
ar
X

iv
:1

80
5.

02
76

9v
2 

 [
cs

.S
E

] 
 2

0 
Ju

l 2
01

8

T-Reqs: Tool Support for Managing Requirements

in Large-Scale Agile System Development

Eric Knauss∗, Grischa Liebel∗,

Jennifer Horkoff∗, Rebekka Wohlrab∗, Rashidah Kasauli∗

∗Chalmers | University of Gothenburg

Email: eric.knauss@cse.gu.se

Filip Lange†, Pierre Gildert†

†Ericsson AB

Email: filip.lange@ericsson.se

Abstract—T-Reqs is a text-based requirements management
solution based on the git version control system. It combines
useful conventions, templates and helper scripts with powerful
existing solutions from the git ecosystem and provides a work-
ing solution to address some known requirements engineering
challenges in large-scale agile system development. Specifically,
it allows agile cross-functional teams to be aware of requirements
at system level and enables them to efficiently propose updates
to those requirements. Based on our experience with T-Reqs,
we i) relate known requirements challenges of large-scale agile
system development to tool support; ii) list key requirements for
tooling in such a context; and iii) propose concrete solutions for
challenges.

Index Terms—requirements eng., large-scale agile, tooling

I. INTRODUCTION

Requirements engineering (RE) is crucial to support agile

development of large systems with long lifetimes. Yet, tradi-

tional tooling does not sufficiently support addressing known

RE challenges in large-scale agile [1], [2], [3]. In particular, it

is hard to cross the boundaries between three domains in large-

scale agile organizations: the customer facing domain, the

development domain, and the system domain [4]. Agile cross-

functional teams must be aware of requirements at system level

and able to efficiently propose updates to those requirements.

Based on real world experience with selecting, rolling out, and,

for several releases now, using a novel tool solution based on

git and markdown, we i) relate known requirements challenges

of large-scale agile system development to tool support; ii) list

key requirements for tooling in such a context; and iii) propose

concrete solutions for challenges.

II. INDUSTRIAL CONTEXT

We report here based on the experience from one particular

product developed at a specific department within Ericsson.

The product development organization of the department has

changed significantly in recent years. Before 2012, the devel-

opment process defined two releases per year, requirements

were created upfront, and were defined in IBM Rational

Requisite Pro (first released in 1995). In 2012, the department

started a transformation towards agile methods and continuous

integration at scale. In 2017, this transformation has reached

a state where the product is released once per month.

While it is hard to quantify the level of agility in the

company, the changes are significant and comprehensive. The

development process is based on a continuous feature flow

and allows about 30 small, cross-functional development teams

(XFT) to develop software following a Scrum approach. This

has significantly changed the way of managing requirements.

The following three changes stick out:

C1 Requirements are updated more frequently. This can cause teams
to block each other.

C2 Number of database clones grows. The need to clean up databases
because of unfinished requirements as well as to frequently port
requirements back to a main database causes significant effort.

C3 No direct link between requirements and commits. It is difficult to
determine when a feature has been delivered.

The existing requirements tool was no longer deemed suffi-

cient and the department evaluated 16 different requirements

engineering tools. None was found to satisfy their specific

needs. Two requirements stuck out as especially hard to fulfill:

R1 The tool must use git as version control system or must support

easy synchronisation with git. Teams are working with git and
since it is their responsibility to propagate changes to
requirements as part of a sprint, a suitable requirements tool must
allow so within the development context.

R2 The tool must support simultaneous work of many users on the

same artefact. Since several teams may be working in the scope
of particular requirements, they must be able to report their
changes without reserving the artefact and blocking each other.

When searching for a suitable tool, an in-house proposal

proved to provide the best fit: T-Reqs. T-Reqs (textual require-

ments) suggests managing requirements in markdown format

in text files within git1. As depicted in Table I, this surprisingly

simple solution satisfies the majority of concerns and fulfils

the critical requirements with only small additions (scripts

and templates) beyond existing solutions in the git ecosystem.

These allow for example to generate reports and views on the

requirements and related artifacts with tracing links.

III. T-REQS VS. CHALLENGES AND REQUIREMENTS

Recently, a growing number of empirical papers discusses

requirements engineering challenges in agile development [3],

[1], [4] as well as the need to identify new ways of managing

requirements in agile organizations [2]. In Table I, we select a

subset of these challenges that is especially relevant to tooling

in our company context. We also extract requirements towards

tooling in form of user stories and discuss how T-Reqs helps

to address these challenges.

1Demonstrator available at https://github.com/regot-chalmers/treqs

http://arxiv.org/abs/1805.02769v2
https://github.com/regot-chalmers/treqs


TABLE I
CHALLENGES AND REQUIREMENTS FOR REQUIREMENTS TOOLING IN LARGE-SCALE AGILE SYSTEM DEVELOPMENT.

Challenge Current status User story/requirement Solution in T-Reqs

Updating and deprecating

requirements. Requirements reside
between teams on different levels.
Teams have different scopes but
dependencies exist. It is difficult to
establish governance and policing
function for shared requirements.

Updates of
requirements must be
proposed to a central
role. The process is
slow, the central role
becomes a bottleneck,
and changes that
appear non-critical may
be omitted (→C1).

US1 As a member of a XFT, I want to
a) . . . share new knowledge we learnt
about existing requirements during a
sprint so that our implementation and
the requirements on system level are
consistent.
b) . . . be aware of requirements
changes that affect my team so that we
can pro-actively address dependencies.

