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Abstract—Requirements Engineering in open source projects
such as ECLIPSE faces the challenge of having to prioritize
requirements for individual contributors in a more or less un-
obtrusive fashion. In contrast to conventional industrial software
development projects, contributors in open source platforms can
decide on their own which requirements to implement next.
In this context, the main role of prioritization is to support
contributors in figuring out the most relevant and interesting
requirements to be implemented next and thus avoid time-
consuming and inefficient search processes. In this paper, we
show how utility-based prioritization approaches can be used to
support contributors in conventional as well as in open source
Requirements Engineering scenarios. As an example of an open
source environment, we use BUGZILLA. In this context, we also
show how dependencies can be taken into account in utility-based
prioritization processes.

I. INTRODUCTION

In software projects, resources are typically limited which
requires the prioritization of requirements [16]. Prioritization
is often interpreted as a part of strategic planning where the
focus is to select and prioritize requirements that should be
included in releases (long-term release planning) [4], [19].
Decision support in prioritization is extremely important since
especially when dealing with large assortments of require-
ments, manual prioritization processes tend to become very
costly [3], [28]. In this context, suboptimal prioritizations
trigger time wasting due to the implementation of unimportant
requirements.

There are two basic approaches to prioritize requirements
– for an in-depth related analysis we refer to Achimugu et al.
[1]. First, requirements prioritization can be interpreted as an
optimization task where the overall objective is to identify the
middle ground, i.e., an aggregation of individual prioritizations
into a global prioritization that reflects the least possible level
of dissimilarity from all stakeholder-individual prioritizations
[14]. Second, in contrast to approximating individual priori-
tizations on the basis of optimization functions, utility-based
approaches focus on (1) establishing agreement with regard
to the evaluation of individual requirements and (2) thereafter
determining prioritizations [2], [11], [26].

Prioritizations following the optimization approach are de-
termined on the basis of individual prioritizations of stake-
holders. When following a utility-based approach, preferences
of stakeholders are first aggregated and a prioritization is

determined thereafter. In the line of basic approaches to deter-
mine group recommendations [9], the first approach is based
on aggregated prioritizations where stakeholder-individual
prioritizations are known and a recommendation minimizes
dissimilarities between the given prioritizations (preferences).
The second approach is based on aggregated models where
stakeholder requirement evaluations are aggregated first and
a prioritization is determined on the basis of a group profile
(model) derived from requirements evaluations.

Aggregated models have the advantage that stakeholders
are encouraged to focus their evaluations on specific relevant
aspects of a requirement (e.g., dimensions such as profit, risk,
and effort) and thus contribute to stable preferences and a
higher degree of consensus [22]. Aggregated prioritizations
trigger scalability issues since each stakeholder has to provide,
for example, a ranked list of requirements as input for the
optimization process. Furthermore, due to the computational
complexity of the underlying problem, an optimal solution
cannot be guaranteed and is often only approximated on the
basis of local search algorithms [14], [24], [29]. Utility-based
approaches as discussed in this paper focus on evaluations of
individual requirements on the basis of different evaluation di-
mensions (e.g., profit, effort, and risk). This way, stakeholders
can focus on evaluating requirements they have knowledge
about and the focus of prioritization is first on establishing
consensus and thereafter on figuring out the most relevant
prioritizations [22].

Different algorithmic approaches can be used to support
requirements prioritization – for an overview, see, for exam-
ple, Achimugu et al. [1]. Examples thereof are constraint-
based reasoning [25], incremental preference learning [17],
evolutionary algorithms [14], machine learning [3], [23], and
pairwise preference-based decision making [20]. Optimization-
based approaches focus on minimizing the distance between
the preferences of individual stakeholders (e.g., in terms of
the distance between individual prioritizations and the priori-
tization determined by the optimization approach). A similar
problem also solved on the basis of optimization approaches
is the next release problem [6], [27] where a subset of a
given set of requirements has to be selected in such a way
that predefined cost limits are taken into account and the
chosen set of requirements represents the optimum choice
in terms of criteria such as market value. The focus in this
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context is more to identify subsets of requirements but not
to prioritize a given list of requirements. In contrast to next
release problems, prioritization tasks in open source scenarios
do not necessarily require (and often do not allow) a global
optimum but more focus on relevant recommendations for
individual stakeholders. Also in contrast to existing release
planning tasks, developers in open source scenarios in most
of the cases do not explicitly define their preferences, i.e.,
preferences have to derived from given interaction data (in
our case, interaction data collected by BUGZILLA1).

