
User Driven Functionality Deletion for Mobile Apps 
 

Maleknaz Nayebi 
EXINES Lab, York University 

Toronto, Canada 

Konstantin Kuznetsov 
CISPA 

Saarbrucken, Germany 

Andreas Zeller 
CISPA 

Saarbrucken, Germany 

Guenther Ruhe 
SEDS Lab, University of Calgary 

Calgary, Canada 
mnayebi@yorku.ca kuznetsov@st.cs.uni-saarland.de zeller@st.cs.uni-saarland.de ruhe@ucalgary.ca 

 
 
 

Abstract—Evolving software with an increasing number of 
features is harder to understand and thus harder to use. 
Software release planning has been concerned with planning 
these additions. Moreover, software of increasing size takes more 
effort to be maintained. In the domain of mobile apps, too much 
functionality can easily impact usability, maintainability, and 
resource consumption. Hence, it is important to understand the 
extent to which the law of continuous growth applies to mobile 
apps. Previous work showed that the deletion of functionality 
is common and sometimes driven by user reviews. However, it 
is not known if these deletions are visible or important to the 
app users. In this study, we performed a survey study with 297 
mobile app users to understand the significance of functionality 
deletion for them. Our results showed that for the majority 
of users, the deletion of features corresponds with negative 
sentiments and change in usage and even churn. Motivated by 
these preliminary results, we propose RADIATION to input user 
reviews and recommend if any functionality should be deleted 
from an app’s User Interface (UI). We evaluate RADIATION using 
historical data and surveying developers’ opinions. From the 
analysis of 190,062 reviews from 115 randomly selected apps, 
we show that RADIATION can recommend functionality deletion 
with an average F-Score of 74% and if sufficiently many negative 
user reviews suggest so. 

Index Terms—Mobile apps, Survey, App store mining, Soft- 
ware Release planning 

 
I. INTRODUCTION 

It is often assumed that the evolution of a product implies 
constant addition to it which results in a larger and more 
complex codebase. This addition has been discussed in terms 
of evolving software code, enhanced quality, added features 
and functionalities, etc. over different releases of a product. 
The tendency to add more and more features to an evolving 
software is a form of excessive software development [39] and 
does not automatically make the software better. In particular, 
release planning as an iterative and evolutionary process has 
been always concerned with further adding features into the 
next releases [11]. Lehman’s [17] sixth law of software evolu- 
tion emphasizes growth and states that “the functional content 
of a program must be continually increased to maintain user 
satisfaction over its lifetime.” However, viewing through the 
lens of user-computer interaction, when a program is mainly 
invoked by users, the increasing set of features is in sharp 
conflict with usability [42]. Mobile apps in particular can 
seriously suffer from this type of problem [43]. 

On mobile devices, any functionality comes at a cost: First, 
the small screen severely limits the number of features that 
can be offered by an application in each UI [10]. Second, 

computational demands and memory usage may impact battery 
life. Hence, developers should have an interest in remov- 
ing functionality that negatively impacts the user experience. 
While this removal can be the result of different development 
activities (for example, removing the code, commenting out 
the code, or disabling respective UI elements), from the 
user’s perspective, a functionality is removed when it is no 
longer accessible through the user interface [25]. There is an 
established body of knowledge on the release engineering of 
mobile apps. Several techniques [20] have been proposed for 
the release planning of mobile apps. Generally, these existing 
methods are focused on feedback development planning, based 
on user reviews. They first categorize reviews into general 
categories of uninformative comments, feature requests, bug 
reports, or praise. Then, they aim to satisfy that user feedback 
in the upcoming release. Palomba et al. [29], [30] proved 
empirically that mobile app developers are changing their code 
based on the crowdsourced app reviews. Among these studies, 
multiple provided a variety of taxonomies for mobile app 
reviews [6], [32]. When analyzing user reviews, a few studies 
reported a reason for negative reviews [15], [19]. The study of 
Nayebi et al. [25] showed that 11.23% of commits and 44.79% 
of the developers indicated better user experience as the reason 
for deletion. The author’s analysis of commit messages showed 
that 14.63% of deletions are driven by negative user feedback. 
Yet, users’ perceptions of feature removal have never been 
evaluated empirically or ever surveyed with the users. 

Our research focuses on studying feature deletions in the 
evolution and release planning of mobile applications and their 
visibility to the end users. To understand the significance of 
this issue to users, we conducted a survey of 297 individuals. 
Since functionality is typically accessed through graphical 
user interface (GUI) elements [2], we specifically investigated 
deletions that are visible to end users. By surveying 297 
individuals, we examined the extent to which users notice 
functionality deletions over different releases, their perception 
and emotional response to such changes, and any resulting 
alterations to their usage patterns. Driven by the results of this 
survey, we introduce RADIATION1, a system that analyses user 
reviews and recommends UI elements and features that can be 
considered for deletion. We evaluated RADIATION internally 
(via cross-validation) and externally (with 37 developers and 
42 users). Results show RADIATION recommends feature 

 
1 RADIATION = Review bAsed DeletIon recommendATION 

 
 

This is authors pre-print of the accepted paper to RE2023 - research track 

mailto:mnayebi@yorku.ca
mailto:kuznetsov@st.cs.uni-saarland.de
mailto:zeller@st.cs.uni-saarland.de
mailto:ruhe@ucalgary.ca


0 

0 

0 Never 
Rarely 

Sometimes 
Often 7.0 

Always 0.7% 

31.3% 
34.7% 

26.3% 

 
 
 

(a) Number of apps installed 
 
 
 
 
 

(b) Number of apps used daily 

 
 
 
 
 
 
 

(c) Age group of 
survey partici- 
pants 

80.1% 

 
Yes No 

 
(d) ever uninstalled 
an app due to fea- 
ture deletion 

 
 
 
 
 

% 
 
 
 

(e) Frequency of 
leaving a review in 
app stores 

Fig. 1. Demographics of 297 participants in the survey. Regional census categories are used for age information (the region is masked due to double-blind). 

 
deletions with high precision (0.83 in retrospect and 0.95 
when compared to developers). End-user study confirmed 
recommendations’ validity. 

II. IMPORTANCE OF FEATURE DELETIONS TO USERS 

To the best of our knowledge, the significance of feature 
deletion for end users is unexplored. Nayebi et al. [26] 
examined the problem from the developer’s perspective and 
developed a taxonomy of deletion commits in mobile apps 
using source code and commit messages. However, this tax- 
onomy covers a broad range of artifacts and reasons, and it is 
unclear whether and to what extent these deletions are visible 
or important to end users; 

”How is the deletion of software functionality perceived by 
mobile app end users?” 

To answer this question and understand the relevance of app 
feature deletion, we surveyed real app users. We followed the 
established guidelines for performing the survey research [34]. 
Our survey consists of four main parts: 

• Gather the demographics, 
• Assess how aware mobile app users are of missing 

features or functionalities, 
• Evaluate if the deletion of features impacts users’ satis- 

faction, and 
• Understand the extent and impact of functionality dele- 

tion or limitation on app usage. 
The survey included 12 questions overall, and they were 

all close-ended questions (see Table I). Five questions were 
designed to capture demographics. The rest of the questions 
sought participants’ opinions using a five-point Likert scale. 
The survey was focused on individuals’ experiences and 
decisions. The survey was anonymous, and we did not gather 
any identifying information from the participants. We used 
Qualtrics as the survey instrument. 

