
As appeared in: Proceedings of the Real-Time Systems Symposium (RTSS’97), San Francisco, CA, Dec. 1997.

Static Priority Scheduling for ATM Networks

Chengzhi Li Riccardo Bettati Wei Zhao

Department of Computer Science
Texas A & M University

College Station, TX 77843-3112
FAX 409 - 847 - 8578

Phone 409 - 845 - 5098
Email: fchengzhi,bettati,zhaog@cs.tamu.edu

Abstract
Static-priority scheduling is popular for traffic schedul-

ing in ATM switches because it is less costly than dynamic
priority scheduling while being sensitive to the delay con-
straints of connections. We study delay computation and
priority assignment problems in an ATM networks with
static priority scheduling. Given an ATM network with ar-
bitrary topology, it is possible that the traffic on it may be-
come unstable (i.e., packet delays become unbounded) due
to the potential cyclic dependency of the traffic. An unstable
network is definitely unacceptable for many delay sensitive
applications. We start by formally deriving a simple con-
dition under which the network is guaranteed to be stable.
We then develop a numerical method to compute worst-case
end-to-end delays in an ATM network with arbitrary topol-
ogy. Convergence of the method is formally proved and a
closed form for the computing error is obtained. Despite
of its advantages, static-priority scheduling remains sensi-
tive to proper priority assignment. We describe two simple
priority assignment methods, which we show to outperform
other commonly used methods.

1. Introduction
In this paper, we study ATM networks that usestatic-

priority scheduling as their cell transmission policy. Tra-
ditionally, FCFS (first-come-first-served) has been the dis-
cipline used for scheduling cell transmission. While in-
expensive, FCFS is not sensitive to delay requirements of
applications. Hence it makes it difficult to support mul-
tiple levels of quality of service as proposed in the ATM
standard. On the other hand,dynamic-priorityscheduling
is capable of providing delay-sensitive cell transmission.
However, dynamic-priority schemes are known to be diffi-
cult to implement in high-speed networks. At present there
is no ATM product that provides dynamic link schedul-
ing. Static-priorityscheduling can be considered a compro-

mise between FCFS and dynamic-priority scheduling. It is
relatively inexpensive in comparison with dynamic-priority
scheduling while providing delay-sensitive communication
to applications.

Three key problems must be addressed when using
static-priority scheduling in ATM networks.

� End-to-End Delay Computation.Usually, the end-to-
end delay can be obtained using adecompositionap-
proach. In this approach, the network is decomposed
into servers, and each ATM connection is viewed as
traversing a sequence of servers. The worst-case end-
to-end cell delays are obtained by summing up the
upper bounds of the delays suffered by a connection
at each of the servers [4, 17, 18].

� Stability. Because the topology of an ATM network
can be arbitrary, it is possible that traffic of one con-
nection interacts with that of another, resulting in a
cyclic dependency among the connections. In this
case, the system may become unstable in the sense
that some of the delays are unbounded [4, 17]. Even
if the system is stable, an iterative procedure must be
used for the delay computation to accommodate these
feedback effects. In [19], the stability problem was
addressed for systems with FCFS scheduling. Deter-
mining worst-case delays with FCFS scheduling in
a system with traffic dependencies was dealt with in
[14].

� Priority Assignment.The delay bounds for individual
cells depend on the priorities assigned to their respec-
tive connections. This assignment should be sensitive
to the deadline requirements of the connections in or-
der to maximize the chance that the entire connection
set can be admitted, i.e., all the deadlines of connec-
tions can always be satisfied. In [15] various priority
assignment methods were examined and compared
for systems with a single server or with traffic reg-
ulation mechanisms.

In this paper, we are addressing the three issues de-
scribed above in the context of ATM networks. Differently
from the previous work, we concentrate on ATM switches
with static-priority schedulers. In addition, we allow for
networks with arbitrary topology and therefore need to ad-
dress the stability problem. We do not assume that traf-
fic regulation mechanisms are in place. For a stable sys-
tem with arbitrary topology, we describe an efficient itera-
tive procedure to compute the worst-case end-to-end delay
of cells. We formally prove the convergence of the proce-
dure and derive a closed form for the computation error. No
analysis on computation error for this type of iterative delay
computation was reported before.

