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Abstract—Classifying requirements is crucial for automatically
handling natural language requirements. The performance of
existing automatic classification approaches diminishes when
applied to unseen projects because requirements usually vary in
wording and style. The main problem is poor generalization. We
propose NoRBERT that fine-tunes BERT, a language model that
has proven useful for transfer learning. We apply our approach
to different tasks in the domain of requirements classification.
We achieve similar or better results (F1-scores of up to 94%) on
both seen and unseen projects for classifying functional and
non-functional requirements on the PROMISE NFR dataset.
NoRBERT outperforms recent approaches at classifying non-
functional requirements subclasses. The most frequent classes are
classified with an average F1-score of 87%. In an unseen project
setup on a relabeled PROMISE NFR dataset, our approach
achieves an improvement of ten percentage points in average F1-
score compared to recent approaches. Additionally, we propose
to classify functional requirements according to the included
concerns, i.e., function, data, and behavior. We labeled the
functional requirements in the PROMISE NFR dataset and
applied our approach. NoRBERT achieves an F1-score of up
to 92%. Overall, NoRBERT improves requirements classification
and can be applied to unseen projects with convincing results.

Index Terms—Requirements Classification, Requirements Engi-
neering, Machine Learning, Transfer Learning, Language Model,
BERT

I. INTRODUCTION

The main sources of requirements are still natural language
documents. Classifying requirements is important to identify
specific requirements like security-related requirements early in
a project [1]. Furthermore, the automatic processing of natural
language requirements also requires the identification of require-
ments in these documents. Automatic requirements processing
approaches may benefit from a categorization of requirements
into functional requirements (F), or quality requirements and
constraints (together referred to as non-functional requirements
(NFR)). Even though the distinction between functional and
non-functional requirements is controversial [2]–[4], the need
for categorization remains.

Automated classification approaches have been used for
several years [5]–[8]. While they achieve reasonable perfor-
mance on heterogeneous datasets, their performance diminishes
when being applied to unseen projects [9]. State-of-the-art

approaches use lexical and syntactical features, but still seem
to lack the ability to generalize. Wording, sentence structure,
and granularity of natural language requirements highly depend
on the project and authors. Without transferability to unseen
projects, current approaches are not applicable in practice. One
would need a suitable training set for each project, which is
usually infeasible. To overcome this challenge, we investigate
how transfer learning approaches perform on the task of
requirements classification. Transfer learning approaches are
heavily used in natural language processing (NLP). They are
trained on huge datasets to capture underlying concepts and
meanings of natural language texts. Afterwards they can be fine-
tuned to a specific task. These approaches promise both better
performance and generalizability with less training data. Recent
transfer-learning approaches were able to match performance
with other (deep learning) approaches that were trained on 100x
the data [10]. In cases such as in requirements engineering,
where only limited amount of (labeled) data exists, this might
prove advantageous.

We propose to fine-tune Bidirectional Encoder Representa-
tions from Transformers (BERT) [11], a language model based
on deep learning. BERT, pre-trained on a large text corpus, can
be fine-tuned on specific tasks by providing only a small amount
of data. We present our approach NoRBERT (Non-functional
and functional Requirements classification using BERT) that
takes advantage of BERT’s fine-tuning mechanism to classify
requirements. We use NoRBERT to classify requirements in
the PROMISE NFR dataset [12] widely used in literature and
part of the RE’17 Data Challenge. Further, we investigate
the generalizability of our approach on a relabeled version
of the NFR dataset provided by Dalpiaz et al. [9]. We also
use NoRBERT to classify functional requirements based on
the implied concerns; a concern-based classification based on
Glinz [2]. Our contribution is three-fold:

1) We investigate if and to what extent classifying require-
ments on known and unknown projects is improved by
transfer learning.

2) We provide a new dataset that classifies functional require-
ments further according to the concerns function, data,
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and behavior.
3) We evaluate how well a transfer learning-based approach

performs on the new dataset and task.
We provide our source code and the labeled functional
requirements dataset on Zenodo [13].

II. RELATED WORK

The distinction between functional and non-functional re-
quirements and the definition of non-functional requirements
itself is a well studied topic in requirements engineering.
Requirements have been modeled as goals [14], [15] and non-
functional requirements as softgoals, without a criterion for
satisfaction. Li et al. [3] use a quality-oriented approach to
model non-functional requirements. They regard non-functional
requirements as either quality goals or quality constraints;
the latter are perceivable or measurable. Glinz [2] classifies
requirements as either functional requirements, system at-
tributes, or constraints. System attributes or constraints are non-
functional. Others argue that the distinction between functional
and non-functional requirements is artificial [16] and many
non-functional requirements also include functional aspects [4].

The automated extraction and classification of requirements
from textual natural language documents has been in the
focus of researchers for more than a decade resulting in many
approaches. Approaches by Cleland-Huang et al. [5], [17] use
information retrieval to classify non-functional requirements in
structured and unstructured documents. They identify so-called
“indicator terms” in the documents and use them to classify
requirements. The approach achieves high recall values but
is imprecise (precision below 27%) when classifying non-
functional requirements. They also published their dataset
NFR [12], that we use in our evaluation, as part of the
PROMISE repository [18].

Hussain et al. [6] use special classes of words, such as
cardinals, adverbs, and modal verbs with a decision tree
classifier (C4.5) to improve requirements classification on a
different version of the PROMISE NFR dataset, achieving
promising results (up to 99% F1-score).

Kurtanović and Maleej [8] use automated feature selection
on lexical, syntactical, and meta-data features to predict certain
classes of requirements in the PROMISE NFR dataset. Their
support vector machine classifier achieves F1-scores of up to
93% for functional vs. non-functional classification. On the four
major non-functional requirement classes Usability, Security,
Operational and Performance, their binary classifiers achieve
results ranging between 72% and 90%. We also measure
NoRBERT’s performance on both of these tasks.

Abad et al. [7] show that preprocessing and unifying the
PROMISE NFR dataset improves the result of a decision tree
classifier, like the one proposed by Hussain et al. [6], on
the functional vs. non-functional classification from F1-score
of 91% to 95%. Furthermore, they evaluate several classifi-
cation algorithms on the task of classifying non-functional
requirement subclasses that we also perform. The binarized
naı̈ve Bayes classifier performs best on both the unprocessed
and preprocessed dataset achieving F1-score of 45% and 90%,

respectively. One drawback of this approach is the partially
manual preprocessing that might be dataset specific.

Dalpiaz et al. [9] relabel the PROMISE NFR dataset to fix
labeling issues and take requirements that comprise functional
and non-functional aspects into account. They reimplement
the approach of Kurtanović and Maleej [8] and evaluate it on
the relabeled dataset and further projects. Additionally, they
propose a more interpretable feature set achieving lower but
comparable results on the task. In our evaluation, we use their
dataset for the sake of comparability.