For acquiring participants, we used convenience sam- 
pling [16]. We posted the survey through our personal con- 
nections on social media. The link to the survey has been 
clicked 638 times. 388 individuals started the survey, whereas 
297 individuals completed the survey and responded to all the 
survey questions (46.5% of all the people we could reach). 
Among the 297 participants, 44.1% were aged between 28-40 
years old. 27.3% were 18-28 years, 15.5% were 40-64 years, 

and 13.1% were above 64 years old. The majority of the par- 
ticipants (51.9%) have personally installed 5-10 apps on their 
devices2. 26.9% (80 participants) have installed more than 10 
apps, while 21.2% of the participants have installed less than 
five apps personally. Also, 53.9% of all the participants (160 
individuals) used more than 10 apps on a daily basis. Only 
1.3% of participants (only four individuals) used less than five 
apps daily, while 44.8% used 5-10 apps daily. Out of the 297 
participants, 238 individuals (80.1%) have uninstalled some 
apps but only 39% sometimes or more frequently have left any 
reviews for a mobile app. The demographics are presented in 
Figure 1. Our questions followed three main objectives: 

First, the extent to which a user realizes and notices the change 
and deletion in mobile app features (Q6 and Q7 in Table I), 
The majority of the users (55.2%) sometimes noticed changes 
in the app features that they were using. While 2.7% of 
them (8 out of 297 participants) and 20.5% reported they 
have never or rarely noticed a change. When it comes to the 
deletion of features, 34.4% never or rarely noticed a deletion. 
2Mobile devices come with a number of pre-installed apps. 

 
 

TABLE I 
QUESTIONS USED IN SURVEYING MOBILE APP USERS. THEY ARE 

SHORTENED FOR PRESENTATION PURPOSES. 
 

ID Question Response type 
User Demographics 
Q1 How many apps have you personally in- 

stalled on your phone, currently? <5, 5–10, >10 
Q2 How many apps do you actively use daily? <5, 5–10, >10 
Q3 What is your age group? Four life groups 
Q4 How often do you leave an app review? Five-point scale 
Q5 Have you ever uninstalled an app? Yes / No 

User Realization 

Q6 
How often have you noticed that function- 
ality you have been using is changed (is 
different from before) in an app? 

Five-point scale 

Q7 How often have you noticed a functionality 
you have used is no longer available? Five-point scale 

User Perception 
Q8 How did you feel about the lack of access 

to the app functionality? Five-point scale 

Q9 To what extent has this now missing func- 
tionality impacted your app usage? Five-point scale 

User Decision & Action 

 
 
 

19.9% 

Less than 5 1.3% 
5-10 apps 

More than 10 51.9% 

26.9% 

Less than 5 
5-10 apps 

More than 10 26.9% 
51.9% 

21.2% 

15.5% 27.3% 

13.1% 

44.1% 
3 

8 

2 

. 

>
64

 
ye

ar
s 

Q10 How often did you leave a review for an app 
following the deletion of a feature? Five-point scale 

Q11 
How often did you look for an alternative 
app to install following the deletion of a 
feature? 

Five-point scale 

Q12 How often have you uninstalled an app fol- 
lowing the deletion of a feature? Five-point scale 

 



0 % 20 % 40 % 60 % 80 % 100 
% 

 
         

0 % 20 % 40 % 60 % 80 % 100 
% 

 
         

0 % 20 % 40 % 60 % 80 % 100 
% 

 
         

This compares to the 65.7% who reported sometimes or more 
frequently noticing a feature deletion in an app. 

Second, the perception and sentiment of users toward a feature 
deletion in an app and its impact on their app usage (Q8 and 
Q9 in Table I), 51.9% of participants perceived somewhat of 
negative feeling associated with feature deletions. 41.1% of 
the participants stated negative and 7.75% stated very nega- 
tive sentiments. This is while 13.5% was positive, and 1.0% 
stated very positive feelings about feature deletions. 33.7% 
of the participants were neutral about the feature deletion. 
Almost the same proportion of users (48.8%) reported almost 

(Q6) Noticing a functionality change 
 
 
 
 
 
 

0 % 20 % 40 % 60 % 80 % 100 % 
 

Never  Rarely  Sometimes  Often  Always 
 

(Q8) Users’ feeling about feature deletion 
44.5% 

no change in their app usage following a feature deletion. 
Yet, 51.2% reported somewhat or extensive change in their 
app usage following a feature deletion. 

Third, the extent that deletions impact users’ decisions and 

 
7.7% 

 

 
 
 

Very 
negative 

33.7% 
 

 
Neutral 

 
13.5% 

 

 

 
1.0% 

 

 
 
Very 
positive 

provoke a reaction (Q10 - Q12 in Table I), Only 51 out 
of 297 participants (17.17%) have often or sometimes left a 
review for a mobile app following the deletion of a feature 
(Q10). This compares to the 39.1% of the participants who 
sometimes or often left a review for an app (see Figure 1-(e)). 
As a result of losing access to app functionality, 63.7% of 
the participants sometimes or more frequently looked to use 
alternative apps. 36.4% of the participants never or rarely 
looked up alternatives when their access to a certain feature 
is omitted (Q11). 31% of the participants reported that they 
at least once uninstalled an app because of a feature deletion. 
41.4% never or rarely deleted an app due to this reason while 
27.6% sometimes did so (Q12). 
Figure 2 shows the summary of our survey results. 

(Q9) Impact of functionality deletion on usage 
 

 
0 % 20 % 40 % 60 % 80 % 100 % 

 
Not at all  Not much  Neutral  Somewhat  Very much 

 
 

(Q10) Writing a review following a deletion 

 
 
 
 
 
 

Hence, we consider the issue of functionality deletion 
visible to the end user. Further, Nayebi et al. [26] stated 
that while the planning for feature deletion is less frequent 
compared to the feature additions and bug fixes, still, 77.3% 
of developers plan for these deletions. The desire to retain 
users and avoid the distribution of negative sentiments about 
an app motivates us to evaluate if and to what extent these 
deletions are predictable. 

III. RESEARCH QUESTIONS AND EMPIRICAL DESIGN 

Functionality deletions are important to users, and elimi- 
nating access to particular features can cause customer churn, 
negative reviews, and lead to app uninstallations. Hence, these 
deletions should be planned with care and precision by a 
software product team. To assist the production team with such 
decisions, we introduce RADIATION to recommend deletions 
based on user reviews. We further evaluate RADIATION’s per- 
formance retrospectively and by performing cross-validation. 
To externally validate RADIATION, we survey 37 software 

0 % 20 % 40 % 60 % 80 % 100 % 
 

Never  Rarely  Sometimes  Often  Always 
 

Fig. 2. Results of the survey with app users (Q6 to Q12). 

developers and 42 users to understand their perception of the 
value of deletions recommended by RADIATION. We evaluated 
RADIATION in three ways by answering the following research 
questions: 

RQ1: To what extent does RADIATION accurately predict 
functionality deletions in comparison to actual deletions, 
retrospectively? 
RADIATION predicts the elimination of the functionality 
which is visible to the end user. It connects reviews to the 
UI elements that represent the functionality as seen by the 
end user. For the internal validation, we randomly sampled 
115 apps and cross-validated the results of RADIATION 
with the actual changes that happened retrospectively. We 
gathered deletion commits and manually checked the code 
base following former studies [26] and compared actual 
deletions with the RADIATION suggestions. 

RQ2: To what extent do app developers consider analogical 
reasoning useful for predicting functionality deletions? 
We performed a survey with 37 developers to evaluate if 
the predictions of RADIATION would make sense to the 

 
u  17.8% 19.5% 31.6% 30.1% 

c 

(Q7) Noticing a functionality deletion 

o 29.3% 35.7% 28.3% 

17.5% 55.2% 20.5% 

 
r 

 
 
(Q11) Look for other apps following a deletion 
 

r 
 
 
(Q12) Uninstalling the app following a deletion 
 

r 30.3% 27.6% 27.6% 13.8% 

26.3% 36.0% 31.6% 

11.8% 29.6% 53.2% 

Deletion of app functionality provokes negative feeling for 
the majority of the participants (51.9% of the participants) 
and somewhat change their usage behavior (51.2% of the 
participants). Functionality deletion caused 31.0% of the 
users often to migrate to another app. 27.6% of the users 
uninstalled the app following the deletion of a feature. 

(a
) 

U
SE

R
 

R
E

A
L

IZ
A

T
IO

N
 

(c
) 

U
SE

R
 D

E
C

IS
IO

N
 &

 A
C

T
IO

N
 

(b
) 

U
SE

R
 P

E
R

C
E

P
T

IO
N

 

2.
7%

 
6.

1%
 

4.
7%

 

5.
4%

 
4.

