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1. INTRODUCTION

Real-time systems are different from traditional finite-state systems in
that they often have to meet hard real-time constraints in addition to
functional correctness requirements. Many efforts have been carried out in
recent years to automate the verification of real-time systems. An early
work in this area is by Jahanian, Mok, and Stuart as a part of the SARTOR
project [Mok 1985], which is to build an environment for the development of
correct real-time software. They extended the language STATECHART
[Harel 1986] with constructs for specifying timing constraints whose se-
mantics is given in RTL (Real Time Logic) [Jahanian and Mok 1986], a
first-order logic based on Presburger arithmetic which is specialized for
specifying timing properties of event-based real-time systems. Jahanian
and Stuart [1988] and Stuart [1990] proposed and subsequently imple-
mented an algorithm for verifying timing properties of real-time systems
using computation graphs. In a more recent development, Alur et al. [1990]
and Henzinger et al. [1991] have considered extending temporal logic by
introducing a “freeze” operator. Alur et al. [1990] successfully applied the
model-checking technique for finite-state machines [Clarke and Emerson
1981; Clarke et al. 1986] to the verification of real-time systems based on
the region graph approach.

However, the application of model checking is limited by the state
explosion problem, which is even more severe in the presence of timing
predicates. For this reason, many researchers have focused on symbolic
model-checking methods [Burch et al. 1990; Clarke et al. 1991; Coudert et
al. 1989; Emerson and Clarke 1980; Sistla 1982]. Symbolic model checking
has proven to be very successful for non-real-time systems because of the
effectiveness of Binary Decision Diagram (BDD) representation of the state
transition relation. In recent years, the symbolic model-checking approach
has been applied to real-time system verification. Among many efforts are
Henzinger et al. [1991], Yang et al. [1993], Alur et al. [1993], and Campos
et al. [1994].

In this article, we consider the symbolic verification of event-driven
real-time systems over the discrete time domain. We choose to use the
nonnegative integers for the domain of time because our work is aimed at
verifying computer systems, which are discrete time devices. Except at
integral time boundaries, change in internal state of discrete time devices
is unobservable and indeed should not affect the environment external to
the device. We also choose an event-based model to emphasize what we
intend to be observable about a system. In our framework, an event is
meant to denote I/O behavior or a significant change in internal system
states. Events occur instantaneously at discrete time points, and the same
event may occur multiple times (i.e., have multiple instances) in the course
of a computation. An event-driven real-time system must respond to
certain events with appropriate actions and within certain hard deadlines.
Most control systems can be viewed as event-driven real-time systems. We
shall adopt a graphical language, Modechart [Jahanian and Mok 1986], to
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provide a concrete syntax for event-driven real-time systems. For formal
specification and verification, we propose a logic, Synchronous Real-Time
Event Logic (SREL). SREL can be viewed as a variation of Asynchronous
Real-Time Event Logic (AREL) [Wang and Mok 1992]. SREL captures the
semantics of synchronous systems where the occurrence of events is observ-
able only at integral (discrete) time boundaries. In SREL computations,
there is no temporal precedence among event instances that have the same
time of occurrence. We shall show a symbolic model-checking algorithm for
SREL. Since the representation of timing and event occurrence constraints
is critical in the BDD implementation of a symbolic model-checking algo-
rithm for real-time systems, we propose an efficient BDD algorithm for
constructing BDDs for linear constraints among integer variables. We have
incorporated this scheme into SMV v2.3 [McMillan 1992] from Carnegie-
Mellon University and have been able to save one to two orders of
magnitude in time and space compared to the integer implementation in
the original system.

Unlike the work by Alur et al. [1993], in which they deal with general
hybrid real-time systems, we focus on a restricted class of real-time
systems with only linear constraints and over the domain of integers. This
gives us the benefit of reducing the problem complexity and finding more
efficient verification algorithms and at the same time retaining the cover-
age of a wide range of real-time systems. Our approach reasons symboli-
cally about timing constraints among event occurrences which are very
important in real-time systems but have been largely ignored in the past.
Such a capability is also important for many hardware verification prob-
lems, e.g., when we want to match outputs of a pipeline with the inputs of
the pipeline.

To the best of our knowledge, our algorithm for building BDDs for linear
constraints is the first efficient solution to overcome the state explosion
problem during the BDD-building process for such constraints. It is often
the case that state explosion only happens when the intermediate results
are being constructed. In 1995, Clark et al. [1995] proposed the Hybrid
Decision Diagram that combines the Binary Moment Diagram (BMD), the
BDD, and the Multiterminal BDD (MTBDD) to combat the complexity in
arithmetic operations. Like our approach, the effectiveness of their ap-
proach relies on the fact that the relations among integer variables can be
reduced to a set of linear constraints. Although their algorithm can deal
with a wider range of integer operations such as multiplication, our
approach is faster and more efficient to solve linear constraints because it
is hard-coded and does not need to go through BMD and MTBDD.

The rest of the article is organized as follows. In Section 2, we propose a
computation model for event-driven real-time systems. In Sections 3 and 4,
we define the syntax and semantics of SREL. We show that although the
satisfiability problem for SREL is undecidable in general, we observe that
most practical real-time systems obey certain bounded progress conditions.
The bounded progress conditions enable us to verify properties of most
practical systems. In Section 5, we introduce the real-time system program-
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ming language Modechart. We then define its semantics in terms of
computation models. In Section 6, we show how to build a quotient
computation model for a modechart, given an SREL formula to be verified,
and propose a model-checking algorithm. In Section 7, we show how to
symbolically model check a quotient computation model against an SREL
formula. In Section 8, we propose a fast algorithm for building BDDs for
linear constraints, which is very important in BDD-based implementation
of symbolic model-checking procedures. We show some experiment results.
We conclude the article in Section 9.

2. A COMPUTATION MODEL FOR EVENT-DRIVEN REAL-TIME SYSTEMS

From the control perspective, we view a real-time system as operating in
modes [Jahanian and Mok 1986; Jahanian and Stuart 1988]. A mode is a
control state of the system. The system changes from one mode to another
when either some events trigger the transition, or some timing condition is
satisfied. An event is an instantaneous change in the system that may
happen repeatedly over time. It could be an external signal, or a toggling of
a state variable. A mode can also be defined by a pair of events: one
indicates entering the mode, and the other indicates leaving the mode. An
instance of an event serves as a maker in time. Thus, the timing properties
of the system can be easily and accurately specified as the timing con-
straints among instances of events. A well-known example is the following
railroad crossing control example from Leveson and Stolzy [1985], Jaha-
nian and Stuart [1988], and Stuart [1990].