Other approaches use deep learning to classify requirements.
For example, Winkler and Vogelsang [19] use a convolutional
neural network (CNN) to classify the content elements of natu-
ral language requirement specifications as either “requirement”
or “information” achieving F1-scores of 82%. Navarro-Almanza
et al. [20] employ a CNN to classify the requirements in the
PROMISE NFR dataset according to all twelve requirement
categories with an average F1-score of 77%. Dekhtyar and
Fong [21] apply word embeddings and a CNN to the task
of identifying non-functional requirements in the PROMISE
NFR dataset. They achieve an F1-score of up to 92%. Amasaki
and Leelaprute [22] compare different word vector models in
terms of their effectiveness on the four major non-functional
requirement classes in the PROMISE NFR dataset. The results
show that Doc2Vec [23] and sparse composite document
vector [24] based models can improve the classification of non-
functional requirement categories depending on the classifier.

The above approaches are promising and show the capa-
bilities of different techniques for the problem of classifying
requirements. However, many of these approaches are rather
impractical in use, as they are either overfitted to the dataset,
heavily depending on wording and sentence structure, or need
manual preprocessing. Moreover, the approaches either do
not state their abilities to generalize from project specifics or
do not generalize well enough to be applicable to previously
unseen projects. One factor might be the lack of available
training data in the requirements engineering community. This
is the reason why we apply transfer learning approaches to
requirements classification that promise better performance and
generalizability with less training data.

III. INTRODUCTION TO BERT

BERT [11] is a language model (LM). LMs aim to estimate
the probabilities of sequences of words, thus are able to predict
the probability that a word follows a given sequence. One
important aspect of LMs like BERT are their transfer learning
capabilities, i.e., using them for tasks other than the task they
were trained on with little fine-tuning effort.

The origin of all modern LMs are word embeddings such as
word2vec [25]. Mikolov et al. introduce a technique to calculate
lower-dimensional vectors that represent words as numerical
vectors based on their contexts. However, word2vec averages all
contexts a word can appear in and thus disregards ambiguities.
This problem is tackled by Embeddings from Language Models
(ELMo) [26] that contextualizes word embeddings. ELMo is
trained using a bidirectional long short-term memory (LSTM)



neural network with two layers in order to let the LM get
a sense of the word in the context of its previous and
following words. Based on ELMo, Universal Language Model
Fine-tuning for Text Classification (ULMFiT) improves LMs
further [10] and introduces pre-training and fine-tuning for
transfer learning with LMs, that BERT uses as well.

An integral part of BERT is the so-called Transformer
architecture by Vaswani et al. [27] that introduces a stacked
self-attention encoder-decoder structure as a replacement for
the LSTM architectures [28]. Besides the high-level encoder-
decoder structure, the so-called (self-) attention layers allow
to weight relevant words higher. For example, coreferences
are highly relevant to each other and therefore are weighted
higher than mostly unrelated words. This way, irrelevant
words gain less attention and influence the outcome less than
relevant words. Vaswani et al. [27] also introduce multi-headed
attention as an improvement to previous attention models
and mechanisms. The multi-headed attention helps the overall
model to focus on different positions and solves the problem
that the current word itself can dominate other words.

Radford et al. [29] introduce the concepts of the Transformer
architecture to LMs that can be fine-tuned. They use the decoder
structure of the Transformer, including the attention layers, for
language modeling. After pre-training, the model can be used
for downstream NLP tasks such as sequence classification.

The BERT model by Devlin et al. [11] combines various
of the previously described concepts to train LMs. On release
BERT outperformed state-of-the-art results on eleven NLP
tasks. Benchmarks include sequence classification, named entity
recognition, and question answering [11]. In contrast to former
Transformer-based approaches that only use unidirectional, i.e,
left-to-right architectures, BERT introduces bidirectional pre-
training similar to the concepts of ELMo to incorporate context
in both directions. Instead of using the decoder-structure of
Radford et al. [29], Devlin et al. adapt the encoder-structure
of the Transformer architecture by Vaswani et al [27]. They
propose two models for BERT. The base model has twelve
encoder-layers, uses 768 hidden units, and twelve attention
heads [11] instead of the original Transformer’s six encoder-
layers, 512 hidden units, and eight attention heads [27]. BERT’s
base model has a total of 110M parameters that need to be
trained. The large model of BERT uses 24 encoder-layers with
encoders having 1024 hidden units, 16 attention heads and
340M parameters in total.

The combination of encoders and self-attention layers with
bidirectionality causes a problem. Each word indirectly sees
itself and the target word, during training, and could be trivially
predicted. Therefore, the authors introduce masked language
modeling. This means that about 15% of the input is masked
and part of the pre-training task is the prediction of the masked
words. For example, instead of the sentence “my dog is hairy”
the input is “my dog is [MASK].” However, BERT was not only
trained to predict missing words but simultaneously predicts
whether one sentence is likely to succeed another sentence. For
example, the sentence “The man went to the store” is likely to
be followed by “He bought a gallon of milk” but unlikely to be
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[SEP]
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Fig. 1: Architecture used to fine-tune BERT for classification.

followed by “Penguins are flightless birds.” For training, 50%
of the sentences were paired with actual subsequent sentences
and 50% of the time with a random sentence from the corpus.
BERT was originally trained on the English Wikipedia and
the BooksCorpus [30]. Pre-trained models of BERT have been
released that can be used for fine-tuning.

BERT and similar approaches are currently replacing tradi-
tional pipelines as natural language processing systems [31].
However, an analysis of the different layers and the underlying
learned structures of BERT by Tenney et al. [31] shows that
BERT remodels similar structures as the NLP pipeline.

Figure 1 shows how BERT can be used for classification.
The input is tokenized. The first input token of BERT is
always the special token [CLS]. Similarly, the token [SEP]
is a special separator token, e.g., to separate sentences, and
the token [PAD] is used for padding. For classification and
similar downstream tasks the only output of BERT used is the
output BERT produces for the first token ([CLS]), which is the
pooled output of all tokens. This pooled output can be fed into
a single-layer feedforward neural network that uses softmax
to assign probabilities to different classes.

IV. RESEARCH DESIGN

First, we formulate the questions our research is going to
answer and then describe the datasets and methodologies used.

A. Research Questions

RQ1: How does transfer learning perform in classifying
requirements?

We want to investigate how an approach that uses transfer
learning performs on the classical tasks of requirements
classification.
RQ2: Does transfer learning improve the performance of

classifying requirements on unseen projects?
As the performance of current approaches diminishes when
applied to unseen projects, we want to study how a transfer
learning-based approach performs at requirements classification
on unseen projects.
RQ3: To what extent do transfer learning approaches detect

subclasses of functional requirements?



TABLE I: Class distribution of the original NFR dataset [12].

Class Quantity ∅ Words
Functional (F) 255 20
Availability (A) 21 19
Fault Tolerance (FT) 10 19
Legal (L) 13 18
Look & Feel (LF) 38 20
Maintainability (MN) 17 28
Operational (O) 62 20
Performance (PE) 54 22
Portability (PO) 1 14
Scalability (SC) 21 18
Security (SE) 66 20
Usability (US) 67 22
Total 625 20
Non-Functional (NFR) 370 20

We investigate if and to what extent classification models using
transfer learning are able to identify the concerns described in
functional requirements.