0%
 



 

 
Fig. 3. The process of RADIATION to support decisions on user-driven UI 
functionality deletions. 

 
professionals. These developers are active in open-source 
mobile app development but are not the actual developers 
of the app. We provide each developer with the reviews, the 
link to the code repository, the app, and the recommendations 
of RADIATION and ask if they consider these suggestions 
reasonable or not. 

RQ3: What was users’ experience with the functionalities that 
Radiation offers for deletion? 
We conducted a survey with 42 users to assess their sentiment 
towards the functionalities recommended for deletion by 
RADIATION. After familiarizing themselves with the app, 
we asked each participant to evaluate 30 UI functionalities 
based on their level of liking and the importance of deletion. 
We performed a controlled experiment by presenting the 
question for both the features recommended for deletion 
by RADIATION and those not recommended for deletion. 
Finally, we analyzed the relationship between user sentiment 
and the recommendations provided by the tool. 
RADIATION can recommend feature deletions sufficiently 

well. Our evaluation of RADIATION on 115 apps across 3,364 
releases and for 190,062 reviews shows a recall of 0.48 
and precision of 0.83 using 10-fold cross-validation (RQ1). 
Our evaluation of 25 apps involving 36,039 reviews with 37 
developers shows an F-score of 0.90 for RADIATION (RQ2). 
Also, our survey shows users’ negative experience with the 
features that RADIATION recommends for deletion (RQ3). 

IV. RADIATION FOR PREDICTING FUNCTIONALITY 
DELETIONS 

Multiple factors may trigger functionality deletion. We 
designed RADIATION to recommend deleting functionalities 
suggested by user reviews. However, since apps may receive 
a large number of reviews, manually tracking user feedback 
may not be feasible. The current literature on apps’ user needs 
and planning is primarily focused on adding features or fixing 
bugs in each release, based on user requests [12], [32], [44]. 
RADIATION differs from this approach by targeting deletions 
inputting user reviews. RADIATION is a recommendation tool 
that helps developers identify deletion candidates. While delet- 
ing features is sometimes necessary [26], developers must be 
cautious about the features they remove, as it can result in 
a negative user experience and potentially losing customers, 

as shown by our survey study (see Section II). RADIATION 
is the first step to assist developers with this task. Figure 3 
illustrates the six steps of RADIATION. In what follows, we 
explain each step of our proposed method and provide a walk 
through examples referring to Figure 4. 

 
Step  1 . Reviews pre-processing. We eliminated emojis, spe- 

cial characters, and stop words and expanded contractions 
(“can’t” was expanded to “can not”). Then, we applied 
lemmatization to map the words into their dictionary format 
(“deciding” and “decided” turned into “decide”). We used 
Python library NLTK for this step. We customized the list 
of stop words as suggested by Maalej and Nabil [18] and 
Palomba et al. [29]. 

Step  2 . Separating informative and non-informative re- 
views. Not all reviews were useful. We followed the defini- 
tion of what is informative and non-informative as described 
by Maalej and Nabil [18]. In short, informative reviews 
communicate content that can be used in the process of the 
app evolution, while an advertisement, a short statement of 
praise (i.e., “The app is nice”), or a statement of an emotion 
(i.e, “I hate this app!”) is not informative for enhancing an 
app in future releases. To identify informative reviews, we 
manually classified a fraction of reviews (see Section V) and 
used them to train a Naive Bayes classifier (following [18]). 
This setup resulted in the F1 score (the harmonic mean of 
precision and recall [35]) of 0.82, calculated as the average 
of ten 10-fold cross-validation runs. 

Step  3 . Finding UI elements for each release. For each 
release we extracted UI elements used in an application. 
We leveraged the UI elements to connect the reviews with 
the apps’ functionality following the method of Palomba et 
al. [29]. They showed that users write reviews related to the 
app components visible to them, which are the elements of 
the user interface. To mine UI elements, we implemented 
the lightweight analysis of Android layout files. These files 
include most of the GUI elements, also known as view 
widgets, and control as it is visible to the app user [1], 
[21]. Additionally, we parsed the Strings.xml file which 
contains text strings for an app. By mining these files, for 
each identified UI element we got its description consisting 
of an element type, a variable name used in the code, a label 
associated with the element, and an icon name if applicable 
(e.g., <Button, btn mic, ‘Start Listening’, >). 

Step  4 . Connecting reviews to the UI elements. We used 
the description of elements connecting reviews to app func- 
tionalities. To connect a review to a UI element in a release 
Vi, we calculated the cosine similarity between the text of 
a UI description and a review’s content. We established 
connection when the similarity score exceeded a threshold 
of 0.65. Palomba et al. [29] used the threshold of 0.6 for 
this purpose, however when analyzed manually, we slightly 
increased the threshold to achieve a more accurate matching. 

Step  5 . Clustering reviews based on their topic. Several 
app reviews are pointing to the same functionality, while 
they may contain different opinions about that functionality. 

App 
reviews 

per release 
Pre-process 

reviews 
 1  

Naive Bayes 
classification 

of reviews 
 2  

Informative 
reviews 

per release 

App 
layout files 
per release 

Mine UI 
elements 

per release 
 3  

Connect 
reviews to 

UI elements 

Reviews 
related to each 

UI element 
 4  

 
Use Random Forest to Cluster topics 
classify a UI function-  about each 
ality as deletion or not  6    UI element  5  



We used Hierarchical Dirichlet Process (HDP) [41] with its 
default setup to group reviews related to each functionality 
(UI element) as suggested by Palomba et al. [31]. HDP is a 
topic mining technique which automatically infers number of 
topics. Using HDP as described in [31], we performed topic 
modeling and formed clusters with reviews about a particular 
topic. One review might also discuss multiple UI elements 
hence the clusters are non exclusive. We manually analysed 
the results for 1,500 reviews across eight apps: The topics 
were intuitive and understandable. 

Step  6 . Identifying candidate functionality deletion. Fol- 
lowing the existing literature on prioritizing app reviews 
(Table II) and our survey (Section II) we selected attributes 
for identifying and recommending possible functionality 
deletion. To determine candidates, we used Random Forest, 
as it was suggested by related studies [44] and showed good 
time performance. A list of attributes for training is presented 
in Table II. The “polarity” and “objectivity” of the reviews 
in a cluster were extracted by sentiment analysis performed 
by Pattern [23], [24], [37], [40] technique. We evaluated 
the classifier based on 190,062 reviews across 115 randomly 
chosen apps. 
Figure 4 illustrates the execution of RADIATION on the 

WIKIPEDIA Android app. 
 

V. EVALUATION AND CASE STUDY DESIGN 

As of June 2022, F-Droid (the open-source repository for 
Android mobile apps) included 3,810 mobile apps. Among 
them, we identified 1,704 apps with a valid link to their 
GitHub repositories. These apps involve an overall of 14,493 
releases. As deletions are identified by comparing sequential 
releases, we excluded 554 apps which had only one or 
two releases from our analysis to evaluate RADIATION over 
multiple releases. For the remaining apps, we gathered the 
reviews from the Google Play store while accessing their 
code and development artifacts through GitHub. 

We randomly selected 8,300 reviews (∼= 5% of the total 
number of reviews) across different apps and manually labeled 
each review as “informative” or “non-informative” as de- 
scribed in Step  2  of RADIATION. Two of the authors classified 
these reviews with an average Cohen’s Kappa agreement’s 
degree [38] of 86%. We labeled 2,917 of these reviews as 
“non-informative” and used them along with the same number 
of “informative” reviews randomly sampled from the rest of 

reviews to train a classifier. Finally, we identified 8.1% of the 
total number of reviews as uninformative. 

We applied RADIATION and analyzed 115 randomly se- 
lected apps in detail as well as evaluating RADIATION rec- 
ommendation against developers judgment (RQ2) and users 
experience (RQ3) for 25 apps. In what follows, we explain 
the methodology for answering each research question and 
then provide the results. 

A. Internal Validation of RADIATION (RQ1) 
To internally validate the usefulness of RADIATION, we 

retrospectively compared the recommendations of RADIATION 
with the actual changes in the source code. We performed this 
cross-validation across multiple releases of the same app and 
for a total of 115 apps, involving 3,364 releases. 