Example 2.1 (Railroad Crossing Control System)

The gate at a guarded railroad crossing is to be software controlled, and since
the gate cannot control the train, a real-time solution is needed. There is an
early warning signal at a distance from the crossing that gives notice to the
gate controller that a train is approaching, and it is known that it takes the
train at least 300 time units to reach the crossing from the signal. It is also
known that the time required to lower the gate is between 20 and 50 time units.
The controller itself can detect the departure of the train, and it requires
between 20 and 100 time units to raise the gate. It is also known that trains are
scheduled so that it takes at least 100 time units from the time a train leaves
the crossing until the next train reaches the early warning signal [Stuart 1990].

The behavior of such a real-time system can be characterized by the set
of all possible sequences of event instances that happen over time. Figure 1
shows such a sequence.

The horizontal axis in Figure 1 represents time. A name following
(followed by) an arrow denotes a mode entry (exit) event. An event with a
subscript denotes an instance of the event. We treat the event instances
that happen at the same time as truly concurrent, although there might be
some causality relation among these instances. Such a granularity is
justified, since we are concerned about the real-time constraints over the
integer time domain.
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COMPONENTS

ARROACH.
MONITOR *~ APPROACH; [™ BC; # CROSSING, |®™ PASSED1 it 2
APPROACH BC™ CROSSING®™ | 1
controrLer | UP1 MOVEDOWN, [# DOWN ; * MOVEUP; UPy
up *, MOVEDOWN®| DOWN MOVEDUP®™ |
TIME
"o 200 40 600 00 Ts00 900

Fig. 1. An event sequence of the railroad crossing system.

Formally, we view a real-time system as a triple S = (E, I', ®) where (1)
E is a finite set of boolean variables called events, (2) I" is a finite set of
variables called timers with values over N, the set of nonnegative integers,
and (3) ® : E — 2" is a reset function that associates a set of timers with
each event.

A time point p of the system at real time ¢ is defined by three assign-
ments 0, : E — Boolean, $, : E —> N, and J, : ' = N. For every event
e € E, 0,(e) indicates whether the event is happening at the time point,
and $,(e) is the number of instances of the event that have happened since
the beginning. For every timer 7 € I', 7, (7) is the time value in the timer.
We do not allow an event to happen more than once at any time point.

Definition 2.2 (Computation Model). The computation model for a real-
time system S = (E, I', R) is a tuple M = (S, E) where E is a set of
infinite time traces such that

(1) Every time trace m = pgp, ... satisfies the following two conditions:

(a) Initial Condition: For every event e € E, 9, (e) = 1 if 0, (e) =
true. Otherwise, $, (e) = 0. For every timer r€ I', 7, (1) = 0.

(b) Successor Condition: For every i > 0, (1) for every event e € E,
9,(e) = Ip;_1(e) + 1if O, (e) = true; 9,(e) = 9, (e) otherwise;
and (2) for every timer r € I', J,(7) = 0 if O, (e) = true and 7 €
R(e) for some e € E; T, (1) = J, (1) + 1 otherwise.

(2) History-Free: Let m = popy-.-Pp ..., ™ = qoq1---9; -..be two
time traces in E such that p, = ¢,. Then both pyp; ... pPr_19:9;-1 - - .
and qoqq ... q;_1PpPr+1 - - - are also in E.

The number of time traces in E in the definition could be either finite or
infinite. It is also clear that there is no loop in any time trace, meaning that
no two time points in the trace are the same, since whenever a timer is
reset to zero, an event must occur; and consequently the number of
occurrences of the event must be incremented by one.

Since the set of traces is history-free, we can define E in terms of an
initial-point set P, and a next-point function N : P — 2%, where P is the set
of all time points, such that

—P, C P contains the first time point of every time trace and
—for every point p € P, a point g € P is in N(p) iff for any time trace in E
that contains p, ¢ is the successor of p in the trace.
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Based on the next-point function, we define a time point sequence
PoP1Ps - - - as a p-trace for a time point p if py = p and p,,; € N(p,).

By the nature of the time trace set =, we immediately conclude that the
next-point function is infinite and does not imply a loop. Throughout the
article, we shall interchangeably use the set of time traces and the tuple of
the initial-point set and the next-point function to define the behavior of a
real-time system.

3. SYNCHRONOUS REAL-TIME EVENT LOGIC (SREL)

SREL is specially designed for reasoning about timing constraints among
event instances and can be seen as a variation of AREL [Wang and Mok
1992] for synchronous systems. For each event e, SREL uses predicate e to
represent whether the event is happening, and it uses counter #e to
represent the number of instances that have happened so far for the event.
Thus, for instance, expression e /\ #e = 5 indicates that the 5th instance of
event e is happening at the current moment.

Given a set of events E, let #E denote Z,cp(#e), the total number of
instances that have happened for the events in E. We call k#E a counting
term of E with coefficient 2, where % is a nonnegative integer. Intuitively,
E defines a set of events that are of the same type. It is often the case that
the same type of stimulus events require the same type of responses. The
coefficients are used to compare sets of events that happen at different
rates.

Let R be a finite set of nonnegative integer-valued variables called
registers. Additionally, each register can have an undefined value undef.
The formulas ¢ of SREL are inductively defined as follows.

Definition 3.1 (SREL)
pi=e |
k#E, — k#E,~c | k#E,—r ~c
kR TRVAR-PY
{r := kH#E,}. b, |
AF[l, uld, | EF[I, uld,,

where ¢ is an integer constant; r € R; ~isoneof <, =, =, =, >;and [, u
are two nonnegative integers such that [l =u. We also allow u to be o,

We shall use ¢ = bk #E, — ko#E, = d, b1 = ¢y, AGIL, ul¢,, and EGII,
ul¢, as shorthands, respectively, for B #E, — k #E2 = ¢ N\ k#E, —
ko#tEg =d, =1 \/ ¢y, "EFIL, ul-d,, and “AF[l, ul- ¢,. When the time
range for an AF or EF operator is [0, ], we shall omit the subscript. We
shall also replace #E by #e when E = {e}.
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The snapshot operator {(r := ko#E,)} saves the value of the counting term
ko#E, into register r. The value will be kept in r unless r is set to some
other value. Thus, {(r := k.#E,)}.¢ states that if we let r have value
ko#E,, ¢ will hold. We require that all SREL formulas do not contain free
registers, i.e., any comparison involving a register has to be in the scope of
some snapshot operator for the register.

Formula AF[l, ul¢, requires that along every trace from the current
time t,, ¢; will hold eventually at some future time ¢ satisfying [ = ¢ —
t0 = u. Formula EF[l, ul$,; only requires the same property hold along
some trace.

Now let us look at some specification examples using SREL.

Example 3.2 (A Missile System). A missile system consists of three
missile firing units and two radar units. Event fire; denotes the event that
a missile is fired by the ith firing unit. Event loc; denotes the event that a
target is located by the jth radar unit.