B. Existing Datasets

To answer RQ1 and RQ2 we make use of two existing
datasets. The PROMISE NFR dataset [12] commonly used in
the community and addressed in the RE’17 Data Challenge
and a relabeled version provided by Dalpiaz et al. [9]. The
former consists of 625 requirements from 15 projects written by
students. The 625 requirements include 255 functional and 370
non-functional requirements. Table I shows the distribution of
classes in the dataset and the average length of the requirements
per class. Each requirement is labeled with only one class
(either F or one of the 11 NFR subclasses). The classes are
distributed unevenly. Tha dataset contains 115 less F than NFR
and the quantity of NFR subclasses differs widely, ranging
from 67 for Usability to 1 for Portability. The classes Usability,
Security, Operational, and Performance are the only ones
exceeding 50 examples, whereas the classes Fault Tolerance,
Legal, Maintainability and Portability are underrepresented
with amounts below 20.

As the distinction between F and NFR in the dataset is
debatable and the dataset includes duplicates and mislabeled
requirements, Dalpiaz et al. [9] provided a relabeled version
of the dataset. Table II presents an overview of the dataset. It
consists of only 612 of the original 625 requirements and only
uses two classes. They followed the quality-oriented approach
by Li et al. [3] to model the classes. A requirement can have
functional (F) or quality aspects (Q) or both. 80 requirements
include both functional and quality aspects. 230 requirements
solely have functional aspects (OnlyF) and 302 include only
quality aspects (OnlyQ).

C. Research Methodology

Based on the datasets we apply our approach on the tasks:

Task1: Binary classification of F/NFR on the original NFR
dataset. We collapsed all NFR subclasses to represent
the NFR class.

Task2: Binary and multiclass classification of the four most
frequent NFR subclasses (US, SE, O, PE) on all NFR
in the original NFR dataset.

Task3: Multiclass classification of all NFR subclasses on NFR
in the original NFR dataset.

Task4: Binary classification of requirements based on func-
tional and quality aspects using the relabeled NFR
dataset by Dalpiaz et al.

For all tasks we measure precision (P), recall (R) and F1-
score (F1). For the multiclass classifications we also report the
weighted average F1-score (A) over predicted classes.

The tasks are evaluated in various settings. With .75-split we
describe a single stratified 75% train and 25% test split of the
dataset. We also use a stratified 10-fold cross-validation referred
to as 10-fold, splitting the dataset 10 times in 90% train and
10% test set and averaging the results. Stratified splits ensure
that the distribution of classes in the dataset is maintained in
the train and test set. To further investigate the transferability of
approaches we use two project-specific folding strategies. With
p-fold we describe the project-level cross-validation used by
Dalpiaz et al. [9], that splits the dataset 10 times in 3 projects
as test and 12 projects as train set ensuring an even distribution
of functional and quality aspects. Furthermore, we make use
of a leave-one-project-out cross-validation (loPo) that n times
trains on n-1 projects and tests on the project that was left out.

For highly imbalanced binary tasks, such as the NFR
subclasses, we experimented with under- and oversampling
strategies. We randomly sample a number of majority class
representatives equal to the number of minority class examples
in the training set for undersampling (US) the majority class.
With oversampling (OS), we repeatedly add the whole training
set minority class population to the training set until the number
of minority class representatives would exceed the one of the
majority class. Then we add random samples of the minority
class until the classes are evenly distributed in the training
set. Thus, US reduces the majority population and leaves the
minority class untouched, whereas OS enlarges the minority
population and keeps the original majority population. The
test set remains untouched in both settings to maintain the
distribution in the whole dataset.

We investigate the effect of early stopping (ES) and different
epoch numbers. Early stopping is a regularization technique
commonly used to avoid overfitting in iterative learners. We
defined a threshold of 0.01 on the F1-score of the class to predict
(binary case) or accuracy (multiclass setting) and a patience
value of three. The training is stopped if the improvement to the
best iteration is three iterations (epochs) below the threshold.

V. NORBERT: NON-FUNCTIONAL AND FUNCTIONAL
REQUIREMENTS CLASSIFICATION USING BERT

With a fine-tuned version of BERT we investigate the impact
of transfer learning on the task of requirements classification.
The rationale behind this decision is our expectation that models
based on BERT generalize better on less training data and thus
increase classification performance on unseen projects. For
fine-tuning, we use two different pre-trained BERT models,



TABLE II: Class distribution of the relabeled NFR dataset [9].

Class Quantity ∅ Words
Functional aspect (F) 310 19
Quality aspect (Q) 382 20
Only Functional aspect (OnlyF) 230 19
Only Quality aspect (OnlyQ) 302 20
Both (F+Q) 80 21
Total 612 20

TABLE III: F/NFR classification on PROMISE NFR dataset.
Bold values show the highest score for each metric per class.

F (255) NFR (370)
Approach (Parameters) P R F1 P R F1
10-fold
K. & M. (word features w/o feat. sel.) .92 .93 .93 .93 .92 .92
K. & M. (500 best word features) .92 .79 .85 .82 .93 .87
K. & M. (500 best features) .88 .87 .87 .87 .88 .87
A. et al. (unprocessed data) .84 .93 .88 .95 .88 .91
A. et al. (processed data) .90 .97 .93 .98 .93 .95
D. & F. (word2vec, ep.=100, f.=50) — — — .93 .92 .92
NoRBERT (base, ep.=10) .91 .90 .90 .93 .94 .93
NoRBERT (base, ep.=10, ES, US) .88 .88 .88 .92 .92 .92
NoRBERT (base, ep.=10, ES, OS) .91 .86 .88 .91 .94 .92
NoRBERT (base, ep.=16) .89 .88 .89 .92 .93 .92
NoRBERT (large, ep.=10, OS) .92 .88 .90 .92 .95 .93
p-fold
NoRBERT (base, ep.=10) .85 .51 .64 .74 .94 .82
NoRBERT (large, ep.=16) .89 .61 .73 .78 .95 .86
loPo
NoRBERT (base, ep.=10, ES) .88 .50 .64 .73 .95 .83
NoRBERT (large, ep.=10, US) .87 .71 .78 .82 .93 .87

the base and large model, both in the cased version. We also
experimented with the uncased models but the cased models
outperformed them. This might be due to named entities used in
requirements that are mistaken for normal nouns otherwise. We
use the BERT-tokenizer and do not preprocess the requirements.

On top of the pre-trained models we define our output layer,
the classification head. We use the pooled output of BERT, i.e.,
the output of the [CLS] token, the first token in the sequence.
This output is fed into the classification head that consists
of a single layer of linear neurons in a feedforward neural
network. The outputs are directly computed from the sum
of the weighted inputs (plus some bias). We use the softmax
function to get a probability distribution for the different labels.

