, N. Weston, P. Greenwood, and A. Rashid,
“Ea-analyzer: automating conflict detection in a large set of textual
aspect-oriented requirements,” ASE, vol. 20, no. 1, pp. 111–135, 2013.

[48] M. G. Pitts and G. J. Browne, “Stopping behavior of systems analysts
during information requirements elicitation,” JMIS, vol. 21, no. 1, pp.
203–226, 2004.

[49] B. Boehm, “Verifying and validating software requirements and design
specifications,” Software, IEEE, vol. 1, no. 1, pp. 75–88, 1984.

[50] D. Zowghi and V. Gervasi, “The Three Cs of Requirements: Consistency,
Completeness, and Correctness,” in REFSQ’02, 2002, pp. 155–164.

[51] S. España, N. Condori-Fernandez, A. Gonzalez, and O. Pastor, “Eval-
uating the completeness and granularity of functional requirements
specifications: A controlled experiment,” in RE ’09, 2009, pp. 161–170.

[52] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, “Security
requirements engineering: A framework for representation and analysis,”
TSE, vol. 34, no. 1, pp. 133–153, 2008.

[53] V. N. L. Franqueira, T. T. Tun, Y. Yu, R. Wieringa, and B. Nuseibeh,
“Risk and argument: A risk-based argumentation method for practical
security,” in RE’11, 2011, pp. 239–248.

[54] I. Mirbel and S. Villata, “Enhancing Goal-based Requirements Consis-
tency : an Argumentation-based Approach,” in Int. Work. Comput. Log.
Multi-Agent Syst., 2012, pp. 110–127.

[55] S. Ingolfo, A. Siena, J. Mylopoulos, A. Susi, and A. Perini, “Arguing
regulatory compliance of software requirements,” DKE, vol. 87, pp. 279–
296, 2013.

[56] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Analysis of multi-party
agreement in requirements validation,” RE’16, no. November 2016, pp.
57–66, 2009.

[57] E. Bagheri and F. Ensan, “Consolidating Multiple Requirement Speci-
fications Through Argumentation,” ACM SAC, pp. 659–666, 2011.




