
What Works Better? A Study of Classifying Requirements

Zahra Shakeri Hossein Abad∗, Oliver Karras†, Parisa Ghazi‡, Martin Glinz‡, Guenther Ruhe∗, Kurt Schneider†
∗SEDS Lab, Department of Computer Science, University of Calgary, Calgary, Canada

{zshakeri, ruhe}@ucalgary.ca
†Software Engineering Group, Leibniz Universität Hannover, Hannover, Germany

{oliver.karras, kurt.schneider}@inf.uni-hannover.de
‡Department of Informatics, University of Zurich, Zurich, Switzerland

{ghazi, glinz}@ifi.uzh.ch

Abstract—Classifying requirements into functional require-
ments (FR) and non-functional ones (NFR) is an important task
in requirements engineering. However, automated classification of
requirements written in natural language is not straightforward,
due to the variability of natural language and the absence of
a controlled vocabulary. This paper investigates how automated
classification of requirements into FR and NFR can be improved
and how well several machine learning approaches work in this
context. We contribute an approach for preprocessing require-
ments that standardizes and normalizes requirements before
applying classification algorithms. Further, we report on how
well several existing machine learning methods perform for
automated classification of NFRs into sub-categories such as
usability, availability, or performance. Our study is performed on
625 requirements provided by the OpenScience tera-PROMISE
repository. We found that our preprocessing improved the per-
formance of an existing classification method. We further found
significant differences in the performance of approaches such
as Latent Dirichlet Allocation, Biterm Topic Modeling, or Naı̈ve
Bayes for the sub-classification of NFRs.

Index Terms—Functional and Non-Functional Requirements,
Classification, Topic Modeling, Clustering, Naı̈ve Bayes

I. INTRODUCTION

In requirements engineering, classifying the requirements of
a system by their kind into functional requirements, quality
requirements and constraints (the latter two usually called
non-functional requirements) [1] is a widely accepted standard
practice today.

While the different kinds of requirements are known and
well-described today [2], automated classification of require-
ments written in natural language into functional requirements
(FRs) and the various sub-categories of non-functional require-
ments (NFRs) is still a challenge [3]. This is particularly due
to the fact that stakeholders, as well as requirements engineers,
use different terminologies and sentence structures to describe
the same kind of requirements [4], [5]. The high level of
inconsistency in documenting requirements makes automated
classification more complicated and therefore error-prone.

In this paper, we investigate how automated classification
algorithms for requirements can be improved and how well
some of the frequently used machine learning approaches work
in this context. We make two contributions. (1) We investigate
if and to which extent an existing decision tree learning
algorithm [6] for classifying requirements into FRs and NFRs
can be improved by preprocessing the requirements with a set

of rules for (automated) standardizing and normalizing the re-
quirements found in a requirements specification. (2) We study
how well several existing machine learning methods perform
for automated classification of NFRs into sub-categories such
as availability, security, or usability.

With this work, we address the RE Data Challenge posed
by the 25th IEEE International Requirements Engineering
Conference (RE’17).

II. RELATED WORK

Software Requirements Specifications (SRSs) are written in
natural language, with mixed statements of functional and non-
functional requirements. There is a growing body of research
studies that compare the effect of using manual and automatic
approaches for classification of requirements [3], [7]. An
efficient classification enables focused communication and pri-
oritization of requirements [8]. Categorization of requirements
allows filtering relevant requirements for a given important
aspect. Our work is also closely related to the research on
automatic classification of textual requirements.

Knauss and Ott [9] introduced a model of a socio-technical
system for requirements classification. They evaluated their
model in an industrial setting with a team of ten practi-
tioners by comparing a manual, a semi-automatic, and a
fully-automatic approach of requirements classification. They
reported that a semi-automatic approach offers the best ratio
of quality and effort as well as the best learning performance.
Therefore, it is the most promising approach of the three.

Cleland-Huang et al. [10] investigated mining large re-
quirements documents for non-functional requirements. Their
results indicate that NFR-Classifier adequately distinguishes
several types of NFRs. However, further work is needed to
improve the results for some other NFR types such as ’look-
and-feel’. Although their study is similar to ours as they trained
a classifier to recognize a set of weighted indicator terms,
indicative of each type of requirement, we used different clas-
sification algorithms and additionally assessed their precisions
and recalls to compare their performance with each other.

Rahimi et al. [11] present a set of machine learning and data
mining methods for automatically extracting quality concerns
from requirements, feature requests, and online forums. Then,
they generate a basic goal model from the requirements speci-
fication. Each concern is modeled as a softgoal. For attaching

ar
X

iv
:1

70
7.

02
35

8v
1

 [
cs

.S
E

]
 7

 J
ul

 2
01

7

topics to softgoals they used an LDA approach to estimate
the similarity between each requirement and the discovered
topics. In addition, they used LDA to identify the best sub-goal
placement for each of the unattached requirements. However,
in this research, we used LDA as one of our approaches for
classifying the non-functional requirements.

Naı̈ve Bayes classifier is used in several studies [12], [13]
for automatic classification of requirements. Therefore, we
included Naı̈ve Bayes in our study to be comparable with
other classifiers.