Based on the delay-computation method developed, we
study five priority assignment algorithms. As the base
method for comparison, we assign the same priority to all
connections, effectively scheduling cells in FCFS manner.
The second algorithm assigns the priority in a deadline-
monotonic manner [1, 13]. That is, the smaller the relative
deadline of a connection, the higher is its priority. The third
algorithm combines the first two by recursively partitioning
the connection set into subsets of connections. Priorities
are assigned at subset level, based on deadline information,
and the connections in each subset are scheduled FCFS or-
der. Our performance comparison shows that this partition
method outperforms the first two methods in all the situa-
tions tested.

It is to be expected that an algorithm that is aware of
the topology or the load of the system performs better than
strictly deadline driven. We therefore go on to study a ba-
sic priority assignment approach described by Cruz [4] for
a limited class of system configurations. We integrate the
scheme proposed by Cruz with our partition scheme, in fact
proposing an algorithm that is both delay aware and topol-
ogy aware. Our evaluations show that the integrated ap-
proach by a large margin outperforms the remaining four
algorithms.

The rest of this paper is organized as follows: In Sec-
tion 2, we review the previous work and compare it with the
approach taken in this paper. Section 3 describes a formal
model of connections and ATM networks. The worst-case
delay computation method is developed in Section 4, while
Section 5 deals with priority assignment methods and their
performance evaluations. In Section 6, we conclude the pa-
per with a discussion of possible extensions.

2. Previous Work
Determining delay bounds has been the pivotal issue in

the development of real-time technology [12, 21, 22, 23,
24]. Much work has focused on centralized systems [16].
In general, obtaining delay bounds in a network environ-
ment is difficult due to the distributed nature of the problem.
Nevertheless, considerable progress has been made recently
towards obtaining delay bounds for network traffic in a va-

riety of settings. Much of the previous studies on meeting
end-to-end deadlines in ATM networks have concentrated
primarily on the design and the analysis ofscheduling poli-
ciesfor ATM switches [3, 6, 8, 11, 17, 19, 25]. The efficient
implementation of most of these schemes turns out to be dif-
ficult in high-performance switches. Therefore, most ATM
switches have very simple support for traffic scheduling,
typically in form of FCFS or static priority. In this work, we
assume that a static-priority scheduling discipline is used at
the ATM switches. Most previous work also assumes that
either cyclic dependencies among connections do not exist
or that they are eliminated by some internal network control
mechanism (e.g., traffic regulation, reshaping by dedicated
hardware, and framing) [2, 4, 5, 11]. We explicitly take
into account possible cyclic dependencies among connec-
tions without using such mechanisms. We investigate and
obtain conditions under which the system is stable and are
able to determine the delay bounds under such conditions.

3. Connection and Network Modes
Real-time systems typically operate in amodalfashion;

at any given instant of time the system operates in one of
a set of known modes [20]. System operation in a specific
mode is characterized by the execution and the requirements
of a previously defined set of applications. Thus, each oper-
ational mode of the system has an associated set of connec-
tions that must be established among applications that need
to communicate. It is critical for these systems to ensure
that the deadlines of all the connections in such a set are
met.

LetM = fM1;M2; : : : ;MNg denote the set ofN con-
nections that must be admitted for a successful operation
of the system in a particular mode. LetDi be the relative
end-to-enddeadlineof cells belonging to connectionMi.
The deadline is a fixed performance requirement. On the
other hand, letdi denote the worst case end-to-enddelayof
cells belonging to connectionMi. This delay varies with
the load experienced by the network. Hence, the deadline
requirements of a set of connections are met if the delays do
not exceed the specified end-to-end deadlines.

3.1. ATM Networks
In an ATM network, hosts are connected to ATM

switchesand ATM switches are connected to each other us-
ing physicallinks. As an example, consider the network
with four switches shown in Figure 1. Although this ex-
ample may not be representative of a typical ATM network,
it is used to illustrate a number of important concepts dis-
cussed in this paper. An ATM switch consists ofinput ports,
a switching fabric, andoutput ports. When an ATM cell
arrives at an input port of a switch, it is delivered by the
switching fabric to an output port, and is transmitted to the
next host or switch on the physical link associated with the
output port. We model the ATM network as a collection of
servers. A server is an abstraction of a network component

2

Host 2

H
o

st
 1

Host 0

H
o

st
 3

Input Port

Output Port

Switch Fabric

Swi tch 0

Swi tch 1

Swi tch 2

Swi tch 3

Figure 1. ATM Network with Four Switches

– be it an input port, a switching fabric, an output port, or a
physical link – which is used by a connection.