Let Fire = {fire,, fires, fires} and Loc = {locq, loc,}. We can specify the
following properties.

—The safety property: At any moment, the number of missiles fired is no
more than the number of targets located so far, and the difference is
within 2.

AG(0 = #Loc — #Fire = 2).

—The timeliness property: A missile must be fired within six time units
once a target is found.

AG{r := #Loc}.AF[0, 6](#Fire — r = 0)).

4. SATISFIABILITY AND BOUNDED PROGRESS CONDITION

Now we give a formal semantics to SREL. We define an environment ¢ as
an assignment to all the registers in R, and let é(r) be the value of register
r in €. Environment €[r := k,#E,] is identical to environment ¢ except
that r has the current value of the counting term k,#E,. For simplicity, in
the rest of the article, we shall assume that the real-time system S = (E,
I', ®) we want to verify is understood. Therefore, we shall omit S from the
computation model (S, ) for S and simply write the model as E.

Definition 4.1 (Satisfiability). Given a computation model E = (P, N)
and an SREL formula ¢, a time point p in E satisfies ¢ under an
environment ¢, denoted by (E, p) |=¢ ¢ or simply p |=4 ¢ if the model is
understood, if one of the following conditions holds.

—p |=¢ e iff G (e) = true;

—p |=¢ ki#E| — ko#E, ~ c iff k13,5 9, (e) — koZ.cp 9, (e) ~ c;
—p |=¢ k#E, — r = c iff k13, cp 9,(e) — €(r) ~ c;

—p |=¢ 21 iff P |#¢ s
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—p |=¢ &1\ $o iff p |=¢ by 07 p [=¢ 4
—p |=¢ {r := ko#E,}.¢ iff p |:‘£[r::k2#E2] b;

—p |=4 AFIl, ul]$, iff for every p-trace pop; ..., 1 in range [[, ul, p;
|=% &1

—p |=¢ EFIl, ul¢, iff there is a p-trace pop; ..., i in range [, ul, p;
=% &1

We say model E = (P,, N) satisfies ¢ iff for environment €,, ., that
assigns undef to every register and any time point p, € Py, po |=« .
Formula ¢ is satisfiable iff there exists a computation model E which
satisfies ¢.

THEOREM 4.2 (SATISFIABILITY PROBLEM). The satisfiability problem for
SREL is undecidable.

ProOF. The theorem is proved by applying a reduction from the halting
problem of two-counter turing machines [Lewis 1979]. Given any two-
counter turing machine, we construct an SREL formula such that the
formula is satisfiable iff the two-counter turing machine reaches the final
state.

Consider a two-counter turing machine 2CT with two counters C,, C,
and n + 1 states, sq, ..., s, where s, is the initial state, and s, is the
final state. Initially, C, and C, have values ¢ and 0, respectively, for some
positive integer ¢. We introduce an event e; for each state s;. Then 2CT is
in exactly one state at any moment and can be represented by SREL
formula ¢5 = AG(\/;(e; /\;.; —e))).

We use three events e, ¢,, e, to simulate the counters. More specifically,
#e, — #e, records the value of counter C, for x = a, b. The initial state of
2CT is represented by SREL formula ¢; = e, /\ #e, = #e, + ¢ /\ #e, =
te,.

Now we consider the set of transitions in 2CT. Let (s;, s;) be such a
transition. Given a counter x, let ¥ denote the other counter.

—~Case 1: the transition increases the value of counter x by 1. Then the
predicate representing the next state is ¢ ;. 1) = ¢; /\ e, /\ ~e; N\
-e,.

—Case 2: the transition decreases the value of counter x by 1. Then the
predicate representing the next state is ¢; ;. 1) = e; \ ~e, Ne;z Ne,.

—Case 3: the transition goes to s; if x is positive in s;, and it goes to s,
otherwise. Then the predicate representing the next state is ¢ s ~0) =
me, /\ mey /\ e, /\ (e, > #e, /\e;\/ #e, = #e, /\ e;).

Therefore, the SREL formula for the transition relation in 2CT is

d)T:AG(\/(ei N AF[1, 1]((\/ djx+1)

V (V dije-1) V (V DGke=0)))),
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and the SREL formula for the entire 2CT is

b= ¢ N ¢bs AN br /N EF(e,+1).

Clearly, 2CT reaches the final state s,,; iff the SREL formula ¢ is
satisfiable. Since the satisfiability problem for 2CT is undecidable, so is it
for SREL. O

Although the satisfiability problem is undecidable in general, most
real-time systems obey certain bounded progress conditions as part of their
specifications. More precisely, the occurrences of related events are usually
balanced. For instance, whenever a stimulus event happens, its correspond-
ing response event will happen within a bounded time period. Conse-
quently, the difference between the number of occurrences of the stimulus
event and that of the response event is usually bounded by a constant at
any moment. Furthermore, if a property we want to verify involves a
comparison between the numbers of occurrences of two events, then the two
events are mostly likely related to each other in some way.

Hence, we define the following bounded progress condition for a real-time
system.

Definition 4.3 (Bounded Progress Condition). A bounded progress (B.P.
for short) condition for a real-time system is a conjunction of inequalities
between counting terms:

(I) = (/\ (bi,js ki#Ei - kj#EjS Bi,j))a
i,J

where b, ; = B, ; are two integer constants. The real-time system is well
behaved with respect to the B.P. condition if it satisfies property AG(P).
An SREL formula is well confined if, for any pair of counting terms & #E
and k,#E, that is involved in a comparison directly or indirectly through a
register in the formula, b, , = k#E, — ky#Ey, = B; , where bounds b, 5,
B, 5 are derived from ®.

In Example 3.2, the first property checks a B.P. condition for the missile
system that involves stimuli events Loc and response events Fire. As we
shall show in Section 6, the verification of a real-time system becomes
tractable under the B.P. condition. In the rest of the article, we shall
assume that the SREL formulas are all well confined by some B.P.
conditions with respect to the models they will be checked against.

5. MODECHART

Modechart [Jahanian and Mok 1986] is a graphical language extended from
STATECHART [Harel 1986] with the constructs for specifying time proper-
ties. Its visualized hierarchical structure together with a small set of
well-defined constructs makes it very attractive for defining timing behav-
iors of real-time systems. For ease of representation, we shall use a
restricted form of Modechart with only a three-level hierarchy. An example
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RAILROAD CROSSING

MONITOR CONTROLLER
APPROACH BC UP MOVEDOWN
S Feol T [ = —s
delay 100 y delay 300 | (20,100) - < oc (20,50)
|:<_(176)‘|___| [ CROSSING-3
PASSED CROSSING MOVEUP DOWN

Fig. 2. A modechart for the railroad crossing system.

is shown in Figure 2, which formally specifies the railroad crossing control
system in Section 2. The outermost box with name “railroad crossing” is the
parallel mode representing the entire railroad crossing system. The second-
level boxes with names “monitor” and “controller” are the serial modes
representing the concurrent components in the system. The innermost
boxes in each serial mode are the atomic modes representing the states of
the serial mode. The arcs in each serial mode are transitions. A triggering
condition, e.g., — BC, on an arc means that once the condition holds when
the serial mode is in the source atomic mode, the transition must be taken
immediately. A timing condition of the form (r, d) means that the transi-
tion must be taken no earlier than r and no later than d once the source
mode is entered.
The restricted form of Modechart is formally defined as follows.

