
OpenReq Issue Link Map: A Tool to Visualize
Issue Links in Jira

Clara Marie Lüders
The Qt Company
Espoo, Finland

clara.luders@qt.io

Mikko Raatikainen
University of Helsinki

Helsinki, Finland
mikko.raatikainen@helsinki.fi

Joaquim Motger
Polytechnic University of Catalonia

Barcelona, Spain
jmotger@essi.upc.edu

Walid Maalej
University of Hamburg

Hamburg, Germany
maalej@informatik.uni-hamburg.de

Abstract—Managing software projects and products gets more
and more complicated with an increasing project and product
size. To cope with this complexity, many organizations use issue
tracking systems, where tasks, bugs, and requirements are stored
as issues. Unfortunately, managing software projects might still
remain chaotic even when using issue trackers. Particularly older
projects with lots of issues and many links between the issues,
make it hard to maintain an overview of the dependencies,
especially when tens of new issues get reported every day. We
present a Jira plug-in tool that supports developers, project
managers, and product owners in creating and keeping order
of issues. Our tool visualizes the issue links, helps to find missing
or unknown links between issues, and detects inconsistencies.

Index Terms—Requirement Dependencies, Data-Driven Re-
quirements, Issue Tracking Systems, Recommendation Systems,
Release management, Similarity/Duplicate Detection

I. INTRODUCTION

Many software companies keep track of their work in issue
tracking systems, such as Jira, Bugzilla, or Github. Stake-
holders can describe and store requirements—called issues or
tickets in these systems—in the form of epics, user stories,
tasks, bugs, feature requests or other defined types. Issues have
multiple attributes such as title, description, status, resolution,
environment, priority, assignee, release version, reporter, or
links to other issues. Depending on the issue tracking system
and the users of the system, there can be a variety of dif-
ferent link types. Common types are parent-child, duplicates,
dependencies, similarities, relations, and work breakdowns. In
this work, we refer to dependencies between issues as links
adhering to the terminology in Jira. Additionally, stakeholders
can comment issues and track their life-cycle. We studied
the challenges encountered in managing software projects and
build a tool to support this activity. We are evaluating it with
The Qt Company in their Jira.

Keeping an order, which means that all information re-
garding issues is stored and therefore visible in the system,
is hard in large issue tracking systems. Especially in open-
source projects where a community submits hundreds of
tickets weekly. Organizing new issues and planning releases
becomes a demanding, time-eating task with no end in sight—
a frustrating situation for developers, project managers, and
product owners. Links influence product management because
the product manager or product owner needs to make sure
that every issue linked for a feature is taken into account if

this feature is supposed to be in a release. With many issues
keeping track of relevant issues and links gets complex, e.g.
Qt’s public Jira contains (May 2019) over 111,959 issues,
out of which 27,462 issues have at least one link to another
issue, with a total of 24,857 explicated links. Another difficulty
during release planning is that links can be known but the
person with the knowledge does not have the rights to add the
link, they can be wrong, forgotten, or are simply not known.
A simple example is that a bug-type issue is reported by two
different persons, but as they do not know it, the issues are
not linked as duplicates.

Organizing and understanding this spiderweb of issues
needs to be facilitated One solution is to visualize this with a
graph, but issue tracking systems do not have built-in support
to visualize the links of issues. Users only see a list of all
direct links of a selected issue and not further beyond. E.g., in
the view issue page of QTBUG-55604 in Qt’s Jira, only three
issues are visible to users, but in fact there are a total of 19
issues linked transitively to the issue. Such a network of links
can become huge and complex. E.g., there is a link network
of size 6755 in which the longest shortest distance is 51 links
across multiple Jira projects. Grasping the dependencies and
issues without any visualization is not feasible.

The European Horizon 2020 project OpenReq
(https://openreq.eu/) aims at solving this problem. One
goal is to develop an open-source Jira plug-in that any
company can use to help manage their projects. Besides
visualizing the link map of issues (see Figure 1), the tool uses
recommendation systems to enable users to find missing or
unknown links. Additionally, users can check the consistency
of an issue network with regard to the release plan(s) [1].

II. THE TOOL: OPENREQ ISSUE LINK MAP

A. Overall Architecture

The OpenReq Issue Link Map is currently a service-based
tool that visualizes the link map of issues in Qt’s Jira with the
goal to have it as a Jira plug-in. So far, in order to get a better
understanding of the whole picture , users have to explore
the links one after another in Jira. With the Issue Link Map
visualization users can see all linked issues at a glance,.The
front-end is a web-based interface while the back-end1 consists

1A detailed description was submitted to the industry track of RE’19

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution 
to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/RE.2019.00070



Fig. 1: Issue Map with depth 2 of QTBUG-30 in OpenReq Issue Link Map

of several OpenReq microservices that work together in a
choreographic manner.