Traditionally, servers are classified into two categories:
constant serversandvariable servers[4, 18, 19]. A con-
stant server delays each cell by a constant amount of time. It
does not, by itself, change the traffic flow characteristics of
a connection. For example, physical links and nonblocking
switching fabrics are constant servers. In switches without
input buffering, input ports can be modeled as constant de-
multiplexer servers: arriving cells are demultiplexed based
on the information in the cell header, a process that can be
done in constant time.

The behavior of output ports of a switch, on the other
hand, is more complex. An output port may simultaneously
receive cells belonging to different connections competing
for transmission on the link associated with the output port.
Thus, cells may be buffered at an output port and transmit-
ted in an order that is determined by the scheduling disci-
pline used in the switch hardware. Note that a multiplexor
server must be modeled as a variable server since the delay
suffered by a cell in this server varies depending upon the
queue length in the buffer. Consequently, the traffic char-
acteristics of a connection at the output of this server may
differ from that at the input.

To simplify the delay analysis, we can eliminate all con-
stant servers as follows: First, we subtract the constant de-
lay of each server from the deadline of each connection
traversing that server. Then we set the constant delay of
each constant server to zero. Consequently, we can focus
only on the output port controllers. In the rest of this paper,
we assume that all the deadlines of connections have been
modified as described above.

The scheduling policy at the output port of the ATM
switch determines the order in which cells from connec-
tions that use the outgoing link are transmitted. Hence, the
scheduling policy has a direct impact on the delays experi-
enced by the cells of a connection as they are buffered at the
output port. As a result, the traffic of a connection typically

becomes morebursty. This increase in burstinesss may in
turn affect the delay experienced by cells of other connec-
tions, and thus, perturb other traffic flows in the network.

In this paper, we consider ATM switches with static-
priority schedulers at their output ports. With static-priority
scheduling, every connection is assigned a priority at each
server it traverses. We call the priority assignmentstatic if
it is time-independent. A priority assignment is said to be
fixed if the priority assigned to the connection is the same
on all the servers it traverses.
3.2. Connection-Server Graphs

We use the above abstraction for connections and servers
to construct aconnection-server graph. A connection-
server graph is constructed as a labeled, directed graph with
the servers as its nodes. A directed edge is introduced from
Serverk to Serverj if there is a connection that is served by
Serverk and Serverj in sequence. The sources and destina-
tions of connections are also part of the connection-server
graph. The connection-server graph is used to facilitate the
following discussion on network stability.
Servers and their output links. Servers in a connection-
server graph are multiplexors with a single output link. The
topology of a connection-server graph is therefore fully de-
termined by two sets of variables:P (j) specifies the set of
all servers whose output traffic enters Serverj, andC(j) is
the set of all connections that traverse Serverj. We call the
servers inP (j) thepredecessorservers of Serverj.
Routes. The route of a connection is defined by the se-
quence of servers traversed by that connection. Lets(i; j)

denotes the identity of thejth server in the route of Connec-
tion Mi. If Si is the total number of servers serving Con-
nectionMi, the route of Mi is the sequenceGi of servers
serving that connection.
Gi = < s(i; 1); s(i; 2); : : : ; s(i; j); : : : ; s(i; Si) > : (1)
Thepartial routeGi;j is the set of servers traversed by a

cell of ConnectionMi from the sourceup to and including
Serverj. In other words,Gi;j contains all the servers used
byMi upstream from Serverj, including Serverj.

3.3. Meeting Deadlines
Main Issues. As we mentioned earlier, to effectively ana-
lyze the end-to-end cell delays in ATM networks, three im-
portant issues must be addressed.

1. System Stability:An ATM network is stable if and
only if the end-to-end delays of each connection can
be bounded. Stability cannot be taken for granted in
networks with arbitrary topology. If the connection-
server graph has cycles, there may be feedback ef-
fects in the queue lengths for servers on the cycle.
Due to the presence of these feedback effects, the
system may be potentially unstable, with connections
having unbounded cell delays. Obviously, it is not a
fruitful exercise to determine delay bounds in a po-
tentially unstable system. Therefore, determination
of system stability is a critical step in the computa-
tion of communication delay bounds.

3

f

rho

F(I)

I

beta

Figure 2. Linear Traffic Bounding Function F

with Parameters � and �.

2. End-to-end cell delay bounds:In a network that is
shown to be stable the end-to-end delay of a connec-
tion is the sum of the worst-case local delays at each
server along its route. Therefore, in order to derive
the end-to-end delay of a connection we derive the
worst-case local delay, that is, the upper bound on the
delay a cell of the connection experiences at a partic-
ular server, for each of the servers on its route.