III. THE CHALLENGE AND RESEARCH QUESTIONS

A. Context and Data Set

The challenge put forward by the Data Track of RE’17 con-
sists of taking a given data set and performing an automated
RE task on the data such as tracing, identifying/classifying
requirements or extracting knowledge. For this paper, we chose
the task of automated classification of requirements.

The data set given for this task comes from the OpenScience
tera-PROMISE repository1. It consists of 625 labeled natural
language requirements (255 FRs and 370 NFRs). The labels
classify the requirements first into FR and NFR. Within
the latter category, eleven sub-categories are defined: (a) ten
quality requirement categories: Availability (A), Look & Feel
(LF), Maintainability (MN), Operability (O), Performance
(PE), Scalability (SC), Security (SE), Usability (US), Fault
Tolerance (FT), and Portability (PO); (b) one constraint cat-
egory: Legal & Licensing (L). These labels constitute the
ground truth for our investigations.

B. Research Questions

We frame the goal of our study in two research questions:
RQ1. How do grammatical, temporal and sentimental char-
acteristics of a sentence affect the accuracy of classifying
requirements into functional and non-functional ones?

With this research question, we investigate whether our
preprocessing approach, which addresses the aforementioned
characteristics, has a positive impact on the classification into
FRs and NFRs in terms of precision and recall.

RQ2. To what extent is the performance of classifying NFRs
into sub-categories influenced by the chosen machine learning
classification method?

With this research question, we study the effects of the
chosen machine learning method on the precision and recall
achieved when classifying the NFRs in the given data set into
the sub-categories defined in the data set.

IV. PREPROCESSING OF REQUIREMENTS SPECIFICATIONS

In this section, we describe the preprocessing we applied
to reduce the inconsistency of requirements specifications by
leveraging rich sentence features and latent co-occurrence
relations.

1https://terapromise.csc.ncsu.edu/!/#repo/view/head/requirements/nfr

A. Part Of Speech (POS) Tagging

We used the part-of-speech tagger of the Stanford Parser
[14] to assign parts of speech, such as noun, verb, adjective,
etc. to each word in each requirement. The POS tags2 are
necessary to perform the FR/NFR classification based on the
approach of Hussain et al. [6].

B. Entity Tagging

To improve the generalization of input requirements, we
used a “supervised training data” method in which all context-
based products and users are blinded by assigning names as
PRODUCT and USER, respectively. To this end, we used the
LingPipe NLP toolkit3 and created the SRS dictionary by
defining project specific users/customers and products (e.g.,
program administrators, nursing staff members, realtor, or card
member marked as USER), such as below:

SRS_dictionary.addEntry
(new DictionaryEntry<String>("Realtor","User"));

SRS_dictionary.addEntry
(new DictionaryEntry<String>("RFS System","Product"));

The system/PRODUCT shall be used by realtors/USER with no training.
>> The PRODUCT shall be used by USER with no training.

Then, each sentence is tokenized and POS tagged with the
developed SRS dictionary. All of the tokens associated with
user and product were discarded and we only kept these two
keywords to represent these two entities. Finally, we used
the POS tagger of the Stanford Parser [14] and replaced all
Noun Phrases (NPs) including “USER” and “PRODUCT”
with USER and PRODUCT , respectively. For instance,
registered USER in

〈
Only registered USER shall be able to

access the PRODUCT
〉
, is replaced with USER.

C. Temporal Tagging

Time is a key factor to characterize non-functional require-
ments, such as availability, fault tolerance, and performance.

For this purpose, we used SUTime, a rule-based temporal
tagger for recognizing and normalizing temporal expressions
by TIMEX3 standard4. SUTIME detects the following basic
types of temporal objects [15]:

1) Time: A particular instance on a time scale. SUTIME also
handles absolute times, such as Date. As in:

"the system shall be available for use between the hours of 8am and 6pm."
<TIMEX3 tid="t5" type="DATE" value="tf0">the hours of 8am</TIMEX3>
<TIMEX3 tid="t7" type="TIME" value="T18">6pm.</TIMEX3>

"USER must be able to accomplish any PRODUCT task within 2 minutes."
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

the search results shall be returned no later 30 seconds after the user has
entered the search criteria.
<TIMEX3 tid="t1" type="DURATION" value="PT30S">later 30
seconds</TIMEX3>

only users that exist in the UAS system with the RFS system

assigned to their role(s) shall access the RFS system and use it.

amod nsubj acl

acl root

access

authorized users

aux

<TIMEX3 tid="t1" type="DURATION" value="PT24H">24 hours</TIMEX3>
<TIMEX3 tid="t2" type="DURATION" value="P1D">day</TIMEX3>
<TIMEX3 tid="t3" type="DURATION" value="P365D">365 days</TIMEX3>
<TIMEX3 tid="t4" type="DURATION" value="P1Y">year</TIMEX3>

the product shall be available for use 24 hours per day 365 days per year.

the system shall be available for use between the hours of 8am and 6pm.
<TIMEX3 tid="t5" type="DATE" value="tf0">the hours of 8am</TIMEX3>
<TIMEX3 tid="t7" type="TIME" value="T18">6pm.</TIMEX3>

"The product shall synchronize with the office system every hour."
<TIMEX3 tid="t1" type="SET" value="PT1H">every hour</TIMEX3>