As a result of Step  5  of the RADIATION process, we 
clustered the reviews for each UI element. Next, we manually 
labeled each review cluster as either ”deleted” or ”not deleted”. 
This labeling was conducted by two independent researchers 
who manually checked for the deletion of the code in the 
source code repository and identified the deletion commit 
messages, as discussed in the literature [26]. The agreement 
between the annotators was close to perfect, with a 96% 
agreement rate, as the decision was based on factual evidence 
of changes in the Git repository. Any differences were resolved 
with a short code look-up and recheck. Hence, if an element 
Ei was deleted in release Vi, we tagged the clustered reviews 
in Vi−1 as “deleted”. We used these manually labeled clusters 
as our truth set. To internally validate our results, we compared 
the output of RADIATION with this truth set. RADIATION takes 
the information of the app (as detailed in Table II) in release 
Vi−1 and predicts whether an element Ei in release Vi should 
be deleted or not. Retrospectively comparing this prediction 
with our truth set can result in one of the following cases: 
TP: RADIATION recommends deletion of Ei in Vi, and his- 

torical data of our truth set shows the element was deleted. 
TN: RADIATION does not recommend deletion of Ei in Vi, 
and historical data of our truth set shows the element was 
not deleted. 
FP: RADIATION recommends deleting Ei in Vi, but our truth 

set’s historical data shows that the element was not deleted. 
FN: RADIATION does not recommend deletion of Ei in Vi, 

but historical data of our truth set shows its deletion. 
Using these outcomes, we formed a confusion matrix and 

calculated the precision, recall, and F-Score of RADIATION. 
 

TABLE II 
FEATURES USED IN RF TO RECOMMEND IF SOME FUNCTIONALITY IS A CANDIDATE FOR DELETION. 

Attribute Reason Description 
|Reviews| [5], [44] The number of reviews in a cluster.   
rating [5], [44] Each app reviews is associated with a rating. rating is the average rating of reviews in a cluster. 
∆ rating [44] ∆ between the average rating of the cluster and the average rating of the app in a specific release. 

 
 

polarity [12], [32], [33] The average polarity of the reviews in a cluster. Polarity is one dimension of sentiment and is a number 
between [−1, 1]. −1 shows negative sentiment, 0 is neutrality, and 1 is the very positive feeling. 

 
 

objectivity [26] & our user survey 
Average objectivity of the reviews in a cluster. Objectivity is another aspect of sentiment and is a number 
between [0, 1]. 0 shows the message is totally objective (expression of facts) and 1 shows the message was 
opinionated (subjective) [40]. 

|uninstall | [26] & our user survey The number of reviews talking about “uninstalling the app or requesting “refund”. 



participate in a survey on app functionality deletion. Using 
convenience sampling, we were able to hire 37 developers for 
the study. These developers had an average of 8.3 years (rang- 
ing from two to 15 years) of experience in software develop- 
ment and 4.4 years of mobile app development (ranging from 
one to 12 years). Each of the developers had participated in the 
development of at least two apps. In evaluating RADIATION, 
the developers went through two steps: topic modeling in Step 
5 , and reviewing RADIATION recommendations for 25 apps 
and 36,039 reviews (20% of our chosen apps for validation). 

1) Evaluation of cluster topics about each UI element: 
The quality of topics and modeling in Step  5  is crucial to 
the success of RADIATION. To assess the effectiveness of 
clustering by HDP in Step  5  of RADIATION, we utilized a 
human judgment method called topic intrusion [4]. This in- 
volved presenting the top two topics with the highest similarity 
for a review and presented them along with a random topic 
of lower probability (the intruder topic) to a developer, who 
was then asked to identify all relevant topics. To evaluate the 
results of Step  5  we calculated Topic Log Odds (TLO) [4]. 

TLO is a quantitative measure of agreement between a 
model and a human. TLO is defined as the difference between 
the log probability assigned to the intruder topic and the log 
probability assigned to the topic chosen by a developer. This 
number is averaged across developers to get a TLO score for 
a single document d [3]: 

, 
log θ 

 
 
r,trueintruder 

 
− log θ 

 
 
r,intruderselectby‘s′ 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. An example of RADIATION process on WIKIPEDIA app 
 

For this evaluation (RQ1), we excluded apps with less than 
two releases (554 apps). Among the remaining 1,150 apps, we 
picked 10% (115 apps) randomly and analyzed them in depth. 
These 115 apps included 190,062 reviews. 

B. External Validation of RADIATION with Developers (RQ2) 

We aimed to evaluate the perception of software devel- 
opers regarding the correctness of the RADIATION recom- 
mendations. Initially, we invited software developers who 
actively commit to the repositories of our studied open-source 
Android apps to participate in the study. However, due 
to their unavailability and unresponsiveness, we decided to 
recruit developers through advertising on our social media and 
professional network. We specifically targeted developers to 

TLO(d) =  s  
S 

 
Where θr,t is the probability that a review r belongs to a topic 
t, and S is the total number of developers. 

1) Evaluating RADIATION recommendations with develop- 
ers: Further, to evaluate the RADIATION recommendations ex- 
ternally, we provided the cluster of reviews about a UI element 
(the output of Step  5 ) and asked developers to categorize 
each cluster as either “motivating functionality deletion” or 
“not motivating functionality deletion”. We then compared the 
results of RADIATION with developers’ opinions to evaluate its 
performance. As a result of this comparison, one of the four 
cases of TP, TN, FP, and FN could occur. However, unlike 
the cases discussed in Section V-A, here we compared the 
RADIATION recommendations with the developer’s judgment 
rather than the historical data. In consideration of the number 
of participants in our survey, we randomly selected 25 apps 
and had each functionality cluster evaluated independently by 
three developers and got final decisions by majority. 

 
 

LOOP HABIT TRACKER 
 

 
Fig. 5. Sample questions asked for evaluating RADIATION with users. 

Do you need more time to familiarize with the app? Yes No 
Q1- How did you like the "Detailed Scoring of Daily Progress" feature? 

Strongly dislike (-2)  Dislike (-1)  Neutral (0)  Liked (+1) Strongly Liked (+2) 

Q2- How do you feel if the "Detailed Scoring of Daily Progress" feature is being deleted? 
Strongly disappointed(-2)  Disappointed (-1)  Neutral (0)  Liked (+1)  Strongly Liked (+2) 

Step  1 . Pre-processing of reviews: The result of this step is a 
lemmatized and cleaned set of reviews. This way, for example, 
a review such as “I can’t use save pages as it keeps crashing” 
became “I can not use save page keep crash”. 
Step  2 . Filtering: Non-informative reviews are eliminated as the 
result of machine learning classification. For instance, a review 
such as “I hate this app!” or “The app is awesome” is non- 
informative. 
Step  3 . Collecting UI Elements in release V2.0: Share via, 
menu, saved pages, location service, close all tabs, . . . 
Step  4 . # of reviews associated to saved pages = 71 

Step  5 . Clustering reviews related to saved pages by topic: 
Offline option, Saved pages. 
Step  6 . Recommending deletion using Random Forest: 
Attribute values related to clustered reviews: 

Reviews topic polarity 
Offline option -0.34 
Saved pages -0.41 

|Reviews| 
24 
47 

rating 
3.28 
1.32 

objectivity |uninstall | ∆ rating 
0.15 
0.22 

0 
2 

0.92 
2.88 

Example of a regression tree generated from the Random Forest 
classifier: 

|uninstall|> 2 
FALSE TRUE 

... rating < 1.7 
FALSE TRUE 

polarity < −0.1 Deletion 
candidate Saved pages 

FALSE TRUE 

... Deletion 
candidate 

 
 
 

Recommendation: Saved pages is a candidate for deletion. 
Evaluation Evaluating HDP topics with developers: 

Developers’ 
oracle 

 
 

Each is 
a review 

Retrospective analysis: We compared V2.0 and V2.1 and found 
that ∆(V2.0,V2.1) = Saved pages. Saved pages was deleted. 

RADIATION 

Offline 
option 

Review Associated element Release 
Updates deleted my saved pages in the offline mode Saved pages V1.8 
I can’t share anything on Facebook or Google+ Login V2.0 
In offline smd airplane mode I can’t view a saved page Saved pages V2.0 
Saved pages doesn’t sync. between my devices Saved pages V2.0 

... ... ... 