Definition 5.1 (Modechart). A modechart G is a parallel mode consist-
ing of a finite set of serial modes {P,|]1 = k = n}. Each mode P, is a
structure P, =( A, a,, Ej, n, ), where

(1) A, is a finite set of atomic modes.
(2) ay, € A, is the initial mode.
3) E, CA, X A, is a set of transition edges.
(4) p,, is a function labeling each edge with either
(a) a triggering condition, i.e., a disjunctive normal form whose literals
range over the event set of the modechart, or
(b) a timing condition, i.e., a pair (r, d) wherer, d € N and r = d are
called delay and deadline, respectively.

The event set E; of G consists of an entry event — a and an exit event a —
for each atomic mode a.

To define the formal semantics for the modechart in a computation model
(Definition 2.2), we first introduce a timer 7; for each serial model P;. The
timer is associated with the entry event for every atomic mode in the serial
mode and is reset when such an event occurs. Let us denote the set of
timers by I'; and the reset function by R.
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Similar to time points, a state s of the modechart G is defined by three
assignments O, : E; — Boolean, $,: Eq — N, and J, : I'; — N. We say
a state is legal if it satisfies the following conditions:

(1) Every serial mode is in exactly one atomic mode, i.e., for any serial
mode P,, there is exactly one atomic mode ¢, in A, such that $.(— a,)
= $.(a, =) + 1, and for any other atomic mode a}, € A,, $, (= a}) =
J.(aj, —).

(2) No deadline is missed, i.e., if a serial mode P,, is in atomic mode a,, and

the largest deadline on a transition from a, is d then, T (1,) =
d

max?

max*

We say a transition (a,, a}) with a timing condition (r, d) is enabled in
legal state s if P, is in a, and r = 7, = d. A transition { a,, a},) with a
triggering condition is enabled in s if P, is in a; and if the condition
evaluates to be true in s.

Definition 5.2 (Run Model). The run model of modechart G is a pair
(Sinit7 X) where

—S; ;¢ 18 the initial state of G, i.e.,

(1) For every event e, if it is an entry event to an initial mode e, Os;,,;,(e)
= true, 9s;,;,(e) = 1. Otherwise,

Os;i(e) = false, 9s;,,(e) = 0.

(2) For every timer 7,, Js,,;,(7,) = 0.
—yx is the next-state relation from legal states to legal states defined as
follows.

(1) A legal state s’ is reached from a legal state s by taking an enabled
mode transition {(a,, a}) in serial mode P, if (1) J..(7,) = 0, and
T(1) = T (1) for all I # k, (2) for every event e, ife € {a;, —, —
arl, O,(e) = true, $,(e) = $,(e) + 1; and otherwise O..(e) =
0.(e), $,.(e) = $.(e).

(2) s' is reached from s by taking a time tick transition if (1) no
transition with a triggering condition is enabled in s, (2) for all
serial modes P, J,.(7,) = T (1,) + 1, and (3) for every event e,
0..(e) = false, $..(e) = 9. (e).

An interesting property about this definition is that the next-state
relation preserves monotonicity for events at any time point, i.e., once an
event becomes true, it will remain true until time passes. Therefore, once a
triggering condition is true, it stays true unless time passes.

Now we build the computation model for the modechart. We say a legal
state is a time point if it can reach another legal state by taking a time tick.

Definition 5.3 (Computation Model for Modechart). The computation
model for G is Eg = (Py, N) where
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—P,, is the set of initial time points, i.e., p € P, iff p can be reached from
Sini¢ Dy taking mode transitions only;

—N is the next-point relation from time points to time points such that (p,
p') € N iff p’ can be reached from p by taking a time tick transition
followed by zero or more mode transitions.

We define a modechart to be normal if no event can happen more than
once at any time point, i.e., for any (p, p’) € N and evente, 9,(e) = $,(e) + 1.
From now on, we assume all the modecharts are normal.

6. MODEL CHECKING SREL AGAINST MODECHART

In this section, we present an algorithm for model checking SREL against
Modechart. In the next section, we shall describe how to implement the
algorithm symbolically.

In order to have a model-checking algorithm, we have to be able to
represent the computation model finitely. Hence, we shall first build a
finite quotient model for the computation model, given a modechart and an
SREL formula to be verified. Then we shall apply our model-checking
algorithm to the quotient computation model.

To obtain a finite representation for the computation model of a real-time
system, we need to solve two problems. First, a timer may have infinitely
many values. We adopt the region graph approach from the dense time
domain [Alur et al. 1990]. For each timer, we use a fixed constant D to
represent all the values beyond D, where D is the largest bound in any
timing constraint concerning the timer.

Second, an event can happen infinitely often. To solve this problem, we
notice that SREL formulas only compare the differences among event
occurrences, whether they are in the same time point or in the different
time points. Given an SREL formula, we introduce a difference A,, for
every pair of terms k #E,, k.#E, that are compared either directly
through a comparison or indirectly through a snapshot operator and a
comparison. We replace k,#E, — ky#E5 by A; 5 in every comparison k#E; —
ko#E, ~ c. We replace every comparison involving a register of form
{r:=hko#tE3}.(.. . ki#E; — 17 ~c...) by {rio:=A;5}.(... 715 ~c...) where
r12 is a difference register. Note that in the rewritten formula, r; » no long
holds a constant. Once it gets the initial value in the snapshot operator, it will
increment by %2, whenever an event in E; occurs.

Recall that in Section 3 we introduced a B.P. condition to put bounds on
the term differences for the events in a real-time system. Such a condition
enables us to only consider a finite number of values for each term
difference or difference register. More specifically, let b, , and B;, be,
respectively, the lower bound and the upper bound explicitly or implicitly
encoded in the B.P. condition for difference A, 5.

—The only values for A, , that we care about are in [b, , — k, |[E4|, By o +
ko|Eo|l. We say a legal state s is tolerable with respect to ¢ if b, o —
ki|E | =k Z.cp9s(e) — ko2.cp,9s(e) = By 5 + ky|E,| for every A, , in
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¢. The reason we choose a looser bound than [ b, 5, B, ,] is that we allow
the difference to be temporarily out of the bound in intermediate states
as long as it can make it back in the subsequent time point. Once the
difference is out of the loose bound in any state, them the system is
definitely not well behaved, and an error should be reported.