"USER must accomplish any PRODUCT task within 2 minutes."
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

2) Duration and Intervals: The amount of intervening time
in a time interval. As in:

2Check https://gist.github.com/nlothian/9240750 for a complete list of tags
3http://alias-i.com/lingpipe/
4See http://www.timeml.org for details on the TIMEX3 tag

"USER must be able to accomplish any PRODUCT task within 2 minutes."
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

the search results shall be returned no later 30 seconds after the user has
entered the search criteria.
<TIMEX3 tid="t1" type="DURATION" value="PT30S">later 30
seconds</TIMEX3>

only users that exist in the UAS system with the RFS system

assigned to their role(s) shall access the RFS system and use it.

amod nsubj acl

acl root

access

authorized users

aux

<TIMEX3 tid="t1" type="DURATION" value="PT24H">24 hours</TIMEX3>
<TIMEX3 tid="t2" type="DURATION" value="P1D">day</TIMEX3>
<TIMEX3 tid="t3" type="DURATION" value="P365D">365 days</TIMEX3>
<TIMEX3 tid="t4" type="DURATION" value="P1Y">year</TIMEX3>

the product shall be available for use 24 hours per day 365 days per year.

the system shall be available for use between the hours of 8am and 6pm.
<TIMEX3 tid="t5" type="DATE" value="tf0">the hours of 8am</TIMEX3>
<TIMEX3 tid="t7" type="TIME" value="T18">6pm.</TIMEX3>

"The product shall synchronize with the office system every hour."
<TIMEX3 tid="t1" type="SET" value="PT1H">every hour</TIMEX3>

"USER must accomplish any PRODUCT task within 2 minutes."
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

Intervals can be described as a range of time defined by
a start and end time points. SUTime represents this type
in the form of other types.

3) Set: A set of temporals, representing times that occur with
some frequency. As in:

"USER must accomplish any PRODUCT task within 2 minutes."
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

"USER must be able to accomplish any PRODUCT task within 2 minutes."
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

the search results shall be returned no later 30 seconds after the user has
entered the search criteria.
<TIMEX3 tid="t1" type="DURATION" value="PT30S">later 30
seconds</TIMEX3>

only users that exist in the UAS system with the RFS system

assigned to their role(s) shall access the RFS system and use it.

amod nsubj acl

acl root

access

authorized users

aux

<TIMEX3 tid="t1" type="DURATION" value="PT24H">24 hours</TIMEX3>
<TIMEX3 tid="t2" type="DURATION" value="P1D">day</TIMEX3>
<TIMEX3 tid="t3" type="DURATION" value="P365D">365 days</TIMEX3>
<TIMEX3 tid="t4" type="DURATION" value="P1Y">year</TIMEX3>

the product shall be available for use 24 hours per day 365 days per year.

the system shall be available for use between the hours of 8am and 6pm.
<TIMEX3 tid="t5" type="DATE" value="tf0">the hours of 8am</TIMEX3>
<TIMEX3 tid="t7" type="TIME" value="T18">6pm.</TIMEX3>

"The product shall synchronize with the office system every hour."
<TIMEX3 tid="t1" type="SET" value="PT1H">every hour</TIMEX3>

After tagging a sample set of all the classified NFRs, we
identified the following patterns and used them to normalize
the entire data set. To do this, first, we replaced all expressions
in this format “24[-//*]7” and “24× 7× 365” with “24 hours
per day 365 days per year”, and “everyday” with “every day”.
Likewise, we replaced all “sec(s)” and “min(s)” with “sec-
onds” and “minutes”, respectively. In the rest of this section,
we present the rules we defined and applied to normalize the
temporal expressions embedded in requirements’ descriptions.

Temporal Rules

1) ∀ [\exp]
〈
DURATION

〉
, exp← within

where exp ∈{no longer than, under, no more than, not be more than,
no later, in, for less than, at a maximum}

2) ∀ [\DURATION\TIME\DATE]+ ← alltimes

only users that exist in the UAS system with the RFS system

assigned to their role(s) shall access the RFS system and use it.

amod nsubj acl

acl root

access

authorized users

aux

<TIMEX3 tid="t1" type="DURATION" value="PT24H">24 hours</TIMEX3>
<TIMEX3 tid="t2" type="DURATION" value="P1D">day</TIMEX3>
<TIMEX3 tid="t3" type="DURATION" value="P365D">365 days</TIMEX3>
<TIMEX3 tid="t4" type="DURATION" value="P1Y">year</TIMEX3>

the product shall be available for use 24 hours per day 365 days per year.

the system shall be available for use between the hours of 8am and 6pm.
<TIMEX3 tid="t5" type="DATE" value="tf0">the hours of 8am</TIMEX3>
<TIMEX3 tid="t7" type="TIME" value="T18">6pm.</TIMEX3>

the search results shall be returned no later 30 seconds after the user has
entered the search criteria.
<TIMEX3 tid="t1" type="DURATION" value="PT30S">later 30
seconds</TIMEX3>

Callers and supervisors must be able to accomplish any system task within 2 minutes.
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