3. Priority assignment:The priorities assigned to con-
nections on the servers control their local delay
bounds. The assignment should be sensitive to the
deadline requirements of the connections in order to
maximize the chance that all the deadline require-
ments of the connections can be met, and the con-
nections can be admitted.

Traffic Characterization. In order to allow for an ana-
lytical delay calculation, the traffic is characterized in form
of a traffic bounding function, which defines the maximum
number of bits that can arrive as function of the time inter-
val. This bounding functionFi;j(I) specifies the maximum
number of cells that can arrive at Serverj for Connection
Mi during any interval of lengthI . In the following discus-
sion, we will assume that the traffic entering the network is
bounded by a linear traffic function [4] of the form

F (I) = min(I; � + � � I); (2)
which models a traffic that is shaped by a token bucket of
size� and rate�, followed by a leaky bucket with the rate
equal to the link speed, which we normalize to one. In the
following we will call a traffic that is characterized by Equa-
tion (2) to bebound by a(�; �) function. In particular, we
assume the traffic of ConnectionMi at its entrances(i; 1)
to the network to be bound by a(�; �) function with param-
eters�i and�i.

As illustrated in Figure 2, the linear bounding function
consists of two linear segments, one with a rate of one, and
one with rate�. Following the terminology in [9], we call
the intersection point of the two segments theflex point,
which is denoted asf in Figure 2.

In order to quantify the effect connections have on each
other, we want to cluster the connections sharing a partic-
ular link that are assigned the same priority, and represent
them by a single traffic bounding function. For this, we de-
fineFp;j(I) to be the aggregated traffic of connections with

priority p on the output link of Serverj. That is,Fp;j(I)
is the maximum number of cells of connections with prior-
ity p that can leave Serverj during any interval of length
I . Similarly, we letJp;j be the aggregated cell traffic of
connections with priorityhigher than or equal top on the
output link of Serverj. That is,Jp;j(I) is the maximum
number of cells of connections with priority higher than or
equal top that can leave Serverj during any interval of
lengthI . These traffic bounding functions will be useful in
the following delay analysis.
Worst-Case Delays. Let di be theworst-case end-to-end
delayexperienced by ConnectionMi. We definedp;j to be
the worst-case delay experienced at Serverj by a connec-
tion with priority p. If ConnectionMi is assigned priority
�(i; j) at Server j, thend�(i;j);j is theworst case local de-
lay of ConnectionMi at Serverj, and the end-to-end delay
forMi can be formulated as the sum of the worst-case local
delays on its route:

di =

SiX
j=1

d�(i;s(i;j));s(i;j): (3)

Assuming a system withK servers andP priorities per
server, in the following discussion we will use theKP -
dimensional vector~d of delays at all priorities at all the
servers in the system, i.e.,

~d = (d1;1; d2;1; � � � ; dP;1; � � � ; d1;K ; � � � ; dP;K)>: (4)

4. Stability and Delay Analysis
In this section, we first derive the expression for the local

delays, based on which we formulate a simple criteria for
stability. We then proceed to develop an iterative method
for computing the local delays. Once the local delays have
been calculated, the end-to-end worst-case delay of each
connection can be obtained by adding up the local delays,
as illustrated in Equation (3).
4.1. Traffic Bounding Functions

We argued earlier that knowing the traffic bounding
functions of connections allows us to analytically com-
pute delay bounds. Unfortunately, the shape of the traffic
changes as the latter is routed through the servers. In order
to determine delay bounds at servers inside the network, the
effect servers have on the traffic shape must be known. The
following theorem allows to determine the traffic bounding
functionFi;j(I) for ConnectionMi at the input of Serverj,
when the source traffic ofMi is bound by a(�; �) function
as defined in Equation (2).
Theorem 1 For any connectionMi whose traffic at its en-
trance to the network is bound by a(�; �) traffic constraint
function with parameters�i and�i, the traffic ofMi at the
output of any serverj on its route is bound by a(�; �) func-
tion with parameters�� and��, where

�� = �i + �i
X

g2Gi;j

d�(i;g);g (5)

�� = �i : (6)

4

According to Theorem 1, as the traffic moves along its
route, it remains bounded by a(�; �) function. The rate
� remains constant along the route, but the burstiness� in-
creases as a function of the accumulated worst-case delay
on the route. This theorem generalizes earlier results by
Cruz [4] and Rahaet al [19], where the traffic characteris-
tic function at the output of an FCFS server was obtained in
terms of that at the immediate input to the server [4] or at the
source [19]. In Theorem 1 we extend these results to servers
with static-priority scheduling. As we will see, Theorem 1
facilitates the efficient computation of worst-case delays in
networks with static-priority scheduling.