—Similarly, for each difference register r, 5, its value should never be
below b, , — k;|E,|. Furthermore, for all the values above C; , where
C, , is the largest constant in all the comparisons involving r; 5, we can
represent them by a fixed constant 01’2, since r;  monotonically in-
creases, and its exact value is no longer interesting once it goes beyond
Cio.

Now let us build a quotient computation model, given a modechart G
with a B.P. condition and an SREL formula ¢. To make the quotient
computation model smaller, we only include those event variables that
appear either in some triggering conditions or in ¢. We also only include
those differences that appear in the formula. Further, let us introduce a
mode variable mode, for each serial mode P,.

Our first step is to build a quotient run model. A quotient state is an
assignment to all the mode and event variables, the timers for serial
modes, and the differences in ¢. Each quotient state represents an equiva-
lence class for the tolerable states. In addition, we introduce a special
quotient state M to represent all intolerable states.

Definition 6.1. The equivalence class for a tolerable legal state s is the
following quotient state [s]:

—For each serial mode P,, if $.(— a;) = $,(a, —) + 1, then mode, = a,
is in [s].

—PFor each timer 7, let D be the largest time bound for . If 7.(7) = ¢ = D,
then 7 = ¢ is in [s]; otherwise 7 = D is in [s].

—For each event e in some triggering condition or in ¢, if O.(e) = true,
then e = true in [s]; otherwise e = false.

—For each difference Ay, if k12,cp I (e) — ko2, cp,9:(e) = ¢ where b,
— ky|E;| = ¢ =By, + ky |Ey|, then A, , = ¢ is in [s].

From this definition, we can immediately conclude the following:
LEMMA 6.2

(1) For any timer 7, a timing condition [r, d] is satisfied in a tolerable state
s iff it is satisfied in the quotient state [s].
(2) For any comparison A ~ c¢ in the formula, it is true in s iff it is true in

[s].

(8) An event e is true in s iff it is true in [s].

Furthermore, we also have the following:
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LEMMA 6.3. Let s,, s, be tolerable legal states such that [s{] = [s,].
Then for every successor s’ of s;, there is a successor s, of sy such that
[s}] = [s5] and is reached by taking the same transition, and vice versa.

ProoF. Since [s;] = [s,], every serial mode is in the same atomic mode
in both states. Based on Lemma 6.2, we can easily conclude that a mode
transition is enabled in s, iff it is enabled in s,. We shall prove the lemma
by a case analysis.

Case 1. s'; is reached from s; by taking a mode transition. Then there is
a state s; that is reached from s, by the same mode transition. By
Definition 5.2 and Definition 6.1 we have [s}] = [s}].

Case 2. s} is reached from s; by a time tick transition. Then since s;
and s, have the same set of enable mode transitions, time can also advance
from s,. Let s}, be reached from s, by a time tick transition. By the same
definitions as in Case 1, [s}] = [s5]. O

Applying the lemma to the computation model E, = (s;,;;, N), we can
immediately conclude the following:

COROLLARY 6.4. Let p,, py be two tolerable time points in the computa-
tion model such that [p,] = [ps]. Then for every successor p'; of p,, there is
a successor py of pgy such that [pi] = [pLl, and vice versa.

Let [Elg = ([Pyl, [N]) be the quotient computation model as defined by
the equivalence relation. We expand it to include an assignment Y to all the
difference registers in every quotient time point. Initially, a difference
register r; , has either an undefined value undef or the value in A, 5. For
two quotient states [s], [s'] such that [s'] € [N]([s]), we have a transition
from ([s], Y) to ([s’], Y') if the following two conditions hold:

(1) If Y(r1 2) = undef, then Y'(r; ) = undef or Y'(ry3) = Ay ,.
(2) If Y(ry ) has a defined value, then Y'(r; 5) = Y(ry3) + &, - d where d
is the number of variables in E; N {e : O (e) = true}.

Let y be the directed graph representing the expanded quotient compu-
tation model with each node representing an expanded quotient state and
each edge representing the next-point relation between two quotient states.
If some time point with some A;, being out of range [b,,, B;,l is
reachable from an initial time point, then we report the violation and
terminate. Otherwise, our model-checking algorithm is the following induc-
tive procedure to label each node with the set of SREL subformulas in ¢
that are true in the node.

—d¢ = e: label all the nodes in which e is true.

—¢ = A; 5 ~ c: label all the nodes in which A, , ~ c.

—¢ = ry 5 ~ c: label all the nodes in which r; , ~ c.

—¢ = -¢4: label all the nodes that are not labeled with ¢;.

—¢d = ¢, \/ ¢y label all the nodes that are either labeled with ¢, or ¢,.
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—¢ = {ry:= Ay 3}. ¢;: for any node with r; , = A, , that is labeled with
¢4, label this node and all the nodes identical to it except that ; , has a
different value.

—¢ = AF[l, ul¢,: label every node satisfying that along every path from
the node, there is a node whose distance from the node is within [/, u]
and is labeled with ¢,.

—¢ = EFIl, ul¢,: label every node satisfying that there exists a path of
length in [/, u] from the node whose end node is labeled with ¢,.

Before we end this section, we present the following main two theorems.

THEOREM 6.5. For any environment € and a time point p, p |= ¢ iff ¢ is
labeled in ([pl, Y) where Y(ry5) = k12,cg I ,(e) — €(r) for any difference
register in .

ProOF. We prove the theorem by induction.

—For cases where ¢ = e or & = A; ; ~ ¢, we can immediately conclude the
theorem based on the definition of a quotient state.

—PFor the case where ¢ = r; , ~ ¢, we can also immediately conclude the
theorem by the way Y is constructed.

—For the case where ¢ = - ¢; and where the theorem holds for ¢, we have
D |#« &1 iff ¢ is not labeled in ([pl, Y). Therefore, p |=4 b1 iff = ¢
is marked in ([p], Y).

—For the case where ¢ = ¢; \/ ¢, and where the theorem holds for ¢; and
¢, the theorem can be derived from the semantic definition for p |= ¢,
\/ ¢, and the way to label ¢; \/ ¢ in our model-checking algorithm.