3) within
〈
DURATION

〉
← fast

if
〈
DURATION

〉
== [\seconds\minutes]

only users that exist in the UAS system with the RFS system

assigned to their role(s) shall access the RFS system and use it.

amod nsubj acl

acl root

access

authorized users

aux

<TIMEX3 tid="t1" type="DURATION" value="PT24H">24 hours</TIMEX3>
<TIMEX3 tid="t2" type="DURATION" value="P1D">day</TIMEX3>
<TIMEX3 tid="t3" type="DURATION" value="P365D">365 days</TIMEX3>
<TIMEX3 tid="t4" type="DURATION" value="P1Y">year</TIMEX3>

the product shall be available for use 24 hours per day 365 days per year.

the system shall be available for use between the hours of 8am and 6pm.
<TIMEX3 tid="t5" type="DATE" value="tf0">the hours of 8am</TIMEX3>
<TIMEX3 tid="t7" type="TIME" value="T18">6pm.</TIMEX3>

the search results shall be returned no later 30 seconds after the user has
entered the search criteria.
<TIMEX3 tid="t1" type="DURATION" value="PT30S">later 30
seconds</TIMEX3>

callers and supervisors must be able to accomplish any system task within 2 minutes.
<TIMEX3 tid="t2" type="DURATION" value="PT2M">2 minutes</TIMEX3>

4) {timely, quick} || [\positive adj \time]← fast

5) [8-9][0-9][\.?[0-9]?%?][IN | DET]∗time← alltimes

D. Co-occurrence and Regular Expressions

Once the sentence features are utilized to reduce the com-
plexity of the text, we used the co-occurrence and regular
expressions to increase the weight of the influential words
for each type of NFRs. To explore these rules we manually
analyzed 6 to 10 requirements of each NFR and deployed
different components of Stanford Parser such as part-of-
speech, named entities, sentiment, and relations. Moreover,
in this step, we recorded co-occurrence counts of each term
within the provided NFR data set as the co-occurrence vector.
We used this parameter as a supplement for exploring the SRS
regular expressions. For instance, Table I represents the details
of the rules we proposed for Security (SE) NFR. Please refer
to the footnote5 for the complete list of these rules containing
regular expressions for all of the provided NFRs.

5http://wcm.ucalgary.ca/zshakeri/projects

V. ANALYSIS AND RESULTS

A. RQ1- Influence of grammatical, temporal and sentimental
sentence characteristics on FR/NFR classification

For the classification of functional and non-functional re-
quirements, we used the approach of Hussain et al. [6].
We applied this approach to the unprocessed data set of
requirements as well as on the processed one resulting from
our preprocessing.

Classification Process: Firstly, we clean up the respective
data set by iteratively removing encoding and formatting errors
to ensure the further processing. Subsequently, we apply the
part-of-speech tagger of the Stanford Parser [14] to assign
parts of speech to each word in each requirement.

Based on the tagging of all requirements, we extract the five
syntactic features number of adjectives, number of adverbs,
number of adverbs that modify verbs, number of cardinals,
and number of degree adjective/adverbs. For each feature,
we determine its rank based on the feature’s probability of
occurrence in the requirements of the data set. According to
Hussain et al. [6], we selected a cutoff threshold of > 0.8.
Therefore, we determined number of cardinals and number of
degree of adjectives/adverbs as valid features among all five
ones for the unprocessed data set. For the processed data set,
we identified number of cardinals and number of adverbs as
valid features.

Afterwards, we extract the required keyword features for
the nine defined part-of-speech keyword groups adjective,
adverb, modal, determiner, verb, preposition, singular noun,
and plural noun. For each keyword group, we calculate the
smoothed probability measure and selected the respective
cutoff threshold manually to determine the most discriminating
keywords for each data set, corresponding to Hussain et al. [6].

Our final feature list for the unprocessed data set consisted
of the ten features number of cardinals, number of degree of
adjectives/adverbs, adjective, adverb, modal, determiner, verb,
preposition, singular noun, and plural noun.

Our final feature list for the processed data set consisted of
the ten features number of cardinals, number of adverbs, ad-
jective, adverb, modal, determiner, verb, preposition, singular
noun, and plural noun.

To classify each requirement of the respective data set, we
implemented a Java-based feature extraction prototype that
parses all requirements from the data set and extracts the
values for all ten features mentioned above. Subsequently, we
used Weka [16] to train a C4.5 decision tree algorithm [17]
which comes with Weka as J48 implementation. According
to Hussain et al. [6], we set the parameters for the minimum
number of instances in a leaf to 6 to counter possible chances
of over-fitting.

Since the data set was not very large with 625 requirements,
we performed a 10-fold-cross validation. In the following, we
report our classification results for each data set.
Results: The classification of the unprocessed data set results
in 89.92% correctly classified requirements with a weighted
average precision and recall of 0.90. The classification of

TABLE I: Proposed co-occurrence and regular expressions for preprocessing SRSs [(CO(w)): the set of terms co-occur with word w]
NFR Keywords Part of Speech (POS) and Regu-

lar Expressions
Replacements

Security [SE] protect, encrypt, policy,
authenticate, prevent,
malicious, login, logon,
password, authorize, secure,
ensure, access

(only /.../nsubj /.../root /...) ||
(only /.../root /.../nmod: agent /...)
∧
(
root is a V BP

) ⇒

{
nsubj agent ← authorized user
root ← access

authorized users

amod nsubj aux root

access

amod nsubj acl

acl root

access

authorized users

aux

only users that exist in the UAS system with the RFS system

assigned to their role(s) shall access the RFS system and use it.

only administrators can activate a pre-paid card.