During training, we use the cross-entropy loss function. This
means we quantify how close the predicted distribution is to
the true distribution using the formula:

H(p, q) = −
∑
x

p(x) log q(x) (1)

p(x) represents the target probability and q(x) is the actual
probability; x represents the different labels. In our case, for a
correct label x, p(x) equals 1 and p(x) equals 0 for all other
labels x. Thus, the loss function punishes wrong or uncertain
predictions and rewards confident predictions that are correct.

An important component of (deep) neural networks is the
optimizer that updates the various weights within a network.
Instead of using a classical stochastic gradient descent to

update the weights in our network, we use the so-called
AdamW-optimizer that is an adaptation of the popular Adam-
optimizer [32]. AdamW [33] implements a weight decay
correction and does not compensate for bias as in the regular
Adam-optimizer. As optimizer setting, we do not use a warm-up
phase to increase the performance on sparse datasets. We use
a weight decay of 0.01 and a maximal learning rate of 2e-05
also used in the original BERT publication [11]. Experiments
showed that the standard batch size of 16 performed best
throughout all runs (we also tried 14, 20, 32, 64). We use a
maximal sequence length of 128 for the base models and 50
for the large models. Lowering the sequence length allows us
to optimize performance and avoid memory issues. Overall,
less than 10 requirements exceed a sequence length of 50.
Therefore, we assume our choice to be a reasonable trade-off.

While fine-tuning NoRBERT’s hyperparameters, i.e., the
epoch number, we follow the rationale that higher epoch
numbers allow the classifier to fit more closely to the seen data
but poses the risk of overfitting. The epoch number defines
the number of times the entire training set is processed during
training (iterations of the iterative learner). Systematically
increasing epoch numbers in our experiments showed that
10 to 32 epochs for the binary settings and 10 to 64 for
multiclass setting performed best on the task. We cannot report
all available evaluation results for the sake of brevity. Further
results and the source code can be found on Zenodo [13].

VI. TASK1: CLASSIFYING FUNCTIONAL AND
NON-FUNCTIONAL REQUIREMENTS

For the first task, we want to measure the performance of
NoRBERT when classifying requirements as either functional
(F) or non-functional (NFR) on the original PROMISE NFR
dataset. We use the stratified 10-fold cross-validation setting to
answer RQ1 regarding the performance of transfer learning for
requirements classification. We trained the model for binary
classification, i.e., predicting whether a requirement is F or
NFR. We compare our results to the state-of-the-art approaches
by Kurtanović and Maleej [8], Abad et al. [7] and Dekhtyar
and Fong [21]. Table III shows our results in comparison to the
reported results of the other approaches. NoRBERT achieves
comparable results with an F1-score of 90% for functional
and 93% for non-functional requirements. On NFR, NoRBERT
outperforms all but the highest scoring approach by Abad et
al. [7], which depends on manually provided dictionaries and
rules to preprocess the dataset. NoRBERT in comparison needs
no manual preprocessing and thus can easily be transferred to
any other dataset. On F, Kurtanović and Maleej report a higher
F1-score using a model without feature selection that only uses
word features. They mention that this model overfits to the
dataset and thus might not be applicable to unseen projects.

We report results on the 10-fold cross-validation using
different parameters and settings. Undersampling (US) the
majority class NFR as well as oversampling (OS) the minority
class F does not improve the model although there are roughly
45% more NFR.



TABLE IV: Binary (bin) and multiclass classification (multi) of the most frequent NFR classes on NFR dataset. Bold values
represent the highest score per metric per class. Asterisks mark reported F1-scores that do not match precision and recall.

Usability (US) Security (SE) Operational (O) Performance (PE)
Approach Parameters P R F1 P R F1 P R F1 P R F1 A
K. & M.bin (w/o feature selection) .81 .85 .82 .91 .90 *.88 .72 .75 .73 .93 .90 *.90 .83
K. & M.bin (50 best features) .70 .57 .61 .81 .77 *.74 .78 .50 *.57 .87 .57 .67 .65
K. & M.bin (500 best features) .80 .71 .74 .74 .81 *.74 .72 .73 *.71 .87 .81 *.82 .75
NoRBERTbin (base, ep.=10) .81 .69 .74 .93 .82 .87 .80 .53 .64 .88 .80 .83 .77
NoRBERTbin (base, ep.=10, OS) .78 .70 .74 .90 .86 .88 .88 .71 .79 .88 .80 .83 .81
NoRBERTbin (base, ep.=16, OS, ES) .89 .70 .78 .89 .89 .89 .90 .71 .79 .88 .81 .85 .83
K. & M.multi (w/o feature selection) .65 .82 *.70 .81 .77 *.75 .81 .86 .82 .86 .81 *.80 .76
K. & M.multi (50 best features) .49 .68 .55 .60 .50 *.39 .42 .47 *.33 .85 .53 *.63 .47
K. & M.multi (500 best features) .70 .66 *.64 .64 .53 .56 .47 .62 *.51 .81 .74 .76 .6110

-f
ol

d

NoRBERTmulti (base, ep.=32) .78 .84 .81 .89 .85 .87 .79 .73 .76 .88 .78 .82 .82
NoRBERTmulti (large, ep.=32) .86 .82 .84 .91 .91 .91 .83 .71 .77 .90 .81 .85 .84
NoRBERTmulti all (base, ep.=16, ES) .86 .91 .88 .77 .92 .84 .77 .79 .78 .87 .83 .85 .84
NoRBERTmulti all (base, ep.=50) .78 .85 .81 .78 .92 .85 .83 .84 .83 .94 .87 .90 .85
NoRBERTmulti all (large, ep.=50) .83 .88 .86 .90 .92 .91 .78 .84 .81 .92 .87 .90 .87
NoRBERTbin (base, ep.=16, OS) .73 .74 .74 .80 .86 .83 .72 .55 .62 .88 .53 .66 .72
NoRBERTbin (large, ep.=16, OS) .67 .71 .69 .87 .88 .87 .74 .60 .66 .89 .55 .68 .73
NoRBERTmulti (base, ep.=16) .66 .73 .70 .77 .88 .82 .70 .56 .62 .81 .58 .68 .71
NoRBERTmulti (large, ep.=32) .70 .77 .73 .86 .91 .89 .69 .70 .70 .80 .65 .71 .76p-

fo
ld

NoRBERTmulti all (base, ep.=32) .65 .79 .72 .83 .83 .83 .67 .81 .73 .88 .70 .78 .76
NoRBERTmulti all (large, ep.=50) .68 .80 .73 .86 .94 .90 .71 .85 .77 .85 .70 .77 .79
NoRBERTbin (base, ep.=16, OS) .69 .60 .64 .78 .85 .81 .80 .63 .70 .88 .52 .65 .70
NoRBERTbin (large, ep.=16, OS) .69 .72 .70 .91 .88 .89 .49 .65 .56 .80 .61 .69 .71
NoRBERTmulti (base, ep.=16) .62 .73 .67 .79 .92 .85 .69 .61 .65 .87 .61 .72 .72
NoRBERTmulti (large, ep.=32) .67 .72 .69 .82 .88 .85 .69 .60 .64 .83 .65 .73 .73lo

Po

NoRBERTmulti all (base, ep.=32) .62 .84 .71 .75 .86 .80 .75 .76 .75 .92 .67 .77 .76
NoRBERTmulti all (large, ep.=50) .63 .81 .71 .83 .96 .89 .72 .79 .75 .88 .65 .74 .77

The selection of the BERT model or the epoch number does
not significantly impact the overall performance.