 



RADIATION demonstrates 83% precision in recommending 
deletions based on user reviews. The low recall indicates 

that not all deletions in a mobile app are motivated by 
user reviews, which RADIATION is not designed to capture. 

C. External Validation of RADIATION with Users (RQ3) 

We aim to assess the degree to which recommendations gen- 
erated by RADIATION align or conflict with user experience 
toward specific app functionalities. As part of our evaluation, 
we randomly selected 30 UI elements and functionalities 
from each app. We made a deliberate effort to include a 
mix of correct (TP and TN) and incorrect (FP and FN) 
deletion recommendations (as explained in RQ2), whenever 
possible. In total, we evaluated 650 UI functionalities, with 
325 recommended for deletion by RADIATION and 325 that 
were not recommended for deletion. Our survey included 42 
participants selected via convenience sampling from our social 
and professional network. For each functionality of the app, 
three users provided evaluations. Figure 5 displays a sample 
survey question and the response of one participant specifically 
for the org.isoron.uhabits app. 

After familiarizing themselves with their assigned apps for 
at least 20 minutes, we presented a specific feature of the app 
they had studied and requested that they rate their liking of the 
feature on a five-point Likert scale. Furthermore, we also asked 
the participants to express their emotions if the feature were 
to be removed. We used conventional sentiment scores [13] 
for evaluation, with −2 indicating strong dislike, 0 indicating 
neutrality, and +2 indicating strong liking. 

 
VI. CASE STUDY RESULTS 

Table III presents the results of RQ1 and RQ2 for 25 apps 
that were cross-validated and evaluated by developers. Figure 

6 demonstrates the goodness of the topic modeling of app 
reviews (Step  5 ) as part of RQ2). 

A. Internal Validation of RADIATION (RQ1) 
We conducted cross-validation on 115 apps, 3,364 releases, 

and a total of 190,062 reviews. The results indicate high pre- 
cision (0.83) and recall of 0.48 using 10-fold cross-validation. 
The precision is considerably higher than recall because in 
RADIATION the number of false positives (FP) is much lower 
than false negatives (FN). In other words, in mobile apps, 
there have been features that were deleted, but RADIATION is 
unable to recommend them for deletion (FN) This results in a 
low recall. RADIATION cannot (and is not designed to) capture 
all deletions that happen within a mobile app. However, as the 
first study looking into functionality deletion, we could predict 
with 83% precision. For several of these “false negatives”, we 
did not find reviews related to an element that has been deleted. 
Hence, we concluded that the feature would not be deleted, 
and there were other reasons than user reviews for deleting 
the UI element. Table III details the confusion matrix for the 
25 apps that were also externally evaluated in RQ2. 

 

 
B. External Evaluation of RADIATION with Developers (RQ2) 

The 37 developers evaluated RADIATION in two steps. 
 

TABLE III 
EVALUATING RESULTS BY COMPARING RADIATION RECOMMENDATIONS WITH (I) RETROSPECTIVE ANALYSIS OF ACTUAL DELETIONS AND (II) 

DEVELOPERS’ PERCEPTION. ONE USER REVIEW MIGHT BE RELEVANT TO MULTIPLE ELEMENTS. 
 

 

App’s package 

 

name 

 
# of UI 

element across 
releases 

 
# of 

reviews 

Actual deletions (RQ1) Developers’ perception (RQ2) 

# of 
FP 

# of 
FN 

# of 
TP 

# of 
TN 

F1 
score 

# of 
FP 

# of 
FN 

# of 
TP 

# of 
TN 

F1 
score 

(A1) app.openconnect 235 232 0 2 1 232 0.5 0 0 1 234 1 
(A2) com.google.android.stardroid 1603 4480 0 2 18 1583 0.95 1 2 18 1582 0.92 
(A3) com.moez.QKSMS 3009 2751 0 11 5 2993 0.48 2 4 5 2998 0.62 
(A4) com.vuze.android.remote 774 494 0 2 8 764 0.89 1 0 7 766 0.93 
(A5) net.nurik.roman.muzei 1088 4481 0 15 36 1037 0.83 1 0 35 1052 0.99 
(A6) org.androisoft.app.permision 189 397 0 1 2 186 0.8 0 1 2 186 0.8 
(A7) org.connectbot 471 4493 0 6 8 457 0.73 0 0 8 463 1 
(A8) org.dmfs.tasks 862 207 0 7 7 848 0.67 0 4 7 851 0.78 
(A9) org.evilsoft.pathfnder.rference 652 1520 0 0 2 650 1 1 0 1 650 0.67 
(A10) org.isoron.uhabits 895 1976 3 31 101 760 0.86 4 13 100 778 0.92 
(A11) com.spazedog.mounts2sd 394 497 3 7 60 324 0.92 2 0 61 331 0.98 
(A12) org.telegram.messenger 840 73682 2 30 26 782 0.62 3 3 25 809 0.89 
(A13) in.blogspot.anselbros.torchie 134 473 8 12 72 42 0.88 5 1 75 53 0.96 
(A14) com.emaguy.cleanstatusbar 86 392 1 7 8 70 0.67 0 0 9 77 1 
(A15) com.boardgamegeek 1317 506 33 224 191 6682 0.6 3 25 221 6881 0.94 
(A16) com.gelakinetic.mtgfam 4510 2366 1 3 4 4502 0.67 0 1 5 4504 0.91 
(A17) org.addhen.smssync 235 41 6 0 22 207 0.88 7 2 21 205 0.82 
(A18) com.amaze.filemanager 620 1241 7 12 25 576 0.72 0 1 33 586 0.98 
(A19) com.gh4a 344 301 4 8 14 318 0.7 1 1 17 325 0.94 
(A20) org.kontalk 54 39 2 2 7 43 0.78 2 1 7 44 0.82 
(A21) org.transdroid.lite 942 538 2 3 7 930 0.74 0 0 9 933 1 
(A22) de.qspool.clementineremote 444 355 4 9 13 418 0.67 2 3 15 424 0.86 
(A23) com.daiancorp.mh4udtabase 3101 979 29 51 73 2948 0.65 12 5 90 2994 0.91 
(A24) org.servalproject 547 252 4 14 10 519 0.53 2 3 15 527 0.85 
(A25) org.wikipedia 17830 15531 23 0 94 17713 0.89 1 0 116 17713 0.99 

Average 1647.04 4728.96 5.28 18.36 32.56 1823.36 0.74 2 2.8 36 1838.84 0.9 
FP (False-Positive): Recommended as deletion but was not, FN (False-Negative): Recommended not a deletion but it is, TP (True-Positive): Recommended 

as deletion and it is, TN (True-Negative): Recommended as not a deletion and is not. 



A
vg

. 
sc

or
e 

ac
ro

ss
 u

se
rs

 
ev

al
ua

ti
ng

 e
ac

h 
fe

at
ur

e 

 
-12 

 
-10 

TLO 
-8 -6 -4 -2 0 2 

1 
 
 
 

Fig. 6. Topic Log Odds (TLO) shows the performance of RADIATION’s 
clustering against developers’ perception. 

 
1) Evaluation of cluster topics about each UI element: 

We followed the approach of Palomba et al. [31] to cluster 

0 
 

-1 
 

-2 
How users 
liked a feature 

 
 
 
 
 
 

How users feel if the 
feature be removed 

user reviews by their connection to UI elements. Hence, in 
RADIATION we first connected reviews to the UI elements 
(Step  4 ) and then clustered the reviews around each UI ele- 
ment using HDP topic modeling (Step  5 ) [31]. We presented 
the number of UI elements along with the number of clusters 
and number of user reviews in Table III. To evaluate the 
usefulness of our topic model, we relied on the judgment 
of app developers. After asking them to evaluate the topics 
using topic intrusion, we calculated TLO as suggested by 
Chang et al. [4]. We present the distribution of TLO in the 
boxplot chart of Figure 6. TLO = 0 shows the highest 
conformance between developers and the topic modeling tech- 
nique. Comparison of the distribution of our HDP clustering 
showed a slight disagreement between developers and machine 
learning results as the median is around −3. However, this is 
still considered as a relatively low disagreement compared to 
former benchmarks [3], [4]. 