∀ω ∈
{username & password, login, logon}
security, privacy, right, integrity, polict}
∧CO(ω) ∩ CO(NFRse) 6= ∅

⇒ ω ← authorization

∀ω ∈
{reach, enter, protect, input, interface
∧product is obj ∧ CO(ω) ∩
CO(NFRse) 6= ∅

⇒ ω ← access

the processed data set results in 94.40% correctly classified
requirements with a weighted average precision of 0.95 and
recall of 0.94. TABLE II and TABLE III show the details.
By applying our approach, we could achieve an improvement
of 4.48% correctly classified requirements. In total, we could
correctly classify 28 additional requirements, which consist
of 9 functional and 19 non-functional ones. When classifying
NFRs into sub-categories, the influence of our preprocessing is
much stronger. The last two columns of TABLE IV show the
overall precision and recall of six different machine learning
algorithms for sub-classifying NFRs into the categories listed
in columns 1–10 of the table. For all algorithms, results are
dramatically better when using the preprocessed data (column
Total P) compared to using the raw data (column Total UP).

TABLE II: Classification results of the unprocessed data set
Correctly
Classified

Incorrectly
Classified Precision Recall F-Measure Kappa

NFR 325 (87.84%) 45 (12.16%) 0.95 0.88 0.91
0.79FR 237 (92.94%) 18 (7.06%) 0.84 0.93 0.88

Total 562 (89.92%) 63 (10.08%) 0.90 0.90 0.90

TABLE III: Classification results of the processed data set
Correctly
Classified

Incorrectly
Classified Precision Recall F-Measure Kappa

NFR 344 (92.97%) 26 (7.03%) 0.98 0.93 0.95
0.89FR 246 (96.47%) 9 (3.53%) 0.90 0.97 0.93

Total 590 (94.40%) 35 (5.60%) 0.95 0.94 0.94

B. RQ2- Classifying Non-functional Requirements

In this section, we describe the machine learning algorithms
we used to classify NFRs. The performance of each method
is assessed in terms of its recall and precision.

1) Topic Modeling: Topic modeling is an unsupervised
text analysis technique that groups a small number of highly
correlated words, over a large volume of unlabelled text [18],
into topics.

Algorithms: The Latent Dirichlet Allocation (LDA) algo-
rithm classify documents based on the frequency of word

co-occurrences. Unlike the LDA approach, the Biterm Topic
Model (BTM) method models topics based on the word co-
occurrence patterns and learns topics by exploring word-word
(i.e., biterm) patterns. Some recent studies on the application
of topic modeling in classifying short text documents stated
that the BTM approach has a better ability in modeling
short and sparse text, as the ones typical for requirements
specifications.

Results and Evaluation: The modeled topics for both
LDA and BTM, including the top frequent words and the
NFR assigned to each topic are provided in our source code
package6. We determined each topic by the most probable
words that are assigned to it. For instance, LDA yields the
word set {user, access, allow, prior, and detail} for the topic
describing the Fault Tolerance sub-category, while BTM yields
the set {failure, tolerance, case, use and data}.

Generally, the word lists generated by BTM for each topic
are more intuitive than those produced by LDA. This confirms
previous research that BTM performs better than LDA in
terms of modeling and generating the topics/themes of a
corpus consisting of short texts. However, surprisingly, BTM
performed much worse than LDA for sub-classifying NFRs as
shown in Table IV. This might be because BTM performs its
modeling directly at the corpus level and biterms are generated
independently from topics.
•

2) Clustering: Clustering is an unsupervised classification
technique which categorizes documents into groups based on
likeness [19]. This likeness can be defined as the numerical
distance between two documents Di and Dj which is mea-
sured as:

d(Di, Dj) =
√

(di1 − dj1)
2 + (di2 − dj2)

2 + ... + (din − djn)
2

Where (di1, di2, ..., din) and (dj1, dj2, ..., djn) represent
the coordinates (i.e., word frequencies) of the two documents.

Algorithms: The Hierarchical (i.e., Agglomerative) algo-
rithm, first, assigns each document to its own cluster and iter-

6http://wcm.ucalgary.ca/zshakeri/projects

0

2

4

6

8
value

(a) Hopkins statistic to assess the cluster-
ability of the data set (hopkins-stat = 0.1)

1: 3 | 0.23

Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = km.res2$cl, dist = dissE)

Average silhouette width : 0.13

j : nj | avei∈Cj si
1 : 22 | 0.36

2 : 77 | −0.06

3 : 56 | 0.22

4 : 42 | 0.18

5 : 47 | 0.20

6 : 35 | 0.20
7 : 20 | −0.08
8 : 31 | 0.05

9 : 35 | 0.25
10 : 5 | −0.08

(b) Hierarchical= 0.13
Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = km$cl, dist = dissE)

