
Identifying Conflicting Requirements in
Systems of Systems

Thiago Viana
Open University

School of Computing and
Communications

Milton Keynes, UK
thiago.viana@open.ac.uk

Andrea Zisman
Open University

School of Computing and
Communications

Milton Keynes, UK
andrea.zisman@open.ac.uk

Arosha K. Bandara
Open University

School of Computing and
Communications

Milton Keynes, UK
arosha.bandara@open.ac.uk

Abstract— A System of Systems (SoS) is an arrangement of
useful and independent sub-systems, which are integrated into a
larger system. Examples are found in transport systems, nutri-
tional systems, smart homes and smart cities. The composition of
component sub-systems into an SoS enables support for complex
functionalities that cannot be provided by individual sub-systems
on their own. However, to realize the benefits of these functionali-
ties it is necessary to address several software engineering chal-
lenges including, but not limited to, the specification, design, con-
struction, deployment, and management of an SoS. The various
component sub-systems in an SoS environment are often con-
cerned with distinct domains; are developed by different stake-
holders under different circumstances and time; provide distinct
functionalities; and are used by different stakeholders, which
allow for the existence of conflicting requirements. In this paper,
we present a framework to support management of emerging
conflicting requirements in an SoS. In particular, we describe an
approach to support identification of conflicts between resource-
based requirements (i.e. requirements concerned with the con-
sumption of different resources). In order to illustrate and evalu-
ate the work, we use an example of a pilot study of an IoT SoS
ecosystem designed to support food security at different levels of
granularity, namely individuals, groups, cities, and nations.

Index Terms—Conflicting requirements, Systems of Systems,
Conflict Identification

I. INTRODUCTION
A System of Systems (SoS) is a collection of sub-systems
providing: operational and managerial independence of the
sub-systems, geographical distribution of the sub-systems,
emergent behavior, and evolutionary development processes
[1]. Examples of SoSs are found in several areas such as
transportation, nutrition management, smart homes, smart
cities, etc. In such environments, the various participating sub-
systems in an SoS are often from different domains; are
developed by different teams of people under different
circumstances and time; have distinct functionalities; and are
used by different stakeholders. An important challenge in
SoSs is concerned with the management of inconsistent
emerging requirements. More specifically, in an SoS, the
various participating sub-systems may present conflicting
requirements among themselves, as well as emerging
conflicting requirements between the whole SoS and the

participating sub-systems. For example, consider a
requirement of a smart home SoS concerned with the
reduction of electricity consumption in the home, and a
requirement of the meal-planner sub-system in the smart home
SoS to keep information about daily food intake of all the
family members. In this case, the meal-planner requirement
consumes a large amount of electricity to be able to keep the
necessary information and, therefore, it conflicts with the
electricity consumption reduction in the home.
 In this paper we present a framework called MaCoRe_SoS
(Managing Conflicting Requirements in Systems of Systems) to
support conflict management in SoSs. In particular, we are
interested in identifying conflicting requirements associated
with the consumption of resources by the participating sub-
systems in an SoS (i.e., resource-based requirements). The
different types of resources depend on the domains of the
participating systems and the SoS as a whole. For instance, in
the case of a smart home nutrition management SoS, relevant
resources would include the calorific content of meals or the
daily calories consumed by an individual; the quantity and cost
of ingredients in meals; energy consumption to prepare meals;
and individuals’ insulin, cholesterol or blood pressure levels. In
the case of a smart city SoS, examples of resources would
include the energy consumption of households, availability of
different types of transport, pollution levels, and traffic levels.

In order to address uncertainties in the SoS environment,
the framework assumes requirements specified in an extension
of the RELAX language [2]. The framework is composed of
three steps, namely (a) conflict identification, (b) conflict
diagnosis, and (c) conflict resolution. The conflict
identification, diagnosis, and resolution steps are executed
based on a Monitor-Analyze-Plan-Execute-Knowledge
(MAPE-K) architectural pattern [3]. The conflict identification
step is executed by two activities, namely overlap detection and
conflict detection. The overlap detection is executed at design
time based on the use of ontologies in order to identify
requirements that share the same resources. The detection of
conflicts is executed by an event monitor, which detects
violations of resources at run-time. The diagnosis of the
conflicts is performed by an analyzer component based on
requirements interaction features. The resolution of conflicts is
based on the use of a utility function and supports eight

resolution methods [4]. In this paper, we concentrate on the
conflict identification step. An example of a IoT-based food
security SoS called FeedMe FeedMe [5] is used to illustrate
and evaluate the approach using a pilot study based on a
simulated scenario.