—PFor the case where ¢ = {r; , := A; 5}.¢; and where the theorem holds
for ¢,, let us first assume p |=4 ¢. Then by the semantic definition, p
|=41r—a,, $1. Hence, ¢, is labeled in ([p], Y') where Y’ is identical to Y
except that Y'(ry3) = Ay 5. By the labeling procedure, ¢ is also labeled
in ([pl, Y). Now let us assume ¢ is labeled in ([p], Y). Then ¢, must be
labeled in ([p], Y') according to the labeling procedure. This implies that
p |:%[r1,2:=ALZ] ¢ and consequently p |=¢ {ri2:= Ay).d;

—For the case where ¢ = EF[l, ul$, and where the theorem holds for ¢,,
we first note that each transition in the computation represents a time
tick. Let us first assume p |=4 ¢. Then, there is a path p, = p,
D1, ...p, With I = k = u such that p, |=¢ ¢,;. Now consider the path
(I[pl, ), (Ip1]l, Y1), ..., (Ipe]l, Y;) in the expanded computation model.
For any different register rq 5, we have Y, (ry ) = k12Z.cg 9, (e) — €(r)
for all 0 = i = k by the construction of Y. Therefore, ¢, is labeled in
([pz], Yp). By the marking procedure, ¢ is marked in ([p], Y). The other
direction can be proved similarly.

—The case for ¢ = AF[l, ul¢, can be proved similarly. [
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THEOREM 6.6. The time complexity for checking a well-confined SREL
formula against a well-behaved model E is in |$| - |[E]| where [E] is the
quotient graph for E and |[El] = (I, (B;,; — b,; + kiE;] +
RolEo)) - (I (C; 5 + 1))+ (D, + 2)) + (I,|ALD) - (2'F) where E is the
set of events in the quotient model.

The complexity is based on the fact that our labeling algorithm is linear to
the size of ¢ and linear to the size of the quotient graph.

7. SYMBOLIC MODEL CHECKING

As we proved in the previous section, the worst-case complexity makes the
explicit graph-labeling algorithm impractical. Among many research efforts
in recent years, the symbolic model-checking approach has emerged as a
promising solution to effectively relieve the state explosion problem. In this
section, we show how to apply the symbolic approach to the model-checking
problem for SREL and Modechart. It is a straightforward three-step
process based on the technique presented in the previous section.

The first step is to symbolically build a quotient run model, given an
SREL formula ¢ and a well-behaved modechart G under a certain B.P.
condition. This step involves building a predicate for the initial quotient
state [s;,;,] and a predicate for the next-state function [x]. Let E be the set
of events that are either in the triggering conditions in G or in ¢, E, C E
the set of events in serial mode P,, E, ., the set of events associated with
transition (a, a’), ie., E,,, = {— a’, a —}. Let o, be the event
occurrence variable for event e. For a variable x, let x' denote the copy of x
in the next state.

The predicate for the initial quotient state is the following predicate:

Sinit = /\k(modek=ak0 /\ T = O)/\
A\ e€EN{—aj)0e ANIVAN e €EE\{ ﬁako}(_' Oe) A\
lnltd A\ initd,

where predicate init; and init,, describe the initial values in the differences
and difference registers, respectively.

The next-state relation is constructed using the following rules, of which
Rule 7.1 through Rule 7.3 capture all the mode transitions and in which
Rule 7.4 captures a time tick transition. For ease of presentation, we shall
simply write x' = x + ¢ torepresent (x + ¢ <l A x' =[\/Il=x +¢ =
uNx'=x+c\x+c>u/\x' = a)wherel, u are, respectively, the
lower and upper bounds for x.
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Rule 7.1. A mode transition {a,, a}) in mode P, with condition ¥ is
captured by the following two predicates:

transg, q - =(mode, = a;) /\ ¥, /\ (modey,=a}i) N\ (1,=0)N
(N e€ENE 4,,00)0 A RVAN AN eeEk\Em,mOé =0,) N\
(Na AL =48+ ki - |Egapy NE|=k - |Egap N EY)
(N (rij=rij+ ki |Egq N EY)

and

legali,q;) 2= ~(mode, = ay) \/ =
where ¢y = 1, = 1r; ¥y = 7, = d if y = (r, d); ¢y = Y5 = ¥ otherwise.

Predicate trans,, ,,, defines when and how a mode transition is taken.
Predicate legal,,,q;) forces the transition to be taken immediately if the
triggering condition is satisfied or if P, is about to miss its deadline.

Rule 7.2. The set of the mode transitions in a serial mode P, is captured
by the following predicate:

trans, 2= \/ (4, a)ePLTANS (4, a})

Rule 7.3. The set of the mode transitions in G is captured by the
following predicate:

trans 1= \/ (trans, /\ (/\ gpx' = x))
A time tick of a single timer 7, is captured by the following predicate:
Rule 7.4.
tick, i=(1, = b,) N (th=m+ 1)\ (1,>b,) /N (1= 13)
where b, is the largest constant referred by 7.
Rule 7.5. The time tick transition is captured by the following predicate:
tick := (/\ qaylegaliyay) N\ (A1 =1+ 1)
N (/\eEE_'O:z) AN (/\A[,jAQ,j ) AN (/\r” i,j ri,j)
Combining Rule 7.3 and Rule 7.4, we finally get the next rule:
Rule 7.6. The next-state relation for G is the following predicate:

X i = trans \/ tick
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A complete symbolic representation for the railroad crossing system is given
in the following paragraphs. Here we consider the simplest case, in which we
are only interested in the two triggering events — BC and CROSSING —, and
we do not care about the differences between event occurrences.

The initial condition for the system is the following:

[Sinie) 1= (Pyon = APPROACH) /\ (tyony =0) /\ (Pcon = UP) N\

(Tcon = 0) N\

(— BC =false) /\ (CROSSING — = false).

The mode transition relation for the monitor is the following:

transyon :

(thon = 0) A

(— BC' =true) /\ (CROSSING —' = CROSSING —)\/
(Pyony = BC) /\ (my0n = 300) /\ (Pyon = CROSSING) N\
(Theon = 0) N\

(— BC'= —BC) N\ (CROSSING —'=CROSSING —)\/
(Pyoy = CROSSING) N (tyon=1) /\ (Pyon = PASSED) N\
(Thron = 0) /\

(— BC' =—BC) /\ (CROSSING —' = true)\/

(Pyon = PASSED) N (tyon = 100) /\ (Pyoy = APPROACH) /\
(Thron = 0) /\

(—=BC' =—BC) N\ (CROSSING —'=CROSSING —).