Average silhouette width : 0.1

j : nj | avei∈Cj si1 : 3 | 0.23
2 : 37 | 0.18

3 : 42 | 0.19

4 : 125 | 0.02

5 : 19 | −0.08
6 : 28 | 0.07

7 : 39 | 0.18
8 : 12 | 0.10
9 : 39 | 0.14

10 : 26 | 0.16

1: 3 | 0.23

(c) K-means= 0.1
Silhouette width si

0.0 0.2 0.4 0.6 0.8 1.0

Silhouette plot of (x = km.res2$cl, dist = dissE)

Average silhouette width : 0.13

j : nj | avei∈Cj si
1 : 22 | 0.36

2 : 77 | −0.06

3 : 56 | 0.22

4 : 42 | 0.18

5 : 47 | 0.20

6 : 35 | 0.20
7 : 20 | −0.08
8 : 31 | 0.05

9 : 35 | 0.25
10 : 5 | −0.08

1: 22 | 0.36

(d) Hybrid= 0.13

A

FT

L

LF

MN

O

PE

PO

SC

SE

US

A FT L LF MN O PE PO SC SE US
Actual Class

Pr
ed

ict
ed

 C
la

ss

−0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Normalized
Frequency

(e) A visual representation of the
confusion matrix (BNB algorithm)

Fig. 3: Detailed visual representation of classifying NFRs

TABLE IV: Comparison between classification algorithms for classifying non-functional requirements [(U)P= (Un)Processed]
Algorithm A US SE SC LF L MN FT O PE PO Total [P] Total [UP]

R P R P R P R P R P R P R P R P R P R P R P R P R P
LDA 95 60 61 76 87 87 81 57 60 85 47 20 70 52 10 2 35 70 70 95 - - 62 62 31 31
BTM 0 0 6 12 13 18 9 8 5 7 0 0 0 0 40 17 0 0 18 43 - - 8 8 3 3

Hierarchical 13 14 25 20 24 17 16 29 5 3 6 15 19 35 18 40 32 29 26 22 - - 21 21 16 16
K-means 10 23 19 14 29 18 14 14 21 21 8 15 22 47 18 40 26 30 31 11 - - 20 20 15 15
Hybrid 15 14 27 22 29 18 20 4 26 24 6 15 17 35 18 40 22 27 26 22 - - 22 22 19 17

Naı̈ve Bayes 90 90 97 77 97 100 83 83 94 94 75 100 90 82 97 90 78 91 90 100 - - 91 90 45 45

atively merges clusters that are closest to each other until the
entire corpus forms a single cluster. Despite the hierarchical
approach in which we do not need to specify the number
of clusters upfront, the K-means algorithm assigns documents
randomly to k bins. This approach computes the location of
the centroid of each bin and computes the distance between
each document and each centroid. We defined the k=10 to
run this algorithm. However, the k-means approach is highly
sensitive to the initial random selection of cluster centroid
(i.e., mean), which might lead to different results each time
we run this algorithm. Thus, we used a Hybrid algorithm,
which combined hierarchical and K-means algorithms. This
algorithm, first, computes the center (i.e., mean) of each cluster
by applying the hierarchical approach. Then computes the K-
means approach by using the set of defined clusters’ centers.

Results and Evaluation: Before applying clustering algo-
rithms we used Hopkins (H) statistic to test the spatial ran-
domness and assess the clustering tendency (i.e., clusterability)
of our data set. To this end, we raised the following null
hypothesis:

(
H0: the NFR data set is uniformly distributed

and has no meaningful clusters
)
. As presented in Figure 3 (a),

the H-value of this test is 0.1 (close to zero), which rejects
this hypothesis and concludes that our data set is significantly
clusterable. However, as presented in Table IV, the clustering
algorithms had poor performance at classifying NFRs. This
may imply that the data set under study is quite unstructured
and sub-categories of NFRs are not well separated. Thus, an
unsupervised algorithm (e.g. Hierarchical or K-means) cannot
accurately achieve segmentation.

Moreover, we used Silhouette (s) analysis to assess the
cohesion of resulted clusters. We used the function silhouette()
of cluster package to compute the silhouette coefficient. Small
s-value (i.e., around 0) means that the observation lies between
two clusters and has a low cohesion. The results of this test and

the details of each cluster, including a number of requirements
assigned to it, and its s-value are illustrated in Figure 3(b-d).
•

3) Naı̈ve Bayes Classification: This approach is a super-
vised learning method which predicts unseen data based on the
bayes’ theorem [20] used to calculate conditional probability:

P (C = ck | F = f) =
P (F = f | C = ck)P (C = ck)

P (f)

Where C = (c1, c2, ..., ck) represents classes and F =
(f1, f2, ..., fd) is a vector random variable, which includes one
vector for each document.

Algorithm: We use a variation of the multinomial Naı̈ve
Bayes (BNB) algorithm known as Binarized Naı̈ve Bayes. In
this method, the term frequencies are replaced by Boolean
presence/absence features. The logic behind this is the higher
importance of word occurrence than word frequency to senti-
ment classification.