Cells from different connections in an ATM network
may be multiplexed at the multiplexor of a switch and trans-
mitted over its output link. In order to determine cell delays,
we must characterize the aggregate cell traffic over a single
link. The following theorem describes the aggregate traffic
for an arbitrary set of connections over a particular link.
Theorem 2 LetM� be any subset of the connections that
traverse Serverj. Its aggregate traffic on the output link of
Serverj is bounded by a(�; �) function with parameters��
and ��, where

�� =
X
i2M�

0
@�i + �i

X
g2Gi;j

d�(i;g);g

1
A (7)

�� =
X
i2M�

�i: (8)

It follows that every aggregate traffic inside the network
is bound by a(�; �) function, and we can determine the
parameters by applying Equation (7). In particular, we can
use Equation (7) to determine the traffic bounding functions
Fp;j andJp;j for the aggregate traffic with priority equal or
higher than the given priorityp, respectively, at the output
link of Serverj. This is of use in analyzing the delays at
the servers in the network, as we describe in the following
section.

4.2. Expressions for Local Delays
Once the traffic bounding functions of both the traffic

entering the network and the traffic inside the network are
known, the local delays for every connection at each switch
can be determined. Formula (9) indicates how long a newly
arriving cell with priorityp can be delayed at a given switch
j in a stable network. As defined earlier,P (j) denotes the
set of predecessor servers to Serverj.

dp;j = max
0<t�Tp;j

(
X

k2P (j)

Jp�1;k(t+ dp;j)

+
X

k2P (j)

Fp;k(t)� t) + 1 : (9)

In this formula,Tp;j denotes themaximum busy intervalfor
all connections with priority equal to or higher thanp on
Serverj. In other words, ServerSj never processes cells

with priority equal to or higher thanp for more thanTp;j
consecutive time units. Formula (9) describes the max-
imum delay of a cell as the time the cell is delayed by
higher-prioritycells, which arrived before or while the cell
is queued, andsame-prioritycells, which were there before
the arrival of the new cell. If no higher-priority connec-
tions “join” a set of connections at a server, then the delays
at that server are zero; the traffic simply flow through the
server. This is illustrated by the following lemma.
Lemma 1 If all the traffic with priority higher than or
equal top at Serverj comes from only one previous server
thendp;j = 0.

Lemma 1 holds because the cells have been ordered at the
output link of the previous server. Serverj now simply
forwards the cells. Given the shape of the traffic bound-
ing functions, we can formulate the maximum busy interval
Tp;j using the following closed form.
Theorem 3 The maximum busy intervalTp;j at Serverj for
all connections assigned priority higher than or equal top
is given by
Tp;j = min

t>0
ftj

X
k2P (j)

Jp;k(t)� t < 0g

=

P
i2C(j);�(i;j)�p [�i + �i �

P
g2Gi;j ;g 6=j

d�(i;g);g]

1�
P

i2C(j);�(i;j)�p �i
: (10)

The summations in Equation (10) go over all connections
that traverse Serverj and are assigned a priority higher or
equal top. We note that the termdp;j occurs on both sides
of Equation (9). This means that the local delays cannot
be determined directly, but are solutions to the system of
equations defined by Equation (9). Two key problems must
be addressed: First, we need to know the condition under
which the system is stable. If the system is not stable, no so-
lutions to Equation (9) exist. Second, assuming the system
is stable, we need to solve Equation (9) efficiently. Solv-
ing the equation directly is very expensive because of the
“max” operation on its right-hand side. The following the-
orem provides a means to effectively determine whether a
system is stable. We use the term� to indicate whether the
delay for a connection on a given server has an effect on
the delay for that connection on servers downstream. For
this purpose, we define�i;q;s;p;j to be 1 if Servers is up-
stream from Serverj on the route of ConnectionMi, and
the connection is assigned priorityq andp on Servers and
j, respectively. The value for�i;q;s;p;j is zero otherwise.
For each serverj we define a serverj� among the predeces-
sor servers of Serverj, whose output traffic flowing through
Serverj has the largest flex point. We say that Serverj� is
critical for Serverj.
Theorem 4 The worst case delaydp;j at Serverj for cells
of connections with priorityp is

dp;j = �p;j +

KX
s=1

PX
q=1

Cq;s;p;jdq;s; (11)