Utility-based prioritization based on multi-attribute utility
theory [8] can be implemented in different variants. First,
requirements are simply evaluated with regard to a set of
predefined interest dimensions and the overall utility of a
requirement is determined as a sum of interest dimension
specific utilities. Second, weights can be introduced to em-
phasize on specific interest dimensions (e.g., a lower risk is
more important than high profits). Third, stakeholders can be
enabled to define their personal evaluations and utility-based
approaches should then be able to aggregate these evalua-
tions and take into account stakeholder weights. Stakeholder
weights can be interpreted as ”global”, i.e., there is a global
weighting of stakeholders independent of a specific dimension
or requirement. If weights are interpreted as ”local”, the impor-
tance of a stakeholder can be defined on the level of individual
requirements or dimensions. Utility-based prioritization can
also be implemented on the basis of analytic hierarchy process
(AHP) [13]. A major disadvantage of this approach is that
requirements have to evaluated pairwise which does not scale
well when the number of requirements increases.

Prioritization criteria differ depending on the requirements
engineering scenario. The criteria effort, risk, and profit are
often used in settings where a group of stakeholders engaged
in the same project is in charge of completing a prioritization
task [1]. In contrast, in open-source settings, developers are
in most of the cases engaged in different projects and also
work for different companies. In such scenarios, prioritization
is less focusing on establishing consensus between individual
stakeholders but more on supporting stakeholders in iden-
tifying requirements of relevance to them and to prioritize
the important ones by also taking into account global cri-
teria. Examples of criteria in such scenarios are personal
expertise of a developer and importance of a requirement
for the community of the stakeholder and the open source
community as a whole. Thus, open source platform related
prioritization processes completely differ from conventional
software projects. A major focus of this paper is to introduce
prioritization concepts especially applicable in open source
development contexts.

BUGZILLA is an open-source based issue tracking system
which supports users from different geographical locations to
report their findings with regard to a given set of software
components. Users can submit textual descriptions of issues
and corresponding meta-information, for example, associated

1www.bugzilla.org.

components, keywords, and dependencies. Reported issues can
be selected by contributors to work on. In BUGZILLA, issues
can be requirements but also reported bugs. Distinguishing be-
tween these can be performed on the basis of a meta-attribute
(issue type) that can be specified for BUGZILLA issues. There
are different related approaches to support machine learning
based requirements prioritization. The approaches operate on
datasets including historical data of previous requirement (bug
report in BUGZILLA) selections and try to predict future
requirement selections thereof. Utility-based prioritization can
be used in interactive scenarios (stakeholders are engaged in
an interactive prioritization process) as well as scenarios where
requirements are recommended but no further stakeholder
interaction is needed for determining a prioritization.

The contributions of this paper are the following. We pro-
vide an overview of different application scenarios of utility-
based requirements prioritization and discuss specific aspects
of requirements prioritization in open source projects. For
scenarios that include dependencies between requirements, we
show how such dependencies can be taken into account on the
basis of the concepts of model-based diagnosis [10], [18]. With
this approach, we tackle the following research gaps. In con-
trast to existing prioritization and release planning approaches,
we introduce model-based diagnosis concepts that also support
re-prioritization and re-planning while not completely omitting
already existing stakeholder preferences which is still an
open issue in most of the existing prioritization and release
planning approaches (these approaches focus on taking into
account dependencies but do not support the aforementioned
re-prioritization and re-planning scenarios). Furthermore, we
present a first version of a user interface developed to support
prioritization tasks in open source environments – in our case,
for BUGZILLA users. This approach has the potential to reduce
the workload of developers in open source platforms by auto-
matically proposing requirements that should be implemented
next instead of forcing users to analyze in detail a large
number of requirements. Furthermore, the introduced utility-
based approach does not require the ”manual” evaluation
of individual requirements but automatically derives utility
models by analyzing given interaction logs taking into account
interaction data such as number of comments related to a
requirement. This is a major difference compared to existing
requirements prioritization approaches which do not support
automated prioritization based on background data. Finally,
we discuss issues for future work to further advance the state
of the art in utility-based prioritization.

The remainder of this paper is organized as follows. In
Section II, we introduce variants of implementing utility-
based prioritization. Thereafter, we introduce our variant of
utility-based prioritization implemented for the BUGZILLA
environment and provide a sketch of a related BUGZILLA user
interface (Section III). In Section IV, we show how to extend
utility-based prioritization in such a way that dependencies
between requirements can be taken into account. The paper is
concluded with a discussion of future work in Section V.