The results in Table III also contribute to RQ2 on the
generalizability of our approach. 10-fold is common practice
for classification tasks but does not take into account that the
dataset consists of different projects with different domains
and wording. To measure NoRBERT’s performance on unseen
projects, we use project-specific settings (loPo and p-fold). On
weighted average the results are about twelve percent lower in
the p-fold setting and nine percent lower in the loPo setting.
A decline was to be expected in these more difficult settings.
The better result on loPo indicates that having a more diverse
training set (seeing more different projects) is beneficial for
the transferability of the model. However, the results still show
that NoRBERT is able to generalize from wordings seen during
training. This is especially important as the best performing
approaches in the 10-fold setting are either overfitted (K. &
M.) or require manual dictionaries and rule definitions that
have to be adapted to each project (Abad et al.). In contrast,
NoRBERT requires no manual preprocessing.

The results of NoRBERT for binary classification of require-
ments into functional and non-functional are promising. The
evaluation results are comparable to state-of-the-art approaches,
and the performance only decreases about ten percent if the
approach is applied to unseen projects and wording.

VII. CLASSIFICATION OF NON-FUNCTIONAL
REQUIREMENTS SUBCLASSES

In this next evaluation, we want to tackle the task of
classifying NFR subclasses defined in the PROMISE NFR

dataset. We filter out all F from the dataset and perform multiple
evaluations to compare our approach with the reported results of
recent papers. Filtering out F is reasonable as Task1 shows that
we are able to detect NFR with high precision. First, we look
into classification of the four most frequent NFR in the dataset:
Usability, Security, Operational, and Performance (Task2). We
evaluate multiple binary classifiers, one for each class, as well
as multiclass classification in Subsection VII-A. Additionally,
we look into the classification of all NFR subclasses (Task3)
in Subsection VII-B.

A. Task2: Classification of most frequent NFR subclasses

We evaluate the performance of NoRBERT using one binary
classifier for each of the four most frequent NFR in the dataset,
i.e., Usability, Security, Operational, and Performance. As
neural network classifiers are known to struggle with highly
imbalanced datasets, we also apply multiclass classification
to this task. Therefore, we train multiclass classifier either on
the four most frequent subclasses plus “Other”, or on all NFR
subclasses. Table IV reports the results and compares them to
those of Kurtanović and Maleej [8]. Approaches with the suffix
“all” denote classifiers trained on all NFR classes. The last
column shows the weighted average F1-score over all classes
weighted by the frequency of appearance.

The results of NoRBERT are promising with a weighted
average F1-score of up to 83% for binary classification and 87%
for multiclass classification in the 10-fold cross-validation. On
average, NoRBERT outperforms the best results of Kurtanović
and Maleej [8] by more than three percentage points.



TABLE V: Multiclass classification of all NFR subclasses on NFR dataset. 16, 32 and 50 indicate the used epoch number,
bin binary and mult multiclass classification and B and L the used BERT model (base/large). bin16 additionally uses OS and
multiL32 ES. LDA and NB (Naı̈ve Bayes) refer to approaches by Abad et al. [7] with (P) or without (UP) preprocessed data.

A (21) FT (10) L (13) LF (38) MN (17) O (62) PE (54) SC (21) SE (66) US (67)
Model P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 A
bin16 .93 .62 .74 .50 .20 .29 .82 .69 .75 .79 .71 .75 .54 .41 .47 .87 .77 .82 .88 .78 .82 .70 .67 .68 .88 .88 .88 .87 .72 .79 .78
multiB16 .73 .76 .74 1.0 .20 .33 .91 .77 .83 .77 .79 .78 .86 .35 .50 .77 .79 .78 .87 .83 .85 .68 .71 .70 .77 .92 .84 .86 .91 .88 .79
multiB32 .75 .71 .73 .38 .30 .33 .91 .77 .83 .81 .79 .80 .60 .35 .44 .78 .82 .80 .90 .83 .87 .76 .76 .76 .84 .92 .88 .78 .87 .82 .79
multiB50 .77 .81 .79 .60 .30 .40 .91 .77 .83 .80 .74 .77 .70 .41 .52 .83 .84 .83 .94 .87 .90 .64 .67 .65 .78 .92 .85 .78 .85 .81 .80

10
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d

multiL32 .70 .76 .73 .56 .50 .53 .92 .85 .88 .82 .87 .85 .58 .41 .48 .74 .77 .76 .91 .89 .90 .70 .67 .68 .86 .89 .87 .86 .85 .86 .81
multiL50 .80 .76 .78 .60 .60 .60 .91 .77 .83 .81 .79 .80 .62 .47 .53 .78 .84 .81 .92 .87 .90 .76 .76 .76 .90 .92 .91 .83 .88 .86 .82
LDA(P) .60 .95 .74 .02 .10 .03 .20 .47 .28 .85 .60 .70 .52 .70 .60 .70 .35 .47 .95 .70 .81 .57 .81 .70 .87 .87 .87 .76 .61 .68 .62
NB(UP) — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — .45
NB(P) .90 .90 .90 .90 .97 .93 1.0 .75 .86 .94 .94 .94 .82 .90 .86 .91 .78 .84 1.0 .90 .95 .83 .83 .83 1.0 .97 .98 .77 .97 .86 .90

5x
5-

fo
ld

multiB32 .73 .77 .75 .65 .26 .37 .80 .82 .81 .77 .75 .76 .54 .40 .46 .79 .82 .81 .86 .81 .83 .68 .73 .70 .83 .89 .86 .79 .83 .81 .78
bin16 .82 .64 .72 .00 .00 .00 .64 .35 .45 .85 .45 .59 .38 .15 .21 .72 .55 .62 .88 .53 .66 .71 .64 .68 .80 .86 .83 .73 .74 .74 .65
multiB32 .71 .76 .74 .33 .05 .09 .79 .42 .55 .60 .55 .58 .40 .41 .41 .67 .81 .73 .88 .70 .78 .73 .69 .71 .83 .83 .83 .65 .79 .72 .70

p-
fo

ld

multiL50 .77 .88 .82 .38 .15 .21 .83 .58 .68 .79 .59 .68 .46 .35 .40 .71 .85 .77 .85 .70 .77 .66 .64 .65 .86 .94 .90 .68 .80 .73 .74
bin16 .80 .57 .67 .50 .20 .29 .83 .38 .53 .86 .47 .61 .55 .35 .43 .80 .63 .70 .88 .52 .65 .58 .52 .55 .78 .85 .81 .69 .60 .64 .65
multiB32 .71 .71 .71 .40 .20 .27 .40 .15 .22 .66 .55 .60 .41 .41 .41 .75 .76 .75 .92 .67 .77 .71 .71 .71 .75 .86 .80 .62 .84 .71 .69

lo
Po

multiL50 .75 .86 .80 .20 .10 .13 .89 .62 .73 .77 .63 .70 .50 .35 .41 .72 .79 .75 .88 .65 .74 .67 .57 .62 .83 .96 .89 .63 .81 .71 .72