2) Evaluating RADIATION recommendations: We asked 
developers to evaluate whether a cluster of reviews for a UI 
element were ”motivating a functionality deletion” or ”not 
motivating a functionality deletion” (e.g., implying a bug fix). 
We compared RADIATION results to developer perceptions for 
25 randomly selected apps, resulting in an average F-Score of 
90% for RADIATION. See Table III for the number of true and 
false recommendations for these apps. 
Upon examining the results presented in Table III, it is 
apparent that there are fewer false positives (FP) and false 
negatives (FN) when comparing our recommendations with 
developers’ perceptions as opposed to retrospective evaluation. 
This difference can be attributed to the fact that recommending 
deletions involves multiple factors beyond user reviews, which 
RADIATION does not take into account. Therefore, when 
asking developers to make a decision based on user reviews, 
RADIATION demonstrates better performance. 

Fig. 7. Evaluation results of 650 features with users through survey 
 
 

2 displays a violin plot of the results. Table IV presents an 
overview of our results for the first survey question we asked in 
RQ3 and for each of the 25 apps we evaluated. Each column in 
this table displays the average of responses provided by three 
users who participated in our survey. Note that the number 
of samples was not evenly distributed across TP, TN, and 
other categories. For example, (A1) app.openconnect 
had only one UI functionality that was correctly recommended 
for deletion (TP) in RQ2 (see Table III). We also asked users 
how they would feel if the functionality were to be removed 
(Q2). We observed a high correlation of -0.86 between the 
responses to Q1 and Q2 in our survey. That being said, we 
found that the more negative the feelings users had towards 
the feature, the more positive they were about its removal. 

When we surveyed users about the functionalities, we 
observed that the average sentiment of the participants towards 
the features that were correctly recommended for deletion by 
RADIATION (TP recommendations) was consistently negative. 
In other words, the negative experiences of the users were 
aligned with the recommendations. However, for deletions 
that were not actually performed (FP), we observed mixed 
sentiments. Nevertheless, the majority of the apps (13 out of 
16) received an overall average of negative sentiments for 
wrong predictions as well. Thus, it is essential to note that 
a negative experience might not necessarily imply feature 
deletion but could call for a bug fix or a change in the 
software. This finding aligns with our analysis of RQ2, where 
external developers favored RADIATION recommendations, 
while historical data showed that the decisions of the actual 
app developers (RQ1) were different. This difference could 
be due to the exclusion of particular ecosystem or business 
factors in RADIATION modeling. 

 
 
 

C. External evaluation of RADIATION with Users (RQ3) 
Our objective was to evaluate user sentiment towards the 

functionalities recommended for deletion by RADIATION. To 
achieve this, we conducted a survey of 42 users to evaluate 
their perception of specific mobile app functionalities and to 
understand their sentiments if those functionalities were to be 
removed (refer to Figure 5). We asked each participant two 
questions regarding the features they were evaluating. Figure 

 
VII. DISCUSSION 

In this section, we briefly discuss the further interpretation 
of the achieved results and some design decisions. 

A. Scope of RADIATION 

Motivated by the number of studies on release planning 
of mobile applications and in consideration of the limited 

The users consistently disliked the functionalities that 
RADIATION correctly recommended for deletion and in 

general are not against removing them. 

RADIATION achieves an average F-score of 0.9 when its 
recommendations are compared with the developers’ 
decisions based on the respective clustered reviews. 



(A18) N/A -1.66 0.21 

(A16) N/A -1.66 0.81 

(A14) N/A -2.0 0.06 

(A12) -0.45 -1.8 -0.79 

(A10) 1.27 -0.91 1.13 

(A8) N/A -0.06 0.13 

(A6) N/A -0.86 -1.13 

(A4) -0.55 -0.66 -0.66 

(A2) -0.13 -1.07 0.86 

resources for mobile devices [26] we studied the possibility 
of predicting feature deletions for mobile applications. RA- 
DIATION uses user reviews to recommend UI functionality 
deletions based on various factors. We analyzed user reviews 
and clustered them according to relevant UI elements, which 
enables RADIATION to focus solely on user feedback and 
visible app functionality. Upon retrospective analysis, we 
found that RADIATION has a low recall due to a considerable 
proportion of false negatives. These false negatives indicate 
deletions that were not motivated by user reviews and therefore 
fell outside the scope of RADIATION recommendations. To 
further evaluate the effectiveness of our approach, we provided 
software developers with reviews for each UI element and 
asked them to decide whether they motivated functionality 
deletion or not. This resulted in better recall compared to 
our previous cross-validation results. We also evaluated user 
sentiment toward these functionalities and found that they 
consistently experienced negative emotions when using the 
RADIATION recommended for deletion. We further discovered 
that the more negative the user’s experience, the more likely 
they were to be neutral or positive about removing that feature 
from the app. 
B. Benchmarking and performance of RADIATION 

We relied on the highly performed methods discussed in 
the literature and did not re-evaluate the performance of the 
learners. We do not argue these techniques are the most 
optimal and highest-performing methods possible. Rather, as 
the first study on recommending feature deletion in app 
releases, we focused on exploring the possibility of deletion 
recommendations, their usefulness, and the ease of explanation 
to the users and the developers. As the first study on predicting 
deletions based on user reviews, our target was to examine 
if the deletion prediction is possible rather than to highly 

 
TABLE IV 

EVALUATING USER SENTIMENTS TOWARD THE FEATURES RADIATION 
RECOMMENDS FOR DELETION THROUGH A SURVEY (RQ3) 

optimize the performance of the approach. This is essential 
step before taking further steps for planning these deletion. 
Based on the current state-of-the-art results, we do not expect 
that a benchmark of different classifiers would significantly 
improve the performance of our approach. 

One key motivation for the paper comes from the obser- 
vation that current release planning in general [36] and in 
particular for mobile apps [20], [44] is exclusively focused 
on feature addition. Planning in consideration of both addition 
and deletion of functionality requires revisiting the planning 
objective(s). Clearly, deletion consumes development effort 
as well. While we took the first step toward understanding 
functionality deletion, future work involves contextualizing the 
results for specific projects and development teams. Besides 
a more comprehensive empirical evaluation in general, we 
also target trade-off analysis between measuring the evolving 
maintenance effort and functionality deletions. Overall, the 
main goal of future research will be to better understand the 
deletion of functionality as part of software evolution, also 
beyond mobile apps. In addition, we will work on improving 
the performance of our recommendations by updating the 
machine learning techniques and features and tuning the model 
(for instance, by more in-depth analysis of similarity). 

VIII. THREATS TO VALIDITY 

Throughout the different steps of the process, there are 
various threats to the validity of our achieved results. 

Are we measuring the right things? We pre-processed all 
review texts and used machine learning classification to ensure 
that the analysis is only considering informative user reviews. 
The Naive Bayes classification resulted in an F1 score of 0.82. 
While this is a very good result, there is still a possibility that a 
review has been classified incorrectly. There is a risk related to 
linking reviews to the proper UI elements. Two of the authors 
looked into the results of this linking (Step  4  of RADIATION) 
for 600 reviews across six apps and found 71 mismatched or 
unrelated reviews. 

Are we drawing the right conclusions about treatment 
and outcome relation? In comparison to studies in the context 

App 
ID 

Incorrect  dele- 
tion recom. (FP) 

Correct deletion 
recom. (TP) 

other (FN or 
TN) 

of mobile apps (Table V), our surveys can be considered high participated. However we used convenience sampling 
(A1) N/A -1.3 2.0 

(A3) -0.7 -1.16 1.0 

(A5) 1.07 -1.0 0.08 

(A7) N/A -0.93 0.0 

(A9) -0.66 -1.2 0.91 

(A11) -0.55 -1.0 1.05 

(A13) -0.56 -1.0 0.51 

(A15) -0.88 -1.4 0.79 

(A17) -0.77 -1.0 0.73 

(A19) 0.97 -1.08 0.91 

0.05 

to attract participant which might bias the conclusions that 
are drawn [16]. It is essential to note this type of evaluation 
is subjective. However, the results of RQ1 based on the 
retrospective analysis of the data are aligned with our survey 
results presented in RQ2 and RQ3. In total, we think that the 
evaluation gained with 37 developers and 42 users is sufficient 
to confirm our findings. 