The rest of this paper is structured as follows. In Section II
we describe the FeedMe FeedMe IoT-based SoS example. In
Section III we present a brief overview of the MaCoRe_SoS
framework. In Section IV we describe the identification of
conflicting requirements in the MaCoRe_SoS framework. In
Section V we present the results of an initial evaluation using a
pilot study. In Section VI we discuss related work. Finally, in
Section VII we present some conclusions and future work.

II. MOTIVATING EXAMPLE
FeedMe FeedMe [5] is an IoT-based SoS exemplar composed
of different independently created sub-systems to support food
security issues at different levels of granularity, namely indi-
viduals, groups, cities, and nations. At the individual level,
FeedMe FeedMe uses wearable devices to monitor, analyse and
present suggestions about the nutritional and health status of an
individual. At the group level, FeedMe FeedMe uses the in-
teroperation of smart home appliances to create a more precise
family meal plan, based on family resources and budget. At the
city level, local markets collect data from various families in
order to manage their stock and reduce food wastage. Finally,
at the national level, food producers and manufacturers collect
data from several markets to forecast food needs and provide
alternatives in case of food crisis. Aligned with the granularity
levels described above, the FeedMe FeedMe SoS consists of
four different systems: AnalyseMe, HomeHub, SmartCity, and
SmartNation. Figure 1 shows an overview of FeedMe FeedMe
and its various participating systems and devices. We provide
below a brief description of these systems.

Fig. 1. Overview of FeedMe FeedMe granularity levels

AnalyseMe. This system is composed of wearable devices that
collect different types of health related information from a user

(e.g., heart rate, blood pressure, blood glucose, food intake,
sleep and activity levels), and proposes meal and exercise plans
to the user, using the collected information.
HomeHub. This system is a smart system that communicates
with the home appliances in a house, aided by smart packaging
applications used by refrigerator and pantry devices. This sys-
tem allows family meals to be planned in advance and it is able
to send a list of ingredients to supermarkets when they are re-
quired and missing from the house.
SmartCity. This system supports local supermarkets to collect
information about families and communities’ grocery require-
ments to improve the management of stocks and inventory.
SmartNation. This system aggregates requirements of individ-
uals, family households, supermarkets, producers, manufactur-
ers, and distributors to manage food production.

Considering that the FeedMe FeedMe SoS has different and

independent component sub-systems, conflicting requirements
may arise when requirements of the participating systems or
requirements of the overall SoS cannot be satisfied due to
simultaneous use of resources associated with these
requirements. For example, consider a requirement of the
AnalyseMe system in which meal plans that satisfy the
nutritional needs of the user should be created. Consider also
the fact that healthy meals are usually more expensive. Suppose
another requirement of HomeHub system in which it is
necessary to avoid food waste and help the user with his
budget. In this case, these two requirements may conflict since
the meal plan provided by the AnalyseMe could require more
expensive food resources, using more budget or lead to the
waste of other food resources when they do not meet the
nutritional requirements. Another example is related to the fact
that in order to provide a healthy lifestyle the Feed Me Feed
Me SoS may create exercise plans to the family, however those
exercise plans may request the usage of some home appliances,
leading to more electricity consumption. It may conflict, for
instance, with a HomeHub requirement to use as little
electricity as possible.

III. AN OVERVIEW OF THE MACORE_SOS FRAMEWORK
Figure 2 shows an overview of the MaCoRe_SoS framework.
As shown in the figure, the framework uses a conflict manager
component to support its main steps (i) conflict identification
(ii) conflict diagnosis, and (iii) conflict resolution. It supports
SoS environments composed of other stand-alone component
sub-systems (CS), services, or even other systems of systems.
For simplicity, we will refer to a participating component sub-
system, service, or SoS, as an entity.