5

whereK is the number of servers in the system, and�p;j

andCq;s;p;j are defined as follows:

�p;j =

P
i2C(j);�(i;j)�p �i + 1

1�
P

i2C(j);�(i;j)<p �i

+

P
i2C(j);�(i;j)�p �i � 1

1�
P

i2C(j);�(i;j)<p �i
�

P
i2C(j�);�(i;j�)=p �i

1�
P

i2C(j�);�(i;j�)=p �i

wherej� 2 P (j) is a critical server for Serverj, and

Cq;s;p;j =

P
i2C(j);�(i;j)�p �i � �i;q;s;p;j

1�
P

i2C(j);�(i;j)<p �i
+

P
i2C(j);�(i;j)�p �i � 1

1�
P

i2C(j);�(i;j)<p �i
�

P
i2C(j�);�(i;j�)=p �i � �i;q;s;p;j

1�
P

i2C(j�);�(i;j�)=p �i
:

The equations in Theorem 4 can be written as a system
of equations as follows:

~d = ~�+ C�~d ; (12)

where ~� = (�1;1;�2;1; � � � ;�P;1; � � � ;�P;K)> , andC is
given as following2
66666666664

0 C
2;1;1;1

� � � C
P;1;1;1

� � � C
P;K;1;1

C
1;1;2;1

0 � � � C
P;1;2;1

� � � C
P;K;2;1

...
...

...
...

... 0
...

...
...

...
... C

P;K;P�1;K

C
1;1;P;K

C
2;1;P;K

� � � C
P;1;P;K

� � � 0

3
77777777775

We simplify the notation for the system of equations (12)
by denoting

zp;j(~d) = �p;j +

KX
s=1

PX
q=1

Cq;s;p;j � dq;s (13)

and ~Z(~d) = [z1;1(~d); � � � ; zP;K(~d)]>, and

~d = ~Z(~d) : (14)

Although Equation (14) may at first sight look linear, it
is not. The values of�p;j andCq;s;p;j depend on the choice
of Serverj� as critical server, and so indirectly on the delay
di;j� on that server.

If we defineCk
q;s;p;j to be the value forCq;s;p;j , if Server

k in P (j) were to be the critical server for Serverj, then the
upper bound~Cq;s;p;j onCq;s;p;j can be defined as

~Cq;s;p;j = maxk2P (j)

�
Ck
q;s;p;j

	
(15)

and, similarly,
~�p;j = maxk2P (j)

�
�k
p;j

	
: (16)

4.3. Stability Criteria and Delay Computation

The following theorem then formulates a criteria for the
stability of the system.
Theorem 5 For a given priority assignment, if

� = max
p;j

(

KX
s=1

PX
q=1

~Cq;s;p;j) < 1 (17)

then the system is stable, where~Cq;s;p;j is defined in (15).

Results similar to Theorem 4 and Theorem 5 were ob-
tained earlier by Cruz [4] and Liet al [14] for systems with
FCFS schedulers. As FCFS scheduling is a special case of
priority scheduling, our result here generalizes the earlier
work. In addition, Theorem 5 gives a concise criterium for
stability. Furthermore, Theorem 4 provides the basis for ef-
ficiently finding the worst case delays.

Equation (14) can be solved by using a simple iter-
ative procedure as follows: Let~d[0] represent theKP -
dimensional delay vector at the beginning of the first iter-
ation, and let~d[n] the same vector at the end of thenth it-
eration. Before the first iteration, vector~d[0] is initialized to
be

~d[0] := (1; 1; : : : ; 1)> : (18)
During thenth iteration, the new value for~d is computed as
follows:

~d[n] := ~Z(~d[n�1]) : (19)
In order to demonstrate the convergence of this iterative

procedure, we need to determine the error between~d and
~d[n], the vector at the end of thenth iteration. That is, we
need to establish the difference between the value ofdp;j
computed at the end of thenth iteration and the real value
of dp;j . For the iteration procedure to converge, this differ-
ence must become zero for large values ofn. The following
theorem gives an estimation of~d at the end of thenth it-
eration. We use the notationk � k to denote the maximum
norm.
Theorem 6 For a stable system, if the iterative procedure
defined by (18) and (19) is used to solve (14), then at the
end of thenth iteration the following holds:

k~d� ~d[n]k �
(�)n

1� �
� k~d[1] � ~d[0]k ; (20)

where� was defined in Equation (17).