B. Background Services

1) Graph of Links: Based on issues and their links, a graph
of links facilitates the visualization of an issue link map. The
graph is maintained as a separate process to allow for a real-
time response of a link map. This is necessary in the case
of Qt’s Jira since the number of issues is too large for a
synchronous issue retrieval and analysis in Jira directly.

2) Link Detection: Additional links are detected from the
text. In order to find the duplicates, all issues of a single project
are taken and their title and description are compared against
each other to decide if they have similar content. Moreover, a
cross-reference detection checks the comments of an issue for
the mention of another issue, which can indicate a link. This
happens due to the open-source nature of Qt: Everybody can
create issues, but not everybody is able to create links between
issues. In order to work around this, users often comment if
they think a link exists. A maintainer then has to add the link
manually.

3) Consistency Checker: The consistency checker [2] ver-
ifies that the release plan of an issue link map is consistent
by applying constraint solving technologies: First, all child
issues, which have the same or higher priority, must not be
assigned to a later release. Second, any required issue must
not have a later release or lower priority. Third, all links from
a duplicated issue are inherited by the duplicate issue.

C. User Interface

The user interface consists of two main parts, the visu-
alization and the features explained above (see figures in
Appendix). As seen in 1 the link network is shown as a graph
on the left side where a user can select the depth of the map,
Depth means the distance from the selected issue. The link
map can be navigated by clicking any issue in the map. On
the right hand side, users can see general information about
the issue from Jira. Above the information box, users can

switch to two features: link detection and consistency checker.
When the link detection is called, users are presented with
a list of the 5 recommended links that can be accepted or
rejected. If they accept the link, they must select its type as
well. When the consistency checker is clicked users see if the
issues contained in the issue link map and the corresponding
released are consistent. The different releases are also shown
underneath the result.

III. FUTURE WORK

The tool is still in development and thus the capabilities of
the link detection can be improved upon, e.g. the choice of the
users to accept and reject links can be used to train and refine
the system, as a human-in-the-loop approach. Additionally, it
is planned to visualize what part makes a certain issue link
map inconsistent with the option to automatically repair the
inconsistency. The Qt trial started in January of 2018 and the
tool is being developed and evaluated in this trial, the OpenReq
project is scheduled until the end of 2019. We use some AI
technologies in this trial to support open-source issue tracking
systems and make them more manageable. In the long run,
we plan to analyze user acceptance of AI technologies that
can aid their work. A problem here is that AI is usually a
”black box”. By integrating users in the decision process and
showing them the reasoning of the system we hope to increase
AI acceptance.

ACKNOWLEDGEMENT

The work presented in this paper has been conducted within
the scope of the Horizon 2020 project OpenReq, which is
supported by the European Union under the Grant Nr. 732463

REFERENCES

[1] A. Felfernig, M. Stettinger, A. Falkner, M. Atas, X. Franch, and C. Palo-
mares. Openreq: Recommender systems in requirements engineering.
In A. Felfernig, M. Stettinger, A. Falkner, M. Atas, X. Franch, and
C. Palomares, editors, RS-BDA’17, pages 1–4, Graz, Austria, 2017.

[2] M. Raatikainen, J. Tiihonen, T. Männistö, A. Felfernig, M. Stettinger, and
R. Samer. Using a feature model configurator for release planning. In
Systems and Software Product Line Conference - Vol. 2, 2018.



ANNEX

A. How the tool will be presented

We will present OpenReq Issue Link Map in an interactive
and live tool demonstration and with a poster explaining the
problem and showcasing the features of the UI.

Interactive Demonstration. The tool can be
reached under the following url: https://api.openreq.eu/
openreq-issue-link-map/. At the conference, interested
persons are free to interact with the tool as they wish. Some
features, such as accepting recommended links, will not be
possible since the users do not have the sufficient access
rights for it.

The European Horizon 2020 project OpenReq and its goals
will be introduced as well. We further explain how and why
we are developing the tool and in which industry scenarios it
is currently tested and useful. Additionally, we will describe
how the tool can be used in other circumstances apart from
Qt’s environment.

Poster. A poster that visualizes the problem and the features
will be provided, so that interested persons can learn about
the tool and what it does prior to trying it out. This way the
audience has a way to familiarize with the tool and a guide to
refer to while they are using the tool. As the UI is not described
in full detail in the tool paper itself, the focus of the poster
will be on the different UI elements and their functions so that
the user can achieve a better understanding of the OpenReq
Issue Link Map.

B. Further documentation

Every component of the European Horizon 2020 project
OpenReq is open source, and so are all microservices of
OpenReq Issue Link Map2. Despite the code being publicly
available, we also document all API endpoints of our compo-
nents3. In our demonstration, we will direct the audience to
both points since all parts of the OpenReq project can be used
stand-alone in a requirements engineering context.

2https://github.com/OpenReqEU
3https://api.openreq.eu



Fig. 2: Link Detection of Issue QTWB-30

Fig. 3: Consistency Check of Issue Link Map of Issue QTBUG-55604