Each participating entity registers in an SoS and provides
its respective requirement specifications and an ontology that is
used by the framework to represent concepts of the domain
associated with the entity. The ontologies are integrated into a
shared ontology in order to assist with the identification of re-
sources that are shared by the various participating entities dur-
ing the overlap detection and conflict detection activities. The
conflict identification, diagnosis, and resolution steps in the

framework are executed based on the Monitor-Analyze-Plan-
Execute-Knowledge (MAPE-K) architectural pattern [3]. The
framework also includes a database that stores necessary
knowledge used during conflict management (e.g., historical
data about resolution strategies used in previous conflict resolu-
tions and information about requirements violations).

Fig. 2. Overview of MaCoRe_SoS framework

A monitor component assists the framework during the
conflict identification step. It monitors events that are sent by
the entities and how the resources are affected by these events.
Also, the monitor checks the requirements satisfaction after an
event, in order to detect conflicts. The diagnosis of the
conflicts is performed by an analyzer component using
requirements interaction features [4]. The resolution of
conflicts is based on the use of a utility function and supports
eight resolution methods: relaxation, refinement, abandonment,
compromise, restructuring, reinforcement, re-planning, and
postponement [4].

IV. CONFLICT IDENTIFICATION
The various participating entities in an SoS need to operate and
support different requirements in its own environment (viz.
local requirements), as well as support new requirements of the
SoS as a whole (viz. global requirements), that could not be
achieved separately by the participating entities. In such an
environment, it is necessary to guarantee consistency between
local requirements of the participating entities, as well con-
sistency between local and global requirements. The identifica-
tion of conflicting requirements in an SoS requires the monitor-
ing of requirements at different layers and levels of granularity.

MaCoRe_SoS framework addresses the above challenges
by using an extension of the RELAX language [2] to identify
conflicting requirements, and by performing two activities,
namely (a) overlap detection and (b) conflict detection. The
first activity detects overlaps between the requirements from
different entities and the resources present in the SoS environ-
ment. The second activity uses an event monitor that receives
inputs from the entities and SoS actions, and checks its compli-
ance with the requirements and the involved entities to detect
violations that may lead to conflicts between requirements.

Conflicts in resource-based requirements are concerned
with how resources are consumed or protected by the various
participating entities and the whole SoS, as described below.

• CONSUME X CONSUME: Conflicts due to a divergent con-
sumption of the same resource by two or more requirements.

• CONSUME X PROTECT: Conflicts due to the consumption
of a resource and the prevention of the usage of the same re-
source by two or more requirements.

• PROTECT X PROTECT: Conflicts due to a divergent pre-
vention of the usage of the same resource by two or more re-
quirements.

In the following we describe the activities involved in con-
flict identification in more detail.

A. Requirements Representation
In self-adaptive systems, uncertainty is a common characteris-
tic of SoSs. This is due to operational and managerial inde-
pendence of each component system, and the emergent behav-
iors that arise in SoS environments. In order to deal with uncer-
tainty and represent requirements, we propose to use fuzzy
branching temporal logic (FBTL) [6], which supports represen-
tation of fuzziness over both statements and time. This repre-
sentation provides flexibility to adapt and amend the system at
runtime, and to deal with conflicting requirements.

A way to represent requirements using FBTL is with RE-
LAX [2]. RELAX is used as a requirement specification lan-
guage to represent requirements of self-adaptive systems. The
vocabulary used by RELAX is based on a set of modal (e.g.,
SHALL, MAY … OR), temporal (e.g., EVENTUALLY, UN-
TIL, AS CLOSE AS POSSIBLE TO), and ordinal (e.g., AS
MANY, FEW AS POSSIBLE) operators; as well as uncertain-
ty factors (e.g., ENV, MON, REL, DEP). A full explanation of
RELAX can be found in [2].

In order to illustrate our use of RELAX, consider below a
local requirement of the HomeHub sub-system (HH_R1), and a
global requirement (FMFM_R1) of the FeedMe FeedMe SoS.