II. UTILITY-BASED PRIORITIZATION

Utility-based prioritization allows stakeholders to prioritize
a requirement with regard to different interest dimensions
D = {d1, d2, ..., dn}. Examples of such interest dimensions
are profit, risk, and effort. Utility-based prioritization is based
on the idea to first evaluate each requirement with regard
to the set of interest dimensions (see Table I) and thereafter
calculate the individual utility of each requirement (see For-
mula 1). In general, the priority is associated with the utility
of a requirement r which results from its total contributions
to all of each individual interest dimensions d (denoted as
contribution(r, d)) combined with the corresponding impor-
tance weights of individual interest dimensions (denoted as
weight(d)).

TABLE I
CONTRIBUTION OF REQUIREMENTS R = {r1, r2, r3} TO THE INTEREST

DIMENSIONS D = {profit, risk, effort}.

interest dimension r1 r2 r3

profit 10 5 4
risk 7 2 8

effort 2 3 7

TABLE II
PREDEFINED WEIGHTS FOR THE INTEREST DIMENSIONS

D = {profit, risk, effort}.

interest dimension weights
profit 0.3
risk 0.5

effort 0.2

utility(r,D) = Σd∈D(contribution(r, d)× weight(d)) (1)

Applying Formula 1 to the entries in Tables I and II results
in the ranking depicted in Table III (the higher the utility
with regard to the given interest dimensions, the higher the
corresponding priority of the requirement).

TABLE III
RANKING OF REQUIREMENTS WITH STATIC WEIGHTS.

requirement r1 r2 r3

utility 6.9 3.1 6.6
priority (ranking) 1 3 2

In the previous example, the evaluation of requirements with
regard to interest dimensions and the weighting of interest
dimensions are assumed to be predefined (e.g., by a single
stakeholder). However, requirements prioritization is often a
group decision process [9] where different stakeholders are
evaluating requirements (see, e.g., Table IV) and define im-
portance weights with regard to interest dimensions (see, e.g.,
Table V). Both, stakeholder-individual evaluations of interest

dimensions and importance weights have to be aggregated.
Formula 2 shows the aggregation of stakeholder-individual
evaluations of requirements where S refers to the set which
includes all m stakeholders (i.e., S = {s1, s2, ..., sm}).

contribution(r, d, S) =
Σs∈Seval(d, r, s)

|S|
(2)

Formula 3 shows how to aggregate the stakeholder-specific
importance weights (denoted as w(d, s)) which are related to
individual interest dimensions d. Previous calculations did not
take into account potential different degrees of stakeholder
expertise, for example, a stakeholder sa could have more
expertise with regard to estimating the market potential of a
requirement in terms of profit as estimating the corresponding
development efforts. To take into account this aspect, Formula
3 includes a factor that represents the expertise of a stakeholder
s with regard to a specific interest dimension d.

weight(d, S) =
Σs∈Sw(d, s)× expertise(d, s)

|S|
(3)

Similar to the basic approach, the utility of a requirement
(Formula 4) is determined as a combination of the contribu-
tions of a requirement to the given interest dimensions and
related interest dimension importance evaluations of stake-
holders.

utility(r,D, S) = Σd∈D(contribution(r, d, S)×weight(d, S))
(4)

The result of applying Formulae 2–4 to the evaluation data
contained in Tables IV and V is depicted in Table VI.

III. UTILITY-BASED PRIORITIZATION IN BUGZILLA

In Section II, we took a look at different variants of utility-
based prioritization. These variants were discussed on the basis
of interest dimensions (evaluation criteria) typically occurring
in software projects where a group of stakeholders is in charge
of jointly defining and prioritizing requirements. In this sec-
tion, we focus on open source scenarios where individual users
(e.g., contributors in an open source platform) follow their
individual interests regarding requirements without necessarily
taking into account the preferences of other users. This can
be considered a major difference compared to conventional
software projects where stakeholders commonly develop a
”global” prioritization (see Section II). We now show how
utility-based prioritization can be applied in such contexts.

Table VII represents a BUGZILLA-specific evaluation of
requirements (bugs) with regard to the set of interest dimen-
sions {cc, geritt, blocker, comments}. In this context, cc is
the number of contributors who are in the :cc list of bug-
related emails, geritt is the number of bug-related GERITT2

changes, blocker is the number of dependent bugs (dependent

2A code reviewing tool – gerritcodereview.com.