The convergence of the iterative procedure follows as a
corollary, given that we showed earlier (Theorem 5) that in
a stable system� < 1 holds, and therefore

lim
n!1

�n

1� �
= 0: (21)

As the value forn increases, the right-hand side of Equa-
tion (20) tends to go to zero. Hence, the iterative procedure
converges.

As a result we have an effective scheme that - given a set
of connections and their routes in a network with arbitrary

6

topology and static-priority scheduling on the links - deter-
mines (1) the stability of the system, and (2) the local delays
of connections at the switches. This scheme assumes(�; �)

traffic bounding functions at the entrance to the network and
does not rely on traffic regulation inside the network.

5. Priority Assignment
Given static-priority schedulers in the servers, the prob-

ability that a set of connections can be established depends
on the way the prioritites on the servers are assigned to con-
nections. Unfortunately, the following theorem indicates
that it is very unlikely that an efficient optimal priority as-
signment algorithm can be found.
Theorem 7 Given a general-topology connection-server
graph and a set of connectionsM, the problem of finding
a priority assignment�(i; j) of connections to servers so
that every connectionMi meets its end-to-end delayDi is
NP-complete.

Given that an efficient optimal assignment algorithm is
unlikely to exist, we compare a number of heuristics, which
assign priorities with consideration for either the deadlines
of connections, or the topology of the underlying network,
or both.

5.1. The Algorithms
The trivial approach simply assigns the same priority to

all connections on all servers. The scheduling policy on all
servers then degenerates to FCFS scheduling. FCFS does
not take into account deadline information, and therefore
the performance can be expected to be poor. In the follow-
ing evaluation we will be using FCFS as a baseline.

5.1.1 Deadline Based Heuristics
We can expect that the performance improves if the prior-
ity assignment reflects the message urgency. Intuitively,
the smaller the relative deadline of a connection is, the
higher its priority should be. Therelative deadline mono-
tonic (RDM) algorithm [1, 13] assigns priorities in this
order. For single-server systems and periodic workload,
RDM is known to be an optimal static-priority assignment
algorithm. Interestingly, our evaluations show that RDM
does not perform well when connections traverse multiple
servers. In some cases it even underperforms FCFS! This
effect is particularly strong when deadline variations are
small, and deadlines do not provide a sufficient decision ba-
sis for fixed-priority assignments.

The two algorithms FCFS and RDM can be combined
into a simple scheme that starts with an FCFS assignment
and successively modifies priorities of connections to take
message urgency into consideration. This leads to Algo-
rithm Partition, which is described in Figure 3. This al-
gorithm repeatedly partitions the connection set into an in-
creasing number of subsets in accordance with message lax-
ities. It then assigns the different priorities to the connec-
tions in the different subsets.

Algorithm Partition:
� Step 1: Assign the same priority to all connections. All

connections are initially in the same subset.
� Step 2: Compute the delays for each connection using the

method described in Section 4.2. If all connections pass the

deadline test, stop; return the current priority assignment.
� Step 3: For each subset in which a connection fails to pass

the deadline test, perform the following steps:
Step 3.1: If the subset consists of a single element,

stop; the algorithm was not able to find a feasible priority

assignment.
Step 3.2:Partition the subset of connections into two

subsets and assign connections to the subsets in increasing

order of their laxity (defined to be the difference between

the deadline and the computed delay).
� Step 4:For Serverj, assign priorityp to a connection if the

server is on the path of the connection, and the connection

is in thepth subset.
� Step 5: Return to Step 2.

Figure 3. Algorithm Partition for Assigning Pri-
orities to Connections

The iteration stops when all connections pass the dead-
line test, and the whole set of connections is admissible, or
when a subset with only one connection needs to be further
partitioned because the connection does not meet the dead-
line. In that case, no more partitions can be done, and the
algorithm declares failure. Because the size of the small-
est subset of connections is halved at every iteration step,
the worst-case cost of the algorithm is orderO(lgn) in the
number of delay computations.