The mode transition relation for the gate controller is the following:

transcon ::

= (Peoy = UP) /\ (= BC = true) )\ (Pioy = MOVEDOWN) /\

(teon=0) \/

(Peowy = MOVEDOWN) N\ (7Tcony = 20) N
(Ptoxn=DOWN) N (1eon=0)V

(Pcoy = DOWN) /\ (CROSSING — = true) /\
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(Pton = MOVEUP) /\ (1ioy = 0) \/
(Pcoy = MOVEUP) N (teony = 20) /\ (Pgony = UP) N\
(Teon = 0) \/
(Peon = MOVEUP) /\ (— BC = true) /\
(Peon = UP) /\ (1ton = 0).
The mode transition relation for the entire system is the following:
trans ::= transyon /\ (Pton = Pcon) /\ (Tcon = Tcon) \V
transcon /\ (Pyon = Pyon) /\ (Tiron = Tron) /\
(—BC' =—B(C) N\ (CROSSING —' = CROSSING —).
The time tick transition is captured by the following predicate:
tick ::= (Ppoony = movedown = toony = 50) N\
(Pcon = moveup = 1con = 100) N\
(Pcon = up > — BC = false) \
(Pcoy = down = CROSSING — = false) /\
(Pcon = moveup = — BC = false) N\
(Tion > 300 /\ Tion = Tmon V. Twon = 300 /\ Tiyon = Tmon + 1) N
(Tcon > 100 /\ 10on = Teon V Tcon = 100 N\ 1oony = Tcon + 1) A
(— BC' = false) /\ (CROSSING —'= false) /\
(Pion = Puon) /\ (Pton = Pcon)-
Therefore, the next-state relation for the system is the following:
X ::=trans \/ tick.
The second step in our symbolic model-checking approach is to compute the
quotient computation model from the quotient run model. Let X be the set
of all variables in the model. Let X', X" be the two copies of X in different

states. We recall that a transition in the computation model is a time tick
in the run model followed by a sequence of mode transitions until a time
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Procedure: symbolic model checking

e(X) := oe;

(Aij~ve)(X):i=4~c

(rig~e)(X):i=r12 ~o

(m1)(X) := ~(61(X));

(61 V $2)(X) = ¢1(X) V $2(X);

({ri,j = 8i;}.8)(X) = (rij = A ;)(X) = $(X);
(EF[l,u]¢)(X) := computeg F(EF[l,u]¢(X));
(AFT[l,u]¢)(X) := compute sF(AF[l, u]¢(X));

end.

Fig. 3. Symbolic model-checking procedure.

Procedure: compute EF

Case 1: [ = 0 and u = 0: return ¢(X);

Case 2: | =0 and u # oo: return ¢(X) vV (3X'(M(X,X') A EF[l,u — 1]¢(X")));
Case 3: | = 0 and u = co: return pEF(X).¢(X) V33X (N (X,X') A EF(X"));
Case 4: | > 0: return AX'(M(X,X'YAEF[l - 1,u - 1]¢(X"));

end.

Fig. 4. Compute EF [I, u].

point is reached. Hence, we first compute the transitive closure for trans as
the following fixed point:

trans*(X, X') ::= wirans®(X, X').((/N\ ,exx’ = x) \/

(AX"(trans*(X, X") N\ trans(X", X))))

The condition for a quotient state to be a time point is the following
predicate:

legal L= /\<a,a'>legal<a,a’>-

Therefore, the symbolic quotient computation model is captured by the
following two predicates:

Py(X) 1= 3X's;,(X7) N\ trans*(X', X)

and

NX, X') i=legalX) N\ ( X'tickX,X") /\ trans*(X", X")) /\ legal(X’).

Finally, we apply the following symbolic model-checking procedure to the
symbolic quotient computation model. The procedure is based on the one in
Emerson et al. [1989]. The procedure recursively constructs a predicate
¢(X) to denote the set of all time points in the model in which ¢ holds. To
verify whether the model satisfies ¢, we check whether P,(X) > ¢(X) is a
tautology. The model-checking procedure is presented in Figure 3. The
recursive function computeEF(EF[l, ul$(X)) is in Figure 4.
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The recursive function computeAF(AF[l, ul¢$(X)) is identical to function
computeEF except that all existential quantifiers X' are replaced by univer-
sal quianfiers X’ and conjunctions “/\” are replaced by implications “—”.

Before we conclude this section, we would like to emphasize that in the
actual implementation it is not necessary to compute the next-point rela-
tion explicitly. When we want to find the preimage of a predicate ¢(X), for
example, we can simply compute, by a fixed-point computation, the set of
symbolic states reachable to the states in ¢(X) through zero or more mode
transitions following a time tick.

8. A FAST ALGORITHM FOR BUILDING OBDDS FOR LINEAR
CONSTRAINTS

The implementation of our symbolic model-checking approach is based on
the OBDD-based symbolic verifier SMV from CMU. Ordered binary deci-
sion diagrams (OBDDs) are a canonical form representation for boolean
formulas [Bryant 1986]. They are often substantially more compact than
tranditional normal forms and can be manipulated very efficiently. An
OBDD is similar to a binary decision tree except that it is a directed acyclic
graph (DAG) obtained by merging identical subgraphs into a single graph,
and it imposes a strict total order on the occurrence of variables as one
traverses the graph from root to leaf. The SMV model checker is based on a
description language for finite-state machines which can be annotated by
specifications expressed in CTL. The model checker accepts a finite-state
machine in the SMV language and uses an OBDD-based search algorithm
to determine whether the system satisfies the CTL specifications.

Our implementation can be viewed as an extension of SMV to a timed
domain. Although SMV already has a full set of arithmetic operations for
subrange integers, the implementation is extremely inefficient.

Since our approach involves many linear constraints of formx + ¢ ~y +
d over subrange integers, it is important to build the OBDDs for such
constraints efficiently both in time and in space.

The integer type in SMV is treated with almost no difference from an
ordinary enumeration type. For an enumeration type variable, the defini-
tion consists of a bit vector to represent the variable together with a
complete ordered binary tree to map integer values to their binary repre-
sentations. Whenever a subrange integer variable is declared, this defini-
tion scheme causes an exponential blow-up both in time and in space.
Figure 5 shows such an example.

The same inefficiency lies in building OBDDs for constraints among
subrange integer variables. Given such a constraint, SMV exhaustively
enumerates all possible combinations of values for variables involved in the
constraint and determines the set of combinations that makes the con-
straint true. As a result, the intermediate results during the building could
have forbiddingly large sizes, and the building process is extremely time
consuming. Figure 6 shows the construction of an expression x’' = (x + 1)
mod 8.
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VAR

X: 0.7,
VAR

BDD
0 | [LsT]
L1 [ LusT ]
Cx3 ] [ x3] | x3] | x3
0 4 2/\6 1/\5 3/\7 | 4 | [usST]
_ 6 J[usT]

X1

Fig. 5. A variable declaration.

We observe that for our purposes the constraints are only a subset of
linear constraints. At most two variables are involved in any constraint.
Hence, it is possible to devise a very efficient algorithm for building OBDDs
for such linear constraints. For ease of presentation, we assume that all
variables only have nonnegative integer values.

In our scheme, we do not need to build the explicit mapping from integer
values to their binary representations because we insist on the standard
binary encoding for integer values. Thus, declaring a variable takes no time.