When connecting a review to a UI element in RADIATION, 
there is a chance that we relate a review to an element 
incorrectly (false positives). This may happen because 

• We may miss some UI elements, as they can be instanti- 

 
 

Q1: Average Sentiment toward functionalities that are 

(A20) 
(A21) 
(A22) 

0 
N/A 
-1.03 

-1.16 
-1.13 
-1.5 

1.21 

-0.31 
ated in the program code or hard coded, 

• Some UI elements are not visible to the end user, or 
(A23) 
(A24) 

-0.89 
- 0.09 

-1.33 
-1.55 

-1.09 
-0.45 • Text of some UI elements are common English words or 

(A25) -1.02 -1.02 0.18 can have similar labels in different app views. 
 



TABLE V 
CONTEXT AND EVALUATION OF RELATED STUDIES. 

Method Context Evaluation 
ARdoc [33] Information giving/seeking, feature request, problem discov- 

ery, others Evaluating three apps by two developers 

AR-Miner [5] Informative or non-informative reviews Manual inspection by authors, comparison between tech- 
niques 

CHANGEADVISOR [31] Localizing change request by linking reviews and source code Evaluated results with 12 developers 
CLAP [44] New feature request, bug report Retrospective analysis of 463 reviews and interview with three 

developers 
CRISTAL [29] Tracing user reviews to the developers changes Manual evaluation by authors 

MARA [14] Feature request Comparing different techniques 
PAID [9] Issues (bugs) Retrospective analysis of 18 apps 

Panichella et al. [32] Information giving/seeking, feature request, problem discov- 
ery, others Comparison between different methods 

SURF [7], [8] Information giving/seeking, feature request, problem discov- 
ery, others 23 developers analyzed SURF output for 2622 reviews. 

SUR-Miner [12] Aspect evaluation, praise, function request, bug report, others Comparing techniques, evaluation with 32 developers 
URR [6] Compatibility, usage, resources, pricing, protection, complaint Qualitative evaluation by a student and a developer 

 

To address the first two items above, we used BACK- 
STAGE [1] on a few of the apps and we found that while 
the risk exists, it is relatively small. Since BACKSTAGE works 
on compiled application binaries we were limited to using 
it in RADIATION. For the third item above, we applied pre- 
processing as suggested in CRISTAL [29] and adopted their 
list of stop words. Further, RADIATION is not intended to 
exhaustively find all the deleted feature (recall). The impact 
of potentially missed elements is insignificant. 

Can we be sure that the treatment indeed caused the 
outcome? The selection of attributes used in RADIATION to 
decide if a UI functionality should be deleted is another threat 
to validity. Our survey with users was aligned with the findings 
in the literature [26] and showed that users and their feedback 
is important information in the deletion process. However, it 
is not the only decisive factor for excluding a functionality 
from apps. We selected attributes based on related studies 
(Table II). There are other attributes related to competitors, 
performance, or maintenance considerations that are relevant 
for the decision-making but could not be taken into account 
for our study. Following the results of former studies on 
mobile apps [29], we assumed that users are reviewing just the 
functionality that is visible to them (and not the background 
code). This might not be true for all the users, reviews, and 
sentiments. However, we expect a low number of such cases. 

Can the results be generalized beyond the scope of 
this study? Our retrospective analysis was performed on 
open-source mobile apps. The number of apps, reviews, and 
commits analyzed is considered high, indicating that results 
are significant at least for open-source mobile apps. While 
selecting the apps for this study, we did not consider their 
status (for example, the number of downloads) which may 
pose a risk of bias in the findings. The results may vary 
between apps with regards to their status on the app store3. 

IX. RELATED WORK 

In this study, we challenged Lehman’s law of growth by 
investigating functionality deletion as a specific activity in 
the development process. We focused on the mobile apps 
because the device resources are limited and the size of the 

3Authors will provide data and scripts in case of acceptance. 

release has been introduced as a decisive factor for release 
decisions [22], [27], [28]. Feature and functionality deletion 
for software products in general have been discussed mostly 
on the model level which triggered us to widely investigate on 
the nature and reasons of functionality deletion in RQ1 and 
RQ2. 

Analyzing user reviews to support app evolution and main- 
tenance was studied by several researchers [20]. These studies 
are mainly focused on different user needs to be articulated at 
the level of being a “feature request” or “bug report” [18]. The 
study by Palomba et al. [29] found that 49% of informative 
reviews were considered for app evolution. In this direction, 
current studies take user reviews as the source of change 
requests, apply a variety of NLP techniques, and provide a 
prioritization or classification scheme. The objective is to help 
developers decide on the next best changes either by adding 
new functionality or fixing a bug. We provided an overview 
of the most related methods in Table V. 

 

 
CLAP [44] used a mixed method by combining the ret- 

rospective analysis of changes for 463 reviews in conjunc- 
tion with interviewing three app developers. PAID [9] had 
the most comprehensive retrospective evaluation of data by 
investigating 18 apps for issue (bug) prioritization. Compared 
to the former studies in analyzing app reviews, we have a more 
rigorous evaluation by asking 37 developers to evaluate 36,039 
reviews for a total of 25 apps. We compared these evaluations 
with the results gained from RADIATION. While some studies 
compared different methods for evaluating their results, this 
was not possible for RADIATION in general as none of 
the existing techniques is focused on functionality deletion. 
However, to select classifier and topic modeling techniques, 
we made the comparisons as discussed in Section IV. 

X. CONCLUSIONS 

Lehman’s law on continuous growth of functionality does 
not universally apply. In the domain of mobile apps, develop- 
ers frequently delete functionality—be it to fix bugs, maintain 
compatibility, or improve the user experience. We performed a 

Current literature discuss different types of user requests 
on app evolution. We focused on a functionality deletions 

which was not studied. 



study with app users to confirm the potential value of deletions 
also from their perspective. We suggested that the process of 
selecting the functionality to be deleted can be automated, 
as demonstrated by our RADIATION recommendation system. 
RADIATION analyses the UI elements of the app and the re- 
views and recommends if the UI element and its functionality 
shall be deleted or not. This is the first study to investigate 
the prediction of functionality deletion in software evolution. 
It opens the door towards a better understanding of software 
evolution, in particular in an important domain such as mobile 
app development. In the days of Lehman’s studies, features 
such as user experience, screen space, or energy consumption 
were not as crucial as they are today; it may be time to revisit 
and refine Lehman’s findings. 

 
REFERENCES 

[1] V. Avdiienko, K. Kuznetsov, I. Rommelfanger, A. Rau, A. Gorla, and 
A. Zeller. Detecting behavior anomalies in graphical user interfaces. 
In Proceedings of the 39th International Conference on Software Engi- 
neering Companion, pages 201–203. IEEE Press, 2017. 

[2] B. Berenbach, D. J. Paulish, J. Kazmeier, and A. Rudorfer. Software & 
systems requirements engineering: in practice. McGraw-Hill Education, 
2009. 

[3] S. Bhatia, J. H. Lau, and T. Baldwin.  An automatic ap- 
proach for document-level topic model evaluation. arXiv preprint 
arXiv:1706.05140, 2017. 

[4] J. Chang, S. Gerrish, C. Wang, J. L. Boyd-Graber, and D. M. Blei. 
Reading tea leaves: How humans interpret topic models. In Advances 
in neural information processing systems, pages 288–296, 2009. 

[5] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang. AR-miner: Mining 
informative reviews for developers from mobile app marketplace. In Pro- 
ceedings of the 36th International Conference on Software Engineering, 
pages 767–778. ACM, 2014. 

[6] A. Ciurumelea, A. Schaufelbu¨hl, S. Panichella, and H. C. Gall. Ana- 
lyzing reviews and code of mobile apps for better release planning. In 
Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE 
24th International Conference on, pages 91–102. IEEE, 2017. 

[7] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A. 
Visaggio, G. Canfora, and H. C. Gall. What would users change in my 
app? summarizing app reviews for recommending software changes. In 
Proceedings of the 2016 24th ACM SIGSOFT International Symposium 
on Foundations of Software Engineering, pages 499–510. ACM, 2016. 