The results of NoRBERT exceed the results of the feature
selection approaches of [8] both in the binary and the multiclass
versions. Compared to the models of Kurtanović and Maleej
without feature selection, NoRBERT performs better on three
of four classes US, SE and O (F1-score of 88% for US, 91%
for SE and 83% for O) and achieves similar results on the
fourth (F1-score of 88% for PE). However, [8] seems to have
reported some faulty values as the reported values for precision
and recall do not add up to the reported value for F1-score.
These cases are marked with asterisks. Therefore, we cannot
draw a final conclusion for the comparison. Additionally, the
model of Kurtanović and Maleej without feature selection
might be overfitted as it is based on the same feature set as
the one discussed in Section VI. For RQ1 we can say that
transfer learning based approaches are able to outperform recent
approaches in subclassing non-functional requirements.

Besides the comparison, Table IV shows the results for
different settings of NoRBERT. The best binary classification
results are optained with 16 epochs, oversampling (OS) and
early stopping. Surprisingly, the multiclass approach performs
better than the binary classifiers and achieves the best per-
formance, both overall and for each individual class. In most
scenarios, a greater number of output nodes (for multiclass
classifiers) increases the complexity of the model and should
result in poorer results [34]. In addition, NoRBERT performs
better when trained on all 10 classes (multi all). We attribute
this effect to the possibility that differences are subtle and the
difference between the four most frequent classes are similar
to the differences to requirements that do not belong to one
of the classes. More classes and examples of the classes help
NoRBERT to learn subtle differences and characteristics of each
individual class, thus, help to figure out which requirements
do not belong to one of the four classes.

We use the p-fold and loPo setting again to answer RQ2, the
question of NoRBERT’s performance on unseen projects. For
p-fold, the performance decreases slightly for all classes, with

a drop in F1-score ranging from one percentage point (SE) to
fourteen percentage points (US). The results of the loPo setting
are similar to the p-fold for SE and PE but decrease slightly
on US and O. Overall, the multiclass classifiers outperform
the binary classifiers on this task as well. Similarly, the large
model, trained on all classes performs better than the model
trained on only the four classes. In these settings the best model
achieves a weighted average F1-score of 79% on p-fold and
77% on loPo. The results exceed expectations as NoRBERT
performs similar to the models of Kurtanović and Maleej in a
possibly harder setting (10-fold vs. project-specific fold).

NoRBERT’s performance on this task illustrates that transfer
learning might enable the requirements engineering community
to build classifiers that perform comparably on unseen as
well as known projects with only a small amount of training
data. This might overcome one of the major drawbacks in
requirements classification, the lack of training data.

B. Task3: Multiclass classification of all NFR subclasses

In this section, we investigate the performance of NoRBERT
using multiclass classification on all NFR subclasses using the
original NFR dataset. We filtered out Portability, as it had only
one representative in the dataset. It cannot be in training and
test set at the same time and is thus impossible to predict.
Therefore, we evaluate on one requirement less than in the
original dataset. As a baseline we use binary classifiers for
each of the 10 classes. We again use different settings and
compare our results to Abad et al. [7] in a five times 5-fold.

Table V shows the results. The multiclass classifier perform
reasonably well. Outliers are foremost classes with a small
number of representatives. This strengthens our hypothesis that
training data evenly distributed over the classes is a major
factor for the success of this approach. All multiclass models
outperform the respective binary classifiers regarding average
performance. The best multiclass model even outperforms the
binary classifiers on all but one class. This underpins our as-



TABLE VI: Binary classification of classes in relabeled PROMISE NFR dataset. Bold values represent the highest score for
each metric per class. Asterisks mark F1-scores not matching precision and recall reported by other publications.

F (310) Q (382) OnlyF (230) OnlyQ (302)
Approach Parameters P R F1 P R F1 P R F1 P R F1
K. & M. reimpl. (100 best features) .80 .78 *.80 .91 .90 *.88 .86 .82 *.89 .86 .75 .81
K. & M. reimpl. (500 best features) .82 .80 *.82 .91 .89 *.87 .87 .87 *.91 .90 .85 .87
Dalpiaz et al. (final 17 features) .71 .76 .73 .77 .80 *.92 .77 .83 *.72 .71 .75 *.78
NoRBERT (base, ep.=10) .86 .88 .87 .90 .96 .93 .89 .98 .93 .87 .93 .90.7

5-
sp

lit

NoRBERT (large, ep.=10) .92 .88 .90 .91 .99 .95 .92 .93 .92 .82 .87 .85
K. & M. reimpl. (100 best features) .82 .74 .77 .82 .91 .86 .82 .67 .73 .79 .81 .80
K. & M. reimpl. (500 best features) .76 .68 .71 .79 .87 .82 .77 .63 .68 .74 .80 .77
NoRBERT (base, ep.=10) .87 .84 .86 .92 .97 .94 .92 .89 .91 .85 .85 .85
NoRBERT (base, ep.=10, ES) .89 .86 .88 .91 .96 .94 .91 .86 .88 .87 .85 .8610

-f
ol

d

NoRBERT (large, ep.=10) .86 .86 .86 .93 .95 .94 .90 .90 .90 .83 .75 .79
K. & M. reimpl. (100 best features) .81 .70 .74 .75 .92 .82 .82 .52 .62 .75 .80 .77
K. & M. reimpl. (500 best features) .75 .60 .66 .71 .88 .78 .75 .48 .57 .68 .79 .73
NoRBERT (base, ep.=10) .86 .76 .81 .81 .95 .87 .85 .60 .70 .79 .86 .82

p-
fo

ld

NoRBERT (large, ep.=10) .86 .79 .82 .87 .94 .90 .89 .77 .82 .76 .89 .82
NoRBERT (large, ep.=10, ES) .87 .77 .82 .84 .95 .89 .86 .72 .78 .78 .88 .83
NoRBERT (base, ep.=10) .87 .76 .81 .79 .94 .86 .88 .63 .74 .79 .86 .82
NoRBERT (base, ep.=10, ES) .87 .73 .79 .83 .94 .88 .88 .72 .79 .80 .85 .83

lo
Po

NoRBERT (large, ep.=10) .84 .75 .80 .86 .93 .89 .87 .75 .81 .79 .86 .82

sumption that the approach has its strength on evenly distributed
data (for training) and difficulties on highly imbalanced datasets.
The models based on BERT-large (multiL32 and multiL50)
perform best on this task. We attribute this to the larger
parameter space and its ability to better cope with linguistic
subtleties needed to distinguish the classes. Interestingly,
multiL50 is also the same model performing best on Task2.
NoRBERT outperforms the results of the convolutional neural
network-based approach by Navarro-Almanza et al. [20] by at
least 5 percentage points (F1-score of 82% vs. 77%) indicating
that transfer learning outperforms word embedding-based deep
learning on the task. To compare NoRBERT to Abad et
al. [7], we perform a similar five times 5-fold cross validation.
NoRBERT outperforms all approaches except the naı̈ve Bayes
classifier requiring (manually) preprocessed data. Our approach
does not need any manual preprocessing and thus can be applied
to new projects with ease.