Git allows to group changes (e.g. to
source code and tests) into commits
that then can be pushed to the main
branch. T-Reqs allows to manage
requirements in exactly the same way.
A team pulling the latest changes from
the main branch will see conflicts on
either of these artefacts as merge
conflicts in git.

Access to tooling and requirements.
Traditional tools rely on defined
change management processes and
often do not scale well with respect to
parallel users and changes.
Development teams find this situation
at odds with agile practices and pace.

Often, teams do not
have access to tooling
and requirements, since
licenses are expensive
and the number of
parallel users is limited
(→C1).

US2 As a member of a XFT, I want to
update system requirements efficiently,
without too much overhead, and
ideally integrated in the tools I use in
my daily work.

Development teams are used to git,
thus T-Reqs provides them with a
familiar interface to manipulate
requirements. T-Reqs-specific
conventions, templates and scripts
allow generating specific views and
reports for non-technical stakeholders.

Consistent requirements quality.
Quality of requirements (i.e. user
stories, backlogs) differs (e.g. in detail).
This allows best requirements practices
for each domain, but reasoning on
system level is difficult [5].

No appropriate review
and alignment process
exists that would allow
to include an
individual team’s way
of working (→C1-2).

US3 As a system manager, I want to
make sure that proposed updates to
requirements are of good quality, do
not conflict with each other, or with
the product mission.

Many organisations that rely on git are
also using gerrit to manage reviews
(e.g. of source code). T-Reqs organizes
requirements in a way that allows to
do that with requirements as well.

Managing experimental

requirements. When exploring new
functionality or product ideas,
experimental requirements need to be
treated differently from stable
requirements. Still, they need to be
captured and later integrated in the
system view [4].

The requirements
database is cloned
before experimenting
and must be blocked
for other changes when
the clone is eventually
be ported back (→C2).

US4 As member of an experimenting
team, I want to experiment with new
requirements and features so that I can
better assess their business value and
cost. This must not affect existing
requirements during the experiment or
block the requirements database
afterwards.

Git allows creating branches to
experiment with requirements, but also
with models and source code. Git
merge and gerrit help to merge
branches, without blocking the main
database. Merge conflicts will directly
relate to requirements conflicts, since
requirements are stored line-wise.

Create and maintain traces. In
continuous integration and delivery,
agile teams struggle to provide
sufficient tracing to allow determining
the status of individual features.

Tracing does not offer
direct value to agile
teams and is not
integrated in their
workflows (→C3).

US5 As a member of a XFT, I want to
maintain traces between requirements,
change sets, and tests in a way that is
integrated with my natural workflow
and enables valuable feedback.

Git automatically links changes of
code and requirements in commits.
T-Reqs adds conventions, templates,
and scripts for additional finer-grained
tracing. Providing cross-functional
teams with feedback based on tracing
information can further motivate good
trace link quality.

Plan verification and validation

based on requirements. When
requirements updates by individual
teams are not shared on system level,
it is impossible to plan verification and
validation pro-actively.

Requirements changes
are difficult to share
(→C1-3) and the need
to update complex
system testing
infrastructure may
surface late.

US6 As a test architect or system
manager, I want to be aware of new
requirements for the test infrastructure
early on so that I can plan verification
and validation pro-actively.

T-Reqs suggests a suitable review
process via gerrit that has proven to
spread information about critical
changes effectively between key
stakeholders. Ease of use makes it
more likely that teams share
requirements updates in a timely
manner.

IV. DISCUSSION AND OUTLOOK

In this paper2, we present T-Reqs, an approach to rely on

textual requirements based on a markdown format and to man-

age those in git. We demonstrate that this approach addresses

critical challenges in large-scale agile system development. T-

Reqs is proven in practice, especially in an environment that

can rely mainly on textual requirements. However, models do

exist and those cannot be as easily managed with the pro-

posed solution, asking for future research. Given the specific

environment from which we draw our experience, we cannot

reason about the value of T-Reqs in other industrial contexts.

Regardless, we believe that we can facilitate a discussion of

changing needs towards tooling in agile development.

2Partially supported by Software Center: https://www.software-center.se

REFERENCES

[1] V. T. Heikkilä, D. Damian, C. Lassenius, and M. Paasivaara, “A mapping
study on requirements engineering in agile software development,” in 41st

Conf. on Softw. Eng. and Adv. Appl. (SEAA), 2015, pp. 199–207.
[2] V. T. Heikkilä, M. Paasivaara, C. Lasssenius, D. Damian, and C. Engblom,

“Managing the requirements flow from strategy to release in large-
scale agile development: a case study at ericsson,” Empirical Software

Engineering, pp. 1–45, 2017.
[3] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A

systematic literature review on agile requirements engineering practices
and challenges,” Computers in Human Behavior, vol. 51, pp. 915–929,
2015.

[4] R. Kasauli, G. Liebel, E. Knauss, S. Gopakumar, and B. Kanagwa,
“Requirements engineering challenges in large-scale agile system devel-
opment,” in Proc. of 25th Reqts. Eng. Conf. (RE), Lisbon, Portugal, 2017.

[5] R. Wohlrab, P. Pelliccione, E. Knauss, and S. Gregory, “The problem of
consolidating RE practices at scale: An ethnographic study,” in Proc. of
24th Int. Working Conf. on Reqts. Eng.: Foundation for Software Quality

(REFSQ), Utrecht, The Netherlands, 2018.

https://www.software-center.se