TABLE IV
CONTRIBUTION OF REQUIREMENTS R = {r1, r2, r3} TO DIMENSIONS D = {profit, risk, effort} (DEFINED BY STAKEHOLDERS S = {s1, s2, s3}).

interest r1 r2 r3
dimension s1 s2 s3 AV G s1 s2 s3 AV G s1 s2 s3 AV G

profit 5 2 2 3.0 5 1 2 2.7 2 2 6 3.3
risk 3 3 4 3.3 2 5 6 4.3 3 2 2 2.3
effort 2 3 2 2.3 3 4 2 3.0 5 6 2 4.3

TABLE V
PREFERENCES OF STAKEHOLDERS S = {s1, s2, s3} WITH REGARD TO

THE INTEREST DIMENSIONS D = {profit, risk, effort}.

stakeholder s1 s2 s3 weights
profit 0.5 0.3 0.6 0.47
risk 0.3 0.6 0.3 0.4

effort 0.2 0.1 0.1 0.13

TABLE VI
RANKING OF REQUIREMENTS WITH GROUP WEIGHTS.

requirement r1 r2 r3

utility 3.03 3.57 3.03
priority (ranking) 2 1 2

requirements), and comments refers to the number of bug-
related comments. These interest dimensions do need to be
evaluated manually as it is often the case in other scenarios
[15], [21] but can directly be determined from corresponding
user interaction data.

Formula 5 supports the calculation of the contribution of a
requirement r to a specific interest dimension d. In sharp con-
trast to the previous scenarios, the contribution is not directly
specified by stakeholders but derived from BUGZILLA specific
information (e.g., #comments related to a requirement).

contribution(r, d) = eval(r, d) (5)

Formula 6 supports the determination of the expertise of
a stakeholder which is represented in terms of the similarity
between the keywords stored in the stakeholder profile and
those extracted from the requirement description and corre-
sponding meta-information (e.g., name of associated compo-
nent/system). The similarity between requirement-related key-
words, meta-information, and contributor profile information
is interpreted as expertise (see Formula 6).

weight(r, s) = expertise(r, s) (6)

In the line of the previously discussed utility functions, the
overall utility of a requirement is interpreted as a combination
of (1) the contributions of a requirement to a set of interest
dimensions and (2) the expertise level of a stakeholder (in
this context interpreted ”globally”, i.e., not on the level of
individual interest dimensions).

utility(r, s) = Σd∈Dcontribution(r, d)× weight(r, s) (7)

TABLE VII
CONTRIBUTION OF REQUIREMENTS (BUGS) R = {r1, r2, r3} TO THE

INTEREST DIMENSIONS D = {cc, geritt, blocker, comments}.

interest dimension r1 r2 r3

cc 5 2 2
geritt 3 3 4
blocker 2 3 2
comments 2 3 2

TABLE VIII
EXPERTISE OF STAKEHOLDER s1 WITH REGARD TO THE REQUIREMENTS
{r1, r2, r3} DETERMINED, FOR EXAMPLE, ON THE BASIS OF THE

SIMILARITY BETWEEN THE STAKEHOLDER PROFILE AND INFORMATION
ASSOCIATED WITH A REQUIREMENT.

stakeholder s1

r1 0.5
r2 0.3
r3 0.2

TABLE IX
RANKING OF BUGZILLA BUGS WITH STATIC WEIGHTS.

requirement r1 r2 r3

utility 6.0 3.3 2.0
priority 1 2 3

IV. TAKING INTO ACCOUNT DEPENDENCIES

Blocking Factor. Utility-based recommendation approaches
per se do not explicitly take into account dependencies be-
tween requirements (e.g., requirement A must be implemented
before requirement B). In the discussed open source prioriti-
zation scenario, this aspect is taken into account by prioritizing
requirements on the basis of the number of related dependen-
cies, i.e., the higher the number of requirements dependent
from a requirement x, the higher the ”global” relevance
of x. In this context, the blocking factor (i.e., how many
requirements depend on the implementation of requirement
x) can be considered as interest dimension that has an impact
on prioritization. In other words, this requirement should be
implemented as soon as possible since it otherwise blocks
the implementation of other requirements. This approach can
also be applied in software development scenarios where a
group of stakeholders (e.g., an in-house software development
project) is in charge of prioritizing requirements. Such an
approach helps to avoid situations where prioritizations violate
dependency constraints.