[8] A. Di Sorbo, S. Panichella, C. V. Alexandru, C. A. Visaggio, and G. Can- 
fora. Surf: Summarizer of user reviews feedback. In Proceedings of 
the 39th International Conference on Software Engineering Companion, 
pages 55–58. IEEE Press, 2017. 

[9] C. Gao, B. Wang, P. He, J. Zhu, Y. Zhou, and M. R. Lyu. Paid: 
Prioritizing app issues for developers by tracking user reviews over 
versions. In Software Reliability Engineering (ISSRE), 2015 IEEE 26th 
International Symposium on, pages 35–45. IEEE, 2015. 

[10] J. Gong, P. Tarasewich, et al. Guidelines for handheld mobile device 
interface design. In Proceedings of DSI 2004 Annual Meeting, pages 
3751–3756, 2004. 

[11] D. Greer and G. Ruhe. Software release planning: An evolutionary and 
iterative approach. Information and software technology, 46(4):243–253, 
2004. 

[12] X. Gu and S. Kim. What parts of your apps are loved by users? In Auto- 
mated Software Engineering (ASE), 2015 30th IEEE/ACM International 
Conference on, pages 760–770. IEEE, 2015. 

[13] E. Guzman and W. Maalej. How do users like this feature? a fine grained 
sentiment analysis of app reviews. In 2014 IEEE 22nd international 
requirements engineering conference (RE), pages 153–162. Ieee, 2014. 

[14] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps feature 
requests from online reviews. In Mining Software Repositories, 2013 
10th IEEE Working Conference on, pages 41–44. IEEE, 2013. 

[15] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan. What do mobile 
app users complain about? IEEE software, 32(3):70–77, 2014. 

[16] B. Kitchenham and S. L. Pfleeger. Principles of survey research: part 5: 
populations and samples. ACM SIGSOFT Software Engineering Notes, 
27(5):17–20, 2002. 

[17] M. M. Lehman. Laws of software evolution revisited. In European 
Workshop on Software Process Technology, pages 108–124. Springer, 
1996. 

[18] W. Maalej and H. Nabil. Bug report, feature request, or simply praise? on 
automatically classifying app reviews. In 2015 IEEE 23rd international 
requirements engineering conference (RE), pages 116–125. IEEE, 2015. 

[19] D. Martens and W. Maalej. Release early, release often, and watch 
your users’ emotions: Lessons from emotional patterns. IEEE Software, 
36(5):32–37, 2019. 

[20] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app 
store analysis for software engineering. IEEE Transactions on Software 
Engineering, pages 1–1, 2016. 

[21] N. Mirzaei, S. Malek, C. S. Pa˘sa˘reanu, N. Esfahani, and R. Mahmood. 
Testing android apps through symbolic execution. ACM SIGSOFT 
Software Engineering Notes, 37(6):1–5, 2012. 

[22] M. Nayebi, B. Adams, and G. Ruhe. Release practices for mobile 
apps–what do users and developers think? In 2016 IEEE 23rd Interna- 
tional Conference on Software Analysis, Evolution, and Reengineering 
(SANER), volume 1, pages 552–562. IEEE, 2016. 

[23] M. Nayebi, H. Cho, H. Farrahi, and G. Ruhe. App store mining is 
not enough. In Proceedings of the 39th International Conference on 
Software Engineering Companion. ACM, 2017. 

[24] M. Nayebi, H. Farrahi, A. Lee, H. Cho, and G. Ruhe. More insight from 
being more focused: analysis of clustered market apps. In Proceedings 
of the International Workshop on App Market Analytics, pages 30–36. 
ACM, 2016. 

[25] M. Nayebi, H. Farrahi, and G. Ruhe. Analysis of marketed versus not- 
marketed mobile app releases. In Proceedings of the 4th International 
Workshop on Release Engineering, pages 1–4. ACM, 2016. 

[26] M. Nayebi, K. Kuznetsov, P. Chen, A. Zeller, and G. Ruhe. Anatomy of 
functionality deletion for mobile apps. In 2018 IEEE 15th International 
Working Conference on Mining Software Repositories (MSR), page In 
press. IEEE, 2018. 

[27] M. Nayebi and G. Ruhe. Analytical open innovation for value-optimized 
service portfolio planning. In Software Business. Towards Continuous 
Value Delivery: 5th International Conference, ICSOB 2014, Paphos, 
Cyprus, June 16-18, 2014. Proceedings 5, pages 273–288. Springer, 
2014. 

[28] M. Nayebi and G. Ruhe. An open innovation approach in support 
of product release decisions. In Proceedings of the 7th International 
Workshop on Cooperative and Human Aspects of Software Engineering, 
pages 64–71, 2014. 

[29] F. Palomba, M. Linares-Va´squez, G. Bavota, R. Oliveto, M. Di Penta, 
D. Poshyvanyk, and A. De Lucia. User reviews matter! Tracking 
crowdsourced reviews to support evolution of successful apps. In 
Software Maintenance and Evolution (ICSME), 2015 IEEE International 
Conference on, pages 291–300. IEEE, 2015. 

[30] F. Palomba, M. Linares-Va´squez, G. Bavota, R. Oliveto, M. Di Penta, 
D. Poshyvanyk, and A. De Lucia. Crowdsourcing user reviews to support 
the evolution of mobile apps. Journal of Systems and Software, 137:143– 
162, 2018. 

[31] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci, 
and A. De Lucia. Recommending and localizing change requests 
for mobile apps based on user reviews. In Proceedings of the 39th 
International Conference on Software Engineering, pages 106–117. 
IEEE Press, 2017. 

[32] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, 
and H. C. Gall. How can I improve my app? Classifying user reviews 
for software maintenance and evolution. In Software maintenance and 
evolution (ICSME), 2015 IEEE international conference on, pages 281– 
290. IEEE, 2015. 

[33] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, 
and H. C. Gall. Ardoc: App reviews development oriented classifier. In 
Proceedings of the 2016 24th ACM SIGSOFT International Symposium 
on Foundations of Software Engineering, pages 1023–1027. ACM, 2016. 

[34] S. L. Pfleeger and B. A. Kitchenham. Principles of survey research: part 
1: turning lemons into lemonade. ACM SIGSOFT Software Engineering 
Notes, 26(6):16–18, 2001. 

[35] D. M. Powers. Evaluation: from precision, recall and f-measure to roc, 
informedness, markedness and correlation. 2011. 



[36] G. Ruhe. Product release planning: Methods, tools and applications. 
CRC Press, 2010. 

[37] G. Ruhe, M. Nayebi, and C. Ebert. The vision: Requirements en- 
gineering in society. In 2017 IEEE 25th International Requirements 
Engineering Conference (RE), pages 478–479. IEEE, 2017. 

[38] D. J. Sheskin. Handbook of parametric and non-parametric statistical 
procedures. CRC Press, 2003. 

[39] O. Shmueli and B. Ronen. Excessive software development: Practices 
and penalties. International Journal of Project Management, 35(1):13– 
27, 2017. 

[40] T. D. Smedt and W. Daelemans. Pattern for python. Journal of Machine 
Learning Research, 13(Jun):2063–2067, 2012. 

[41] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Sharing clusters 
among related groups: Hierarchical dirichlet processes. In Advances in 
neural information processing systems, pages 1385–1392, 2005. 

[42] D. V. Thompson, R. W. Hamilton, and R. T. Rust. Feature fatigue: 
When product capabilities become too much of a good thing. Journal 
of marketing research, 42(4):431–442, 2005. 

[43] D. V. Thompson and M. I. Norton. The social utility of feature creep. 
Journal of Marketing Research, 48(3):555–565, 2011. 

[44] L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta. Release 
planning of mobile apps based on user reviews. In Proceedings of the 
38th International Conference on Software Engineering, pages 14–24. 
ACM, 2016. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This is authors pre-print of the accepted paper to RE2023 - research track 


	This is authors pre-print of the accepted paper to RE2023 - research track
	Step  4 . Connecting reviews to the UI elements. We used