Results and Evaluation: To apply this algorithm we em-
ployed a 5-fold-cross validation. To reduce the data splitting
bias, we run five runs of the 5-fold-cross validation. Overall
accuracy is calculated at just over 90% with a p-value of
2.2e-16. As illustrated in Table IV, results obtained using the
BNB algorithm were generally more accurate. All of the NFRs
(except for PO) were recalled at relatively high values ranging
from 75 (i.e., Legal requirements) to 97% (i.e., security and
performance requirements). To represent more details about
the performance of our classifier for each NFR, we visual-
ized the confusion matrix resulted from applying the BNB
algorithm (Figure 3 (e)). Each column and row of this matrix
represent the actual (i.e., reference) and the prediction data,
respectively. The blocks are colored based on the frequency
of the intersection between actual and predicted classes (e.g.,
the diagonal represents the correct predictions for the actual
class). Since some of the NFRs in our data set occur more

frequently, we normalized our data set before visualizing the
confusion matrix. As illustrated in Figure 3 (e), requirements
in classes FT, L, MN, O, and SC were often assigned to class
US. We can imply that the terminology we use for representing
usability requirements is very general, which covers other
NFRs that are indirectly related to usability. This shows
a clear need for additional (or better) sentimental patterns,
which differentiate this category of NFR from other similar
categories. to differentiate usability requirements from other
types of NFRs.

Findings

..................Finding 1: Our preprocessing approach positively impacted the
performance of the applied classification of functional and non-
functional requirements. We could improve the accuracy from
89.92% to 95.04%.

Finding 2: Our preprocessing approach strongly impacted the
performance of all applied sub-classification methods. For LDA and
BNB, both precision and recall doubled.

Finding 3: Among the machine learning algorithms LDA, BTM,
Hierarchical, K-means, Hybrid and Binarized Naı̈ve Bayes (BNB),
BNB had the highest performance for sub-classifying NFRs.

Finding 4: While BTM generally works better than LDA for
exploring the general themes and topics of a short-texts corpus, it
did not perform well for sub-classifying NFRs.

Finding 5: There is a clear need for additional sentimental pat-
terns/sentence structures to differentiate usability requirements from
other types of NFRs.

VI. LIMITATIONS AND THREATS TO VALIDITY

In this section, we discuss the potential threats to the validity
of our findings in two main threads:

(1) Data Analysis Limitations: The biggest threat to the
validity of this work is the fact that our preprocessing model
was developed on the basis of the data set given for the
RE Data Challenge and that we had to use the same data
set for evaluating our approach. We mitigate this threat by
using sentence structure features such as temporal, entity, and
functional features which are applicable to sentences with
different structures from different contexts. We also created
a set of regular expressions which are less context-dependent
and have been formed mainly based on the semantics of NFRs.

Another limiting factor is that our work depends on the
number and choice of the NFR sub-categories used by the
creators of our data set. However, our preprocessing can be
adapted to a different set of NFR sub-categories. In terms of
the co-occurrence rules and regular expressions presented in
Table I, we aim to expand these rules by adding more NFR
sub-categories in future work, as we gain additional insights
from processing real world requirements specifications.

(2) Dataset Limitations: Due to the nature of the RE’17
Data Challenge, we used the data set as is, although it
has major data quality issues: (1) Some requirements are
incorrectly labeled. For example, R2.18 “The product shall
allow the user to view previously downloaded search results,
CMA reports and appointments” is labeled as NFR. Obviously,
however, this is a functional requirement. (2) The important
distinction between quality requirements and constraints is not

properly reflected in the labeling. (3) The selection of the
requirements has some bias. For example, the data set does not
contain any compatibility, compliance or safety requirements.
Neither does it contain any cultural, environmental or physical
constraints. (4) Only one single requirement is classified as
PO which makes this sub-category useless for our study. The
repetition of our study on a data set of higher data quality is
subject to future work.

Furthermore, the unbalanced data set we used for classify-
ing the NFRs may affect the findings of this study. However,
a study by Xue and Titterington [21] revealed that there is
no reliable empirical evidence to support the claim that an
unbalanced data set negatively impacts the performance of the
LDA/BTM approaches. Further, a recent study by López et al.
[22] shows that the unbalanced ratio by itself does not have the
most significant effect on the classifiers performance, but there
are other issues such as (a) the presence of small disjuncts, (b)
the lack of density, (c) the class overlapping, (d) the noisy data,
(e) the management of borderline examples, and (f) the dataset
shift that must be taken into account. The pre-processing step
we conducted before applying the classification algorithms
helps discriminate the NFR sub-classes more precisely and
mitigates the negative impact of the noisy data and borderline
problems. Moreover, we employed the n-fold cross validation
technique which helps generate enough positive class instances
in different folds and reduces additional problems in the data
distribution especially for highly unbalanced datasets. This
technique, to a great extent, mitigates the negative impact
of class overlapping, the dataset shift, and the presence of
small disjuncts issues on the performance of the classification
algorithms we applied in this study.

VII. CONCLUSION AND IMPLICATIONS

Our findings are summarized in the box at the end of
Section V. In particular, we conclude that using our prepro-
cessing approach improves the performance of both classifying
FR/NFR and sub-classifying NFR into sub-categories. Further,
we found that, among popular machine learning algorithms,
Binarized Naı̈ve Bayes (BNB) performed best for the task
of classifying NFR into sub-categories. Our results further
show that, although BTM generally works better than LDA for
extracting the topics of short-texts, BTM does not perform well
for classifying NFRs into sub-categories. Finally, additional (or
better) sentimental patterns and sentence structures are needed
for differentiating usability requirements from other types of
NFRs.