HH_R1 – HomeHub SHALL control the home electricity usage to be
AS CLOSE AS POSSIBLE to 100 KWh.
RESOURCE: ELECTRICITY–PROTECT
EVENT: HomeHub-SaveEnergy

FMFM_R1 – The SoS SHALL propose a family exercise plan in
order to maintain each family member calories AS CLOSE AS POS-
SIBLE TO the ideal calories level.
RESOURCE: ELECTRICITY–CONSUME, CALORIES-
PROTECT
EVENT: FMFM-FamilyExercisePlan

As shown in HH_R1 and FMFM_R1, RELAX has been ex-
tended with the RESOURCE and EVENT clauses. The RE-
SOURCE clause represents the type of resource associated
with the requirement, and how this resource should be used by
that requirement. For example, a resource type can be con-
sumed or protected. In the case of being consumed (CON-
SUME), the associated value of the resource is decreased. In
the case of being protected (PROTECT), the consumption of
the associated value of the resource should be prevented. The

RESOURCE clause can accommodate the representation of
more than one type of resource associated with the require-
ment. The EVENT clause represents the different types of
events that will trigger the associated requirement. It is possible
to have the same event associated with different requirements,
and a requirement triggered by different types of events. The
event in HH_R1 is concerned with the energy consumption of
the various appliances in HomeHub entity, while the event in
FMFM_R1 is related to the creation of an exercise plan for the
family. Examples of other types of requirements represented in
RELAX for FeedMe FeedMe SoS can be found in [7].

B. Overlap Detection
As explained in [8], in order to identify conflicting require-
ments it is necessary to detect common aspects and elements
shared by the involved requirements, also known as overlap-
ping elements. This is an important activity during conflict
management since requirements without overlapping elements
cannot be considered as conflicting requirements [9].

In the MaCoRe_SoS framework, the overlap detection iden-
tifies requirements that share the same resources in an SoS. The
framework uses the extension clause RESOURCE in the re-
quirements specification, together with the shared ontology, to
support overlap detection. The RESOURCE clause states
which resources relate to each requirement. There may be re-
quirements that do not use any resource or requirements that
use more than one type of resource. The shared ontology is
used to identify different representations of the same resource.

The overlap detection activity identifies intersections
among the requirements and resources of the various entities,
and provides a list of these intersections (possible sources of
conflicting requirements), which is stored in the knowledge
database, for future references, and to be monitored at runtime
during conflict detection activity.

An example of overlapping requirements is found in
HH_R1 and FMFM_R1 presented above. In this case, there is a
potential for the requirements to be conflicting since both re-
quirements are concerned with resource “electricity”. This is an
example of a CONSUME X PROTECT type of conflict.

C. Conflict Detection
In the conflict detection activity, the framework generates a set
of assertions from the list of identified overlapping require-
ments. As the requirements are specified using RELAX, the
framework can generate these assertions using fuzzy branching
temporal logic (FBTL) [6], since the semantics of the RELAX
expressions are defined in terms of FBTL [2]. The assertions
are checked at runtime in order to identify the requirements
conformity and possible conflicts. By using FBTL assertions,
MaCoRe_SoS is able to handle challenges related to uncertain-
ty in an SoS. An example of a FBTL assertion for the require-
ment HH_R1 is presented below.

RELAX Grammar Expression: SHALL (AS CLOSE AS
POSSIBLE TO 100 q);
Formal FBTL expression: AGF((Δ(q) – 100) ∈ S)
Definitions: q is “HomeHub control the home electricity usage”; S is a
fuzzy set whose membership function has value 1 at zero (m(0) = 1)
and it decreases continuously around zero; AGF are FBTL quantifiers.

The conflict detection activity is executed during runtime
and is supported by an event monitor. The RELAX extension
clause EVENT, in the requirements specification, maps the
operations of a participating entity with their requirements.
Once an entity performs an operation, an event notification is
sent to the framework and the event monitor logs the event in
the framework database. After an event is received, the frame-
work identifies the requirements related to this event. Based on
the identified requirements, the framework detects affected
resources based on the information specified in the RE-
SOURCE clause. The framework checks all the assertions re-
lated to those resources in order to identify if there is a viola-
tion in the FBTL assertion generated by the requirement speci-
fication. If a violation is detected, the framework reports that a
conflict happened between the requirement that generated the
event and the requirement that had its assertion violated.

As an example, consider requirement HH_R1 with the as-
sertion presented above, and requirement FMFM_R1. Suppose
events HomeHub-SaveEnergy and FMFM-FamilyExercisePlan
are received by the framework, where the latter creates an ex-
ercise plan for the family that includes the use of several home
appliances causing a higher electricy consumption. Suppose
that after receiving the event FMFM-FamilyExercisePlan, the
framework detects a violation in the resource electricity regard-
ing the assertion for the requirement HH_R1 since the value of
the home electricity usage rises above the expected value (>
100 KWh). In this case, a conflict involving HH_R1 is identi-
fied, due to resource violation caused by another requirement
that uses the same resource. As the event that triggered the as-
sertion violation was FMFM-FamilyExercisePlan, the frame-
work identifies a conflict between FMFM_R1 and HH_R1.