In the following, we shall present the OBDD construction algorithms for
simple constraints of form a + b ~ ¢ where a, b, ¢ can be either variables
or constants. We shall then discuss how to build OBDDs for complex linear
constraints that involve more variables and coefficients. At the end, we
shall show some experimental results.

Let x = x1%9 ...%,,, ¥ = Y1¥2 -+ -Yn, 2 = 2129 ...2, be three n-bit
integer variables. Let ¢ = c¢icy...c,, be an n-bit constant. Given a
variableor a constant v, let v[k, n] denote the last n — £ + 1 bits of v. For
thethree variables, we use interleaving variable ordering among them with
the highest bit first, and the ordering z,, x,, v, at each bit for all %.

First, let us consider constraint x = y + z. Let eq(i, k) denote the
predicate for x[k, n] = yl[k, n] + z[k, n], and the carry-bit of y[k, n] +
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X' =(X+1)mod8

/\

(X+1)mod8 X’

BDD BDD

= Ture

True

Fig. 6. The construction process of a constraint.

zlk, n] is i where i = 0, 1. Let eq(0, n + 1) = true, eq(1, n + 1) =
false.Then we have, for £ = n,

eq(0, k) =(2; N\ x, =y, \/ 2 /\ 2, N\ y) /\ eq(0, B+ 1)
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BDDe ‘(IO,k) BDDeQ,k) BD]g l(‘l:),k) BDDltl,k)

BDD (0 k+1)

BDD (1,k+1) BDD (1,k+1)

............. - +
1-branch 0-brach 0 1

Fig. 7. Illustration of the BDD construction scheme.

eq(1, k) =(z; N\ & N\ yo) N\ eq(0, k+1) v

(Zr N % Ny oz N xp = y) N\ eq(l, k+ 1),

Figure 7 shows how to build the BDD for eq(i, £) from the BDD for eq(i,
k + 1). In the figure, BDD, (i, k) denotes the BDD for eq(i, k).

LEMMA 8.1. The BDD for x = y + z has a size =10n and can be built in
time O(n).

ProOF. There is at most 10 nodes at each bit. Since the final BDD for

x =y +2is BDD,,(0, 1), and there are n bits, the size of the final BDD is
=10n. Furthermore, the time for building such a complete BDD is O(n).
O

COROLLARY 8.2. There is a BDD of size =5n for x = y + ¢ which can be
built in time O(n).

Proor. If we replace z by ¢ in x = ¥y + z in Figure 7, then only one
branch from node z, is needed. Therefore, at most five nodes are needed for
each bit. Therefore the corollary holds. [l

Now let us consider a constraint of the form x <y + z. Let c/t(k) denote
the predicate for x[k, n] < (y[k, n] + z[k, n]) mod 2" **1 and the
carry-bit of y[k, n] + z[k, n] is 1. Let [t(k) denote x[k, n] < ylk, n] +
z[k, n]. Let clt(n + 1) = lt(n + 1) = false. Then we have, for £ = n,

clt(k) = (zz N\ % N\ yp \/ 2, N\ x, = y5) N\ clt(k +1)

(zp N\ & A\ yp) N\ Ltk + 1),
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Table I. The Test Result for x = (x + 1) mod 2¢

Original Verifier Modified Verifier
i Time (sec.) Transition Total Time (sec.) Transition Total
12 689 59 + 1 12393 0.27 59 + 1 262
13 2838 66 + 1 24710 0.18 64 + 1 291
14 >10284 ? ? 0.22 69 + 1 321
15 ? ? out of memory 0.18 74 +1 352
16 ? ? out of memory 0.23 79 +1 384

Table II. The Test Result for the Railroad Crossing Example

Original Verifier Modified Verifier
max Time (sec.) Transition Total Time (sec.) Transition Total
300 6.93 426 + 1 3098 0.42 337 +1 1996
3000 661 582 + 1 13280 0.43 439 + 1 2660

k) =(Z N\ & Ny Vo2 N & 2 N\ xp N\ oy
Z N\ x, /\ ) N clt(k+1) \/

The right part of Figure 7 shows how to build the BDDs for cl#(k) and
lt(k) from the BDDs for clt(k + 1) and [¢(k + 1). In the figure, BDD_,,(0,
k) is the BDD for clt(k), and BDD,,(1, k) is the BDD for lt(k).

LEMMA 8.3. The BDD for z <y + z has a size =10n and can be built in
time O(n).

ProoF. At most 10 nodes are introduced for each bit. Since the BDD for
x =y + cis BDD;(1), and there are totally n bits, the lemma holds. [

COROLLARY 8.4. There is a BDD of size =5n for x < y + ¢ which can be
built in time O(n).

For other types of comparison operators, we can apply very similar ideas
and prove the same results. Therefore, we omit the descriptions for these
algorithms.

It is not difficult to see from Figure 7 that if we swap the order among x,,
¥z, and z, for some %, the size of the graph at each of these bits is still a
constant, and therefore we can still obtain BDDs with sizes linear to the
number of bits in these variables.

Now, let us consider how to deal with a linear constraint with many
variables and constant coefficients. We can first unfold the constraint so
that it does not include coefficients. Then we break such an unfolded
constraint into a conjunction of constraints each of which contains at most
three variables by introducing dummy variables. After we obtain the BDD

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 2, March 1997.



Symbolic Model Checking for Event-Driven Real-Time Systems . 411

for each small constraint, we can repeatedly and two BDDs that share a
common dummy variable and existentially quantify out the dummy vari-
able. The final result will be the BDD for the original constraint.

We have incorporated the OBDD construction algorithm for linear con-
straints into SMV and tested our implementation on two examples. The
first example is the construction of expression x = (x + 1) mod 2°. The
second example is the construction of the transition relation for the
railroad crossing example described in a previous section. These two
examples are tested on a SparcStation 1 with 20MHz clock and 16MB
memory. The results are shown in Tables I and II.

A value listed in column transition is the number of BDD nodes repre-
senting a transition relation plus the number of BDD nodes representing
an invariant. In our testing examples, all invariants are simply true, and
therefore the corresponding BDDs are of size 1. A value listed in column
total is the total number of BDD nodes used in a BDD construction,
including those consumed by variable definitions. A question mark means
that the value is not available. For these two test cases, we observe that the
modified verifier achieves one to two orders of magnitude savings in time
and significant savings in space.

9. CONCLUSIONS

We proposed in this article a logic called SREL for the verification of
synchronous event-driven real-time systems and described a symbolic
model-checking procedure for it. We showed a fast BDD construction
scheme for linear constraints that demonstrate order-of-magnitude im-
provement over SMV. Such a BDD construction scheme has its own general
interest in other linear constraint systems as well. We are continuing work
to gain more efficiency by exploiting the semantics of synchronous systems
where transient states are not observable.

Much theoretical and practical work needs to be done. Currently, we are
refining our symbolic model checker for SREL based on SMV.
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