The project-specific folding strategies reveal problems on
unseen projects, as the results plummet for some classes, i.e.,
Fault Tolerance (FT) and Legal (L). This is due to the fact
that the classes are not evenly distributed over the projects.
The result is not surprising as FT and L are the classes with
the least overall representation. Apart from these cases, the
results for the p-fold (weighted average F1-score of 74%) are
comparable to the results achieved by the binary classifiers
in the 10-fold setting and are only eight percentage points
lower than the best performing model. This is promising as
it depicts that our approach generalizes well even in settings
with only few examples per class in training. In the loPo
setting NoRBERT performs slightly worse than in the p-fold.
A possible explanation is that in p-fold some projects are tested
more than once and these projects might be easier to predict.
In all settings the multiclass classifier and the large models
outperform the binary classifier.

The results on this task illustrate that NoRBERT is able

to identify underrepresented NFR subclasses even in set-ups
with only small amounts of training data and applied to
unseen projects. It outperforms all approaches that do not
preprocess the data. Thus, NoRBERT poses a practicable
alternative to state-of-the-art approaches that require manual
data preprocessing.

VIII. TASK4: FUNCTIONAL AND QUALITY ASPECTS

The distinction between F and NFR is not always clear
and some requirements include aspects of both. Therefore, we
measure NoRBERT on the relabeled PROMISE NFR dataset
provided by Dalpiaz et al. [9]. They also reimplemented the
approach of Kurtanović and Maleej [8] and measured it on
the relabeled corpus. This allows us to compare NoRBERT to
both approaches. Additionally, Dalpiaz et al. provide results
on a project-specific fold that enables comparability for RQ2.
Table VI shows the results of binary classifiers trained on
the relabeled set. We use the same set-ups as Dalpiaz et
al., i.e., .75-split, 10-fold, p-fold, and random seed (42) to
compare the approaches. Additionally, we evaluate the loPo
setting. NoRBERT outperforms the other approaches in all
these settings. Thus, the transfer learning approach clearly
increases the performance for classifying requirements (RQ1).

On the .75-split, base and large model versions of NoRBERT
perform better on different classes. For classes containing only
functional or only quality aspects, NoRBERT performs better
with the base model. For the other two classes, the large
model shows better results. On 10-fold cross-validation our
best model outperforms the best model of Dalpiaz et al. by ten
percentage points on average. Especially on requirements that
only include functional aspects NoRBERT excels (F1-score of
91% in contrast to 73%).

The results on p-fold and loPo provide insights on NoR-
BERT’s ability to be transferred to unseen projects. The results
are similar or slightly better than the results on the 10-fold
setting. In the p-fold setting, in which we can compare our



TABLE VII: Overview of the functional requirements dataset.

Project
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total
Function 14 13 33 19 25 29 10 31 11 9 3 7 2 1 207
Data 6 3 13 6 7 2 5 3 2 5 0 1 2 2 57
Behavior 2 9 9 13 6 6 5 14 10 33 3 1 1 1 113
Requirements 19 22 44 26 37 31 15 38 17 43 3 8 3 3 309

approach to the (reimplemented) approach of Kurtanović and
Maleej, NoRBERT handles unseen projects better than the
competitor. On average NoRBERT exceeds the reported F1-
scores by ten percentage points. At a paired t-test on the
weighted F1-scores of the four classes the improvement is
statistically significant with a p-value of 0.0136. This outcome
is interesting, as this is the only task in which we are able
to compare NoRBERT’s performance on unseen projects
directly to a competitor. The performance of the reimplemented
approach of Kurtanović and Maleej decreases by 7% on average,
when applied to unseen projects (p-fold). However, NoRBERT’s
performance on p-fold only decreases by 6%. This indicates
that NoRBERT generalizes well and can be used in practice
without retraining, but does not generalize significantly better
than the feature selection-based approach. It still decreases less
and outperforms the approach of Kurtanović and Maleej by
ten percentage points.

In our opinion the effect of applying classifiers on unseen
projects should be measured more often when evaluating re-
quirements classification approaches. In practice, one seldomly
has sufficient labeled data from the same project and wording
as well as sentence structure highly depend on the project.
Furthermore, approaches that generalize better can already be
applied to new projects at early stages.

IX. CLASSIFYING FUNCTIONAL REQUIREMENTS

As NoRBERT has proven useful in classifying requirements
in general and non-functional requirements in particular, we
want to investigate its performance on classifying functional
requirements as well. Previous models categorize functional
requirements according to the part of the product they belong
to [35], [36], such as user interface or business logic. Other
models take a concern-based approach [2], including functional
and behavioral concerns as well as data. If we want to develop
systems that interpret functional requirements automatically,
e.g., automated traceability or modeling systems, the subclasses
of functional requirements are relevant for further processing.
They define how the functional requirements might be im-
plemented. Therefore, we adapt the concern-based model by
Glinz [2] that enables us to interpret whether a functional
requirement describes functions of the system, behavior the
system displays or mere data and the data structures the system
contains. More precisely, we use the following subclasses:

Function: A function that a system shall perform.

Example: The system shall allow a real estate agent to query
MLS information.

TABLE VIII: Binary classification of functional requirement
subclasses with NoRBERT on new dataset, with 10-fold and
loPo. Bold values represent the highest score for each metric per
class. b and l stand for the base and large model, respectively.

Function (207) Data (57) Behavior (113)
Parameter P R F1 P R F1 P R F1
10-fold
b, ep.=16 .86 .95 .90 .81 .51 .62 .83 .62 .71
b, ep.=16, OS .87 .96 .91 .63 .51 .56 .88 .70 .78
b, ep.=16, US .87 .82 .84 .28 .68 .40 .82 .78 .80
l, ep.=16 .85 .94 .89 .66 .44 .53 .91 .68 .78
l, ep.=16, OS .86 .95 .90 .74 .51 .60 .86 .73 .79
l, ep.=32, OS .86 .86 .86 .76 .46 .57 .82 .72 .76
loPo
b, ep.=16 .84 .89 .87 .74 .25 .37 .68 .55 .61
b, ep.=16, OS .85 .86 .86 .66 .37 .47 .73 .66 .69
b, ep.=32, OS .86 .85 .86 .76 .46 .57 .73 .68 .71
l, ep.=16 .79 .85 .82 .52 .25 .33 .79 .58 .67
l, ep.=16, OS .86 .85 .85 .61 .30 .40 .77 .59 .67
l, ep.=32, OS .85 .87 .86 .77 .30 .43 .71 .67 .69

Data: A data item or data structure that shall be part of a
system’s state.
Example: The audit report shall include the total number of
recycled parts used in the estimate.
Behavior: Behavior the system displays or reactions that are
triggered by one or more stimuli.
Example: If the shot was marked as a hit the product shall
allow the offensive player to define a shot.