V. PILOT STUDY
In order to provide an initial evaluation of the MaCoRe_SoS
framework, we created a pilot study using a scenario based on
the FeedMe FeedMe SoS. The scenario uses 16 requirements
together with 14 associated events, for AnalyseMe entity
(AM), HomeHub entity (HH), and FeedMe FeedMe SoS
(FMFM). The requirements, resources, and events for each of
these entities can be found in [7]. Using these requirements, we
implemented a part of the MaCoRe_SoS framework as a set of
simulated entities, which could be configured to raise specific
events at different points in time, and report relevant values for
the resources to which they were associated. The scenario used
in this pilot study is presented in Table I.

The scenario presents the routine activities of a family of
three members, and the arrival of a guest during the day. It pre-
sented three conflicts involving the requirements of the entities,
the SoS, and the shared resources between them. For example,
at time point 5 of the scenario, a conflict occurs because the
operation of the appliance associated with the exercise pro-
posed by AnalyseMe would result in a higher energy consump-
tion, causing a conflict between AnalyseMe and HomeHub.
The scenario also includes examples of conflicts involving re-
quirements at the SoS level. For example, the arrival of a guest
causes a conflict between the FMFM requirement to update the
family meal plan, while at the same time it needs to maintain

the family food resources (time point 15). We ran the scenario
with our initial implementation of MaCoRe_SoS. We moni-
tored the utilization of the relevant resources, measured in arbi-
trary units for simplicity, and monitored the requirements as-
sertions to identify conflicting requirements.

TABLE I. SCENARIO DESCRIPTION
Time Event Scenario Description

1 FMFM-
MealPlan

FMFM creates a meal plan for breakfast.

2,3 HH-Monitoring HomeHub initiates its operation by monitoring
and controlling the appliances of the house.

4 FMFM-
MealPlan

FMFM creates a meal plan for lunch.

5 AM-Exercises AnalyseMe proposes some exercises to a
family member (Conflict 1 identified).

6 AM-Monitoring AnalyseMe checks the user’s nutritional
information.

7,8 HH-Monitoring HomeHub keeps its operation by monitoring
and controlling the appliances of the house.

9 FMFM-
MealPlan

FMFM creates a family meal plan for dinner.
(Conflict 2 identified).

10,
11

AM-Sleep
Monitoring

The user’s go to sleep and AnalyseMe
monitors their sleep patterns.

12,
13 HH-Monitoring HomeHub keeps its operation by monitoring

and controlling the appliances of the house.

14 FMFM-
MealPlan

FMFM creates a family meal plan for
breakfast.

15
FMFM-

GuestMealPlan
Update

FMFM receives information about the arrival
of an unexpected guest at home and updates

the meal plan. (Conflict 3 identified)

A. Scenario
We created a simulated FeedMe FeedMe SoS environment,
with three instances of the AnalyseMe entity (AM), one
instance of the HomeHub entity (HH), and one instance of the
FeedMe FeedMe SoS (FMFM), and submitted them to our
implemented framework MaCoRe_SoS. The list of
requirements of each entity can be found in [7]. During the
overlap detection activity the framework identified a list of 24
overlapping elements involving 13 different requirements and
five shared resources in the SoS environment. As explained in
Section IV, the framework uses the extended clause
RESOURCE, provided in the requirements specification, to
identify resources shared by the entities. The list of the 24
detected overlaps was stored in the framework database and an
assertion in FBTL was created for each one of the 13
requirements concerned with the identified overlaps. The
assertions were monitored, in order to detect violations that
may lead to conflicts, during execution of the various entities.

In this pilot study three conflicts were identified. The first
conflict occurred at time point 5 between requirement AM_R4
(AnalyseMe proposes an exercise plan for a family member
which requires the use of some home appliances) and HH_R1
(HomeHub reduction of electricity consumption). This conflict
was identified after AnalyseMe instance raised event AM-
Exercises. The framework received the event and identified
that the event was related to requirement AM_R4. It used
RESOURCE clause and identified resources CALORIES and
ELECTRICITY. All the assertions involving resource
ELECTRICITY (7) and resource CALORIES (3) were
evaluated. The framework detected a violation in the FBTL

assertion of requirement HH_R1 (as the electricity
consumption went to 113 KWh and the maximum expected
value were 100 KWh).