REFERENCES

[1] M. Glinz, “A Glossary of Requirements Engineering Terminology,
Version 1.6,” International Requirements Engineering Board (IREB).
Available at https://www.ireb.org/en/downloads/#cpre-glossary, 2014.

[2] ——, “On non-functional requirements,” in 15th IEEE International
Requirements Engineering Conference (RE’07), 2007, pp. 21–26.

[3] N. A. Ernst and J. Mylopoulos, On the Perception of Software Quality
Requirements during the Project Lifecycle. Springer Berlin Heidelberg,
2010, pp. 143–157.

[4] Z. S. H. Abad and G. Ruhe, “Using real options to manage technical debt
in requirements engineering,” in 23rd IEEE International Requirements
Engineering Conference (RE), 2015, pp. 230–235.

[5] Z. S. H. Abad, A. Shymka, S. Pant, A. Currie, and G. Ruhe, “What
are practitioners asking about requirements engineering? an exploratory
analysis of social q a sites,” in 24th IEEE International Requirements
Engineering Conference Workshops (REW), 2016, pp. 334–343.

[6] I. Hussain, L. Kosseim, and O. Ormandjieva, “Using linguistic knowl-
edge to classify non-functional requirements in SRS documents,” in
International Conference on Application of Natural Language to In-
formation Systems. Springer, 2008, pp. 287–298.

[7] N. Niu and S. Easterbrook, “Extracting and modeling product line
functional requirements,” in 2008 16th IEEE International Requirements
Engineering Conference, 2008, pp. 155–164.

[8] C. Duan, P. Laurent, J. Cleland-Huang, and C. Kwiatkowski, “Towards
automated requirements prioritization and triage,” Requir. Eng., vol. 14,
no. 2, pp. 73–89, 2009.

[9] E. Knauss and D. Ott, “Automatic requirement categorization of large
natural language specifications at mercedes-benz for review improve-
ments,” in Proceedings of the 19th International Conference on Require-
ments Engineering: Foundation for Software Quality, ser. REFSQ’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 50–64.

[10] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “The detection
and classification of non-functional requirements with application to
early aspects,” in 14th IEEE International Requirements Engineering
Conferenc, 2006, pp. 39–48.

[11] M. Rahimi, M. Mirakhorli, and J. Cleland-Huang, “Automated extraction
and visualization of quality concerns from requirements specifications,”
in 2014 IEEE 22nd International Requirements Engineering Conference,
2014, pp. 253–262.

[12] E. Knauss, D. Damian, G. Poo Caamano, and J. Cleland Huang, “De-
tecting and classifying patterns of requirements clarifications.” IEEE
Computer Society, 2012, pp. 251–260.

[13] Y. Ko, S. Park, J. Seo, and S. Choi, “Using classification techniques for
informal requirements in the requirements analysis-supporting system,”
Inf. Softw. Technol., vol. 49, no. 11-12, pp. 1128–1140, Nov. 2007.

[14] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Pro-
ceedings of the 41st Annual Meeting on Association for Computational
Linguistics - Volume 1, ser. ACL ’03. Association for Computational
Linguistics, 2003, pp. 423–430.

[15] A. X. Chang and C. D. Manning, “Sutime: A library for recognizing
and normalizing time expressions.” in LREC, 2012, pp. 3735–3740.

[16] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann, 2016.

[17] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
[18] H. M. Wallach, “Topic Modeling: Beyond Bag-of-words,” in Proceed-

ings of the 23rd International Conference on Machine Learning. ACM,
2006, pp. 977–984.

[19] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surv., vol. 31, no. 3, pp. 264–323, 1999.

[20] D. D. Lewis, Naive (Bayes) at forty: The independence assumption in
information retrieval. Springer Berlin Heidelberg, 1998, pp. 4–15.

[21] J. H. Xue and D. M. Titterington, “Do unbalanced data have a negative
effect on lda?” Pattern Recognition, vol. 41, no. 5, pp. 1558 – 1571,
2008.

[22] V. López, A. Fernández, S. Garı́a, V. Palade, and F. Herrera, “An insight
into classification with imbalanced data: Empirical results and current
trends on using data intrinsic characteristics,” Information Sciences, vol.
250, pp. 113 – 141, 2013.

	I Introduction
	II Related Work
	III The Challenge and Research Questions
	III-A Context and Data Set
	III-B Research Questions

	IV Preprocessing of Requirements Specifications
	IV-A Part Of Speech (POS) Tagging
	IV-B Entity Tagging
	IV-C Temporal Tagging
	IV-D Co-occurrence and Regular Expressions

	V Analysis and Results
	V-A RQ1- Influence of grammatical, temporal and sentimental sentence characteristics on FR/NFR classification
	V-B RQ2- Classifying Non-functional Requirements
	V-B1 Topic Modeling
	V-B2 Clustering
	V-B3 Naïve Bayes Classification

	VI Limitations and Threats to Validity
	VII Conclusion and Implications
	References