Automated Repair. An alternative approach is to apply
repair mechanisms from model-based diagnosis [10] that



Fig. 1. BUGZILLA view on bugs (requirements). Based on the presented utility-based prioritization approach, bugs are presented to BUGZILLA contributors
in the order of the determined priority.

help to adapt already determined prioritizations in such a
way that all defined dependencies are taken into account.
In the following, we will shortly sketch our approach. In
order to trigger a diagnosis process, we are in the need
of a pre-defined set of dependencies between requirements
(denoted as DEP = {dep1, dep2, .., depn}). Furthermore,
we assume that a prioritization (represented as sequence)
P = [p1, p2, .., pm] determined by a utility-based prioritization
approach is inconsistent with the given set of dependencies.
In order to apply model-based diagnosis, we assume that
both, the pre-defined set of dependencies and the requirement
prioritization is represented in terms of constraints [25], for
example, DEP = {dep1 : r3 < r1, dep2 : r3 < r2}
and P = {p1 : r1 < r2, p2 : r2 < r3, p3 : r3 <
r4, p4 : r4 < r5, p5 : r5 < r6}. As can be easily seen,
DEP ∪ P is inconsistent. As variable domains we assume
[1..#requirements].

Following the principles of model-based diagnosis [10],
[18], we need to detect all minimal conflicts [12] induced in
P by the dependencies defined in DEP . In this context, a
conflict set is defined as follows.

Definition: Conflict Set (CS). A conflict set CS ⊆ P is a
set of individual prioritization elements that are inconsistent
with the elements of DEP , i.e., inconsistent(CS ∪DEP ). A
conflict set CS is minimal if ¬∃CS′ : CS′ ⊂ CS.

On the basis of a set of identified minimal conflict sets,
a corresponding diagnosis includes a set of prioritization
elements in P that have to be adapted such that the consistency
of DEP ∪ P is restored (see the following definition).

Definition: Diagnosis (∆). A diagnosis ∆ ⊆ P is a set of
individual prioritization elements that have to be deleted from
P such that consistent(P −∆ ∪DEP ).

In our example, CS : {p2} is the only conflict induced in P
by the dependencies defined in DEP . CS is minimal, i.e., we
need to adapt only one of the prioritization elements in CS
such that a global prioritization can be found that is consistent
with the elements in DEP [12]. A corresponding diagnosis
∆ is {p2}. In our example, we could decide to replace p1 :
r1 < r2 with the corresponding repair r1 > r2. This is a repair
action that helps to restore the consistency of DEP ∪ P .

Our approach to the repair of inconsistent prioritizations can
be used for both, interactive prioritization where stakeholders
receive feedback on the consistency of prioritizations, and
automated prioritization where repairs for inconsistent prior-
itizations are determined in an automated fashion. Important
issues to improve our approach are discussed in the following.

V. CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we showed how to support utility-
based requirements prioritization. These scenarios range from
single user prioritization where one stakeholder is in charge
of completing prioritization tasks to group-based prioritization
where the preferences/evaluations of different group members
have to be taken into account. On the basis of these scenarios,
we showed how utility-based prioritization can be applied
in the context of open source development projects. In this
context, we sketched our initial implementation currently
provided in the BUGZILLA environment. This implementation
serves as a first version to support prioritization in BUGZILLA.

Future Work. Since prioritization is a repetitive process,
we will include mechanisms that are capable of learning
stakeholder weights and also the weights of individual re-
quirements. This approach will help to further increase the
prediction quality of prioritizations in terms of the probability
that stakeholders accept the proposed prioritizations. In this
context, we will also compare the predictive quality of utility-
based approaches (i.e., approaches based on aggregated mod-
els) with machine learning based approaches and approaches
that determine rankings on the basis of aggregated prioriti-
zations. Furthermore, we will analyze which further features
(interest dimensions) are useful to improve prediction quality.
For example, the number of redundant bugs (issues) can be a
further important relevance indicator.

A major challenge in requirements prioritization is the
provision of persuasive user interfaces that increase the pre-
paredness of stakeholders to actively engage in requirements
engineering processes [5]. Consequently we will focus on
a further extension/improvement of the existing BUGZILLA
requirements prioritization user interface. Furthermore, we will
analyze in which way recommended prioritizations have to



be explained to support specific group decision goals such as
consensus, fairness, and decision quality [7], [9]. Finally, we
will conduct a detailed empirical study regarding the impact
of our prioritization approaches in the ECLIPSE community.
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