The second conflict happened between requirement
FMFM_R2 (FeedMe FeedMe SoS proposes a family meal
plan) and HH_R2 (HomeHub avoids excessive food
consumption). Similarly, this conflict was identified, at time
point 9, after Feed Me Feed Me instance raised event FMFM-
MealPlan. The framework was able to identify that this event
is related to requirement FMFM_R2 and to resources
CALORIES, INSULIN, and FOOD. All assertions involving
resources CALORIES (3), INSULIN (3) and FOOD (4) were
evaluated. A violation was detected in the FBTL assertion of
requirement HH_R2 (as the food resource reached 18 units
which is bellow the minimum expected value of 20 units).

The third conflict happened between requirement
FMFM_R4 (FeedMe FeedMe SoS proposes to adjust the meal
plan after an unexpected guest arrives) and HH_R2
(HomeHub avoids excessive food consumption). This conflict
was identified after FeedMe FeedMe instance raised event
FMFM-GuestMealPlanUpdate (at time point 15). The
framework was able to identify that this event is related to
requirement FMFM_R4 resources CALORIES, INSULIN and
FOOD. Similarly, all assertions involving resources
CALORIES (3), INSULIN (3) and FOOD (4) were evaluated.
The framework detected a violation in the FBTL assertion of
requirement HH_R2 (as the food resource reached 13 units
below the minimum expected value of 20 units).

B. Results and Discussion
The above pilot study shows the effect of conflict identification
on the utilization of resources managed by the SoS using the
framework. The results of the evaluation suggest that the
framework is able to help an SoS to manage their resources by
identifying conflicting requirements at runtime. A key limita-
tion of our evaluation is that the results are based on a simulat-
ed environment of the FeedMe FeedMe scenario, of limited
size and, therefore, it is not possible to claim generalizability at
this stage. In addition, it is not possible to evaluate the scalabil-
ity of the approach at this stage. Currently, we are analyzing
other domains with realistic workloads to address these issues.

VI. RELATED WORK
Management of conflicting requirements in standalone
software systems has been extensively studied in the literature
[4][8]. In [8], the authors present a survey about the
management of inconsistencies in software engineering
composed of the following activities: detection of overlaps,
detection of inconsistencies, diagnosis of inconsistencies,
handling of inconsistencies, tracking of inconsistencies and
specification and application of inconsistency management
policies. Similarly, the MaCoRe_SoS framework includes
three main steps: (1) conflict identification, with activities
overlap detection and conflict detection; (2) conflict diagnosis,
and (3) conflict resolution.

Prior work on conflict identification in standalone systems
include logic-based approaches that use formal modelling
languages to identify inconsistences in the models that may

lead to a conflict. These approaches use first-order logic [10],
temporal logic [11], and Quasi-Classical (QC) logic [12]. All
these techniques have potential to be applied to SoS
environments, as long as the requirements are written in a
formal logic-based language. Our framework uses fuzzy
branching temporal logic to detect conflicting requirements.
The goal-based works presented in [11] and [13] describe
approaches to detect conflicting requirements at design time,
while MaCoRe_SoS supports runtime detection of conflicting
requirements.

Other approaches have been proposed to support
identification of conflicting requirements based on model
checking techniques [14][15][16][17][18]. The work in [14]
presents an approach to analyse properties in requirements
specifications written in SCR. Their results suggest that it is
difficult to manage performance when using model checking.
In [15], the authors present a model checking technique to
detect unexpected emergent behaviour in a SoS. The work in
[17] presents CML, a formal language for modelling SoS that
supports model checking. However, as stated in [18], there are
limitation on the number of behaviours that can be checked
due to the size of CML models.

Overall, the proposed framework complements existing
approaches and contributes to the area of consistency
management by taking into account conflicts in the systems of
systems environment.