As requirements may include multiple concerns, the classes
might be overlapping, as it is the case in “Only registered
customers can purchase streaming movies”. It contains both,
function and behavior.

To answer RQ3, whether transfer learning approaches are
able to identify the concerns in functional requirements, we
manually labeled all requirements tagged as having functional
aspects (F) in the relabeled version of the PROMISE NFR
dataset provided by Dalpiaz et al. [9]. The 310 requirements
were tagged by two of the authors independently. We calculate
Krippendorff’s α (Kα) [37] to measure the inter-annotator
agreement. For the classes Function (Kα 0.803) and Data
(Kα 0.814) the Kα values exceed the commonly accepted
threshold of 0.8 [38]. On Behavior the Kα is 0.752 which still
is a reasonable agreement that exceeds the lower bound of
0.66, as reported by Krippendorff [38]. After the annotators
finished labeling, they solved their disagreements in discussions
to provide a uniform gold standard. Table VII shows the
distribution of the classes over the projects. Note that the
number of requirements is lower than the number of class
representatives per project as each requirement can contain
multiple concerns. The total number of requirements is 309
instead of 310 because we removed one duplicate requirement
from Project 3. Projects 11 to 14 contain a small number
of requirements as they mainly consist of non-functional
requirements. We provide the dataset on Zenodo [13].

A. Evaluating NoRBERT on the functional requirements dataset

With the labeled dataset, we can evaluate the performance
of NoRBERT on classifying functional requirements. We train



binary classification models with varying parameters. We do
not train multiclass variants, because the requirements in the
dataset might belong to more than one class. We would need
a proper multiclass multilabel approach that is out of scope
for this paper. Once again, we evaluated the binary classifier
in different settings, i.e., 10-fold cross-validation and loPo.
However, we do not evaluate in a p-fold fashion as it is not
reasonably applicable. Projects 11 to 15 are underrepresented
in the dataset, which would skew the results on p-fold.

The results shown in Table VIII are promising for the
classes Function and Behavior and reasonable on the Data class.
NoRBERT achieves an F1-score of up to 91% for Function
and 80% for Behavior in the 10-fold cross-validation. However,
NoRBERT achieves only low recall for the Data class. This
can be attributed to the lack of training data for this class and
the imbalanced dataset. Interestingly, undersampling improves
the result on Behavior but decreases the results on the other
two classes. Oversampling improves Behavior and Data, but
the best performance on Data (F1-score of 62%) was achieved
with no sampling at all.

On unseen projects in the loPo setting, NoRBERT again
performs slightly worse than in the 10-fold setting. However,
the decrease on Function and Data stays within five percentage
points when comparing the F1-scores of the best performing
models per class respectively. Only on the Behavior class the
performance decreases to an F1-score of 71%. As in the 10-fold
setting, on loPo the base models perform best on all classes.

To answer RQ3, we can conclude that for this amount of data
NoRBERT does perform reasonably well but could be improved
with more training data. Nevertheless, the performance on
Function and Behavior might already be able to improve
approaches such as trace link recovery or automated modelling.

X. THREATS TO VALIDITY

In this section, we discuss potential threats to validity of
our research and experimental design.

Construct Validity: To mitigate potential risks to con-
struct validity, we applied widely used experimental designs
and metrics. We use common practice in ML to fine-tune
hyperparameters by experimenting with different parameter
configurations. To mitigate the risk of unsystematic trial and
error, we systematically increased the epoch number based on
the assumption that an optimum between training performance
and overfitting exists. For reproducibility, we used a fixed seed
for the random number generators. We used the same seed
(42) as Dalpiaz et al. for the experiment with the relabeled
PROMISE NFR dataset [9]. For all other experiments, we used
the randomly selected number 904727489 as seed.

Internal Validity: Considering the creation of the functional
concerns dataset, a potential threat might be the fact that the
dataset was created with the approach in mind. Therefore, there
might be a risk of bias. We publish our data to mitigate this
risk, so everyone can reproduce our classifications and findings.

External Validity: To show the generalizability of our
approach, we apply different evaluation techniques. The tech-
niques loPo and p-fold indicate for generalizability. However,

the projects in the dataset might not be general representatives
for all kind of projects. Moreover, the datasets that we used
have some further issues in regard to external validity. Some
requirements are incorrectly labeled and the selection of
the requirements for the dataset is biased. This results in
imbalanced datasets that miss some kinds of requirements, e.g.,
safety. Additionally, the requirements were written by students
and thus might not illustrate industry standards. Therefore,
conclusions on the generalizability based on the dataset are
not warranted. We used these datasets as they are well-known
and accepted in the community and let us directly compare
our results to other approaches. We provide our code and data
for further replications to mitigate this threat.

Conclusion Validity: A threat to the statistical conclusion
validity might arise from the use of imbalanced datasets. The
used dataset varies widely in regard to the support for the
different classes. This problem is generally known in the RE
community. Unfortunately, there is not enough data to properly
apply mitigation techniques such as undersampling.

XI. CONCLUSION

In this paper, we presented NoRBERT, an approach for
requirements classification that uses the transfer learning capa-
bilities of BERT. We particularly investigated its performance
on unseen projects, as we believe such investigation is widely
undervalued in research but most important for application
in practice. Our evaluation included common requirements
classification tasks such as (binary) classification of functional
and non-functional requirements (Task1), binary and multiclass
classification of the four most frequent NFR classes (Task2),
multiclass classification of all NFR classes (Task3), and binary
classification of functional and quality aspects (Task4). We
compared our results to state-of-the-art approaches and can
conclude that NoRBERT outperforms all approaches that do not
require manual preprocessing on Task2, Task3 and Task4 and
performs similarly on Task1. Additionally, we measured the
ability of our approach to perform in project-specific folding
strategies and thus when applying NoRBERT to unseen projects.
On Task4 NoRBERT exceeds state-of-the-art results by ten
percentage points on average. This gives us the confidence to
state that transfer learning approaches such as NoRBERT pose
new capabilities to apply RE research in practice.

Additionally, we presented a novel requirements classifica-
tion task that investigates the concerns of functional require-
ments. We see this task as an important step towards automatic
interpretation of the purposes of functional requirements. We
labeled the functional part of the NFR dataset according to
the classes Function, Data, and Behavior. NoRBERT achieves
F1-scores of up to 92% at classifying these classes.

Overall, NoRBERT is a novel approach to classify require-
ments that outperforms recent approaches on most tasks. Espe-
cially on more realistic set-ups (unseen projects) it performs
better (statistically significant at the 0.05 level). We see our
results as an indicator that transfer learning can empower RE
research by providing a way to train models with less training
data and reasonable generalizability at the same time.



As improvements to NoRBERT, we plan to analyze the
performance of further language models such as XLNet [39] or
XLM [40] and combine NoRBERT with models that perform
better on certain tasks. Furthermore, we will investigate how a
multiclass multilabel classification approach performs on the
classification of functional requirements.
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