VII. CONCLUSION AND FUTURE WORK
The growth in the complexity and heterogeneity of modern
systems has led to systems that compose themselves into bigger
systems to achieve new functionalities. These systems are often
System of Systems (SoS) where the management of emerging
conflicting requirements is a challenge. In this paper we pre-
sented a framework called MaCoRe_SoS. The main goal of the
framework is the management of resource-based conflicting
requirements in SoSs. We have presented and discussed the
first step of the framework, conflict identification based on two
related activities: overlap detection and conflict detection. We
built a prototype version of the framework and demonstrated its
usage in a pilot study based on FeedMe FeedMe, an example
SoS ecosystem designed to support food security. The results
of the pilot study are promising, and demonstrate that it is pos-
sible to identify conflicts using the framework and support
SoSs during resource management.

Currently, we are implementing the other steps in the
framework (conflict diagnosis and resolution). We also plan to
extend the framework to address conflicting requirements that
are not only concerned with resources. Finally, we want to
evaluate the framework in real-world SoS domains and analyze
the performance of the framework under realistic workloads.

REFERENCES
[1] M. W. Maier, ‘Architecting principles for systems-of-

systems’, in INCOSE International Symposium, 1996.

[2] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-
M. Bruel, ‘RELAX: a language to address uncertainty in
self-adaptive systems requirement’, Requir. Eng., vol. 15,
no. 2, pp. 177–196, 2010.

[3] J. O. Kephart and D. M. Chess, ‘The vision of autonomic
computing’, Computer, vol. 36, no. 1, pp. 41–50, 2003.

[4] W. N. Robinson, S. D. Pawlowski, and V. Volkov,
‘Requirements interaction management’, ACM Comput.
Surv. CSUR, vol. 35, no. 2, pp. 132–190, 2003.

[5] A. Bennaceur et al., ‘Feed me, feed me: an exemplar for
engineering adaptive software’, in Proceedings of the
11th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, 2016.

[6] S. Moon, K. H. Lee, and D. Lee, ‘Fuzzy branching
temporal logic’, IEEE Trans. Syst. Man Cybern. Part B
Cybern., vol. 34, no. 2, pp. 1045–1055, 2004.

[7] ‘MaCoRe_SoS. http://sead1.open.ac.uk/macore_sos/’. .
[8] G. Spanoudakis and A. Zisman, ‘Inconsistency

management in software engineering: Survey and open
research issues’, Handb. Softw. Eng. Knowl. Eng., 2001.

[9] G. Spanoudakis, A. Finkelstein, and D. Till, ‘Overlaps in
requirements engineering’, Autom. Softw. Eng., vol. 6, no.
2, pp. 171–198, 1999.

[10] B. Nuseibeh, J. Kramer, and A. Finkelstein, ‘A
framework for expressing the relationships between
multiple views in requirements specification’, IEEE
Trans. Softw. Eng., vol. 20, no. 10, pp. 760–773, 1994.

[11] A. Van Lamsweerde, R. Darimont, and E. Letier,
‘Managing conflicts in goal-driven requirements
engineering’, IEEE Trans. Softw. Eng., vol. 24, no. 11,
pp. 908–926, 1998.

[12] A. Hunter and B. Nuseibeh, ‘Managing inconsistent
specifications: reasoning, analysis, and action’, ACM
Trans. Softw. Eng. Methodol. TOSEM, vol. 7, no. 4, pp.
335–367, 1998.

[13] R. Ali, F. Dalpiaz, and P. Giorgini, ‘Reasoning with
contextual requirements: Detecting inconsistency and
conflicts’, Inf. Softw. Technol., vol. 55, no. 1, 2013.

[14] R. Bharadwaj and C. L. Heitmeyer, ‘Model checking
complete requirements specifications using abstraction’,
Autom. Softw. Eng., vol. 6, no. 1, pp. 37–68, 1999.

[15] S. Malakuti, ‘Detecting emergent interference in
integration of multiple self-adaptive systems’, in
Proceedings of the 2014 European Conference on
Software Architecture Workshops, 2014, p. 24.

[16] S. Malakuti, M. Aksit, and C. Bockisch, ‘Runtime
verification in distributed computing’, J. Converg., 2011.

[17] J. W. Coleman et al., ‘COMPASS tool vision for a system
of systems collaborative development environment’, in
System of Systems Engineering (SoSE), 2012 7th
International Conference on, 2012, pp. 451–456.

[18] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A.
Miyazawa, and S. Perry, ‘Features of CML: A formal
modelling language for systems of systems’, in System of
Systems Engineering (SoSE), 2012 7th International
Conference on, 2012, pp. 1–6.