In its basic form, AlgorithmPartition compares relative
deadlines for deciding how to partition the connection set
into urgent and non-urgent connections. Connections that
traverse a larger number of servers tend to experience more
delay, which is not considered when the algorithm simply
compares relative deadlines. In the evaluations described
below we therefore make the decisions how to partition
the connection set by using themodified relative deadline
D0i, which is defined as the relative deadlineDi of connec-
tionMi divided by the number of servers traversed byMi:
D0i := Di=Si. In this way the length of connections is ac-
counted for when making priority assignments.

5.1.2 Topology Based Heuristics
The priority assignment algorithms described above share
the following two characteristics: (1) Each connection is
assigned the same priority on all the servers on its route,
and (2) the priority assignment is independent of the topol-
ogy of the network or the load of individual servers. Better
results should be expected when priorities are allowed to
vary between servers, and are assigned with regard to the
underlying topology.

7

A very simple priority assignment that takes into account
the network topology was described by Cruz [4] for the case
of a ring. Cruz proposed a two-priority scheme, in which
connections are assigned a low priority on the first server
when they join the network. On all the other servers, con-
nections are assigned a high priority. In other words, cells
already in the ring have higher priority than cells that join
the ring. Cruz argued that assigning priorities in this way
leads to less disturbance of traffic and hence improves de-
lay bounds. We call this method the “Cruz Algorithm”.

We now consider an integrated algorithm, which not only
uses the location and topology information, but also the tim-
ing information (i.e., laxities) to assign priorities. It can be
considered as an integration of Cruz’ algorithm and Algo-
rithm Partition. Figure 4 describes this approach, which we
call Algorithm Integrated.

Algorithm Integrated:
� Step 1: Assign the same priority to all connections. All

connections are initially in the same subset.
� Step 2: Compute the delays for each connection using the

method described in Section 4.2. If all connections pass the

deadline test, stop; return the current priority assignment.
� Step 3: For each subset in which a connection fails to pass

the deadline test, perform the following steps:
Step 3.1: If the subset consists of a single element,

stop; the algorithm was not able to find a feasible priority

assignment.
Step 3.2:Partition the subset of connections into two

subsets and assign connections to the subsets in increasing

order of their laxity (defined to be the difference between

the deadline and the computed delay).
� Step 4: For Serverj, increase the priority by one for the

connections that are not in the first (highest-priority) subset

and join the network at Serverj.
� Step 5: Compute the delays for each connection using the

method described in Section 4.2. If all connections pass the

deadline test, stop; return the current priority assignment.
� Step 6:For Serverj, assign priorityp to a connection if the

server is on the path of the connection, and the connection

is in thepth subset.
� Step 7:Return to Step 2.

Figure 4. Algorithm Integrated for Assigning
Priorities to Connections

Except for Step 4 and Step 5, AlgorithmIntegratedis
identical to AlgorithmPartition. After repartitioning the
connections in Step 3, but before re-assigning the priorities
in Step 6, AlgorithmIntegratedslightly lowers the priorities
of connections at their entrance to the network, essentially
following the idea of Cruz’ algorithm. This is done by as-
signing a lower priority (p + 1) to a connection in thepth
subset at Serverj if the latter is the server at the entrance to

the network. If this assignment is not successful, Algorithm
Integratedresorts to the priority assignment of Algorithm
Partition by assigning priorityp to every connection in the
pth subset.

5.2. Performance Evaluation
In this subsection, we evaluate the performance of the

five priority assignment algorithms discussed in the previ-
ous subsection. We will first define a performance met-
ric, then describe the system configuration considered and
present the performance results.
Performance Metric. We quantify the performance of
an algorithm by measuring theAdmission Probability
(AP (U)) for a given link utilizationU , that is, the prob-
ability that a set of connections are admissible conditioned
on the average utilization of the links in the network being
U .
Topology and Traffic Load. We consider ATM networks
with a specialized ring topology. This topology has been
used as an representative benchmark by Cruz, Gallager, and
Parekh to study the problem of delay stability in ATM net-
works for FCFS servers [4, 17]. Henceforth, we shall refer
to this topology as theCruz-Gallager-Parekh(C-G-P) ring.

The architecture of the C-G-P ring is described as fol-
lows. The system consists ofK 2� 2 switches andK con-
nections,M1; : : : ;Mi; : : : ;MK . Each server has a distinct
identityid, whereid = 1; 2; : : : ; 2�K and every connection
has an acyclic path that traversesK servers. For connection
Mi, the first server,s(i; 1), is Serveri and the following
servers are

s(i; j) =

�
1 + (i+ j � 2) modK 1 � j � K � 1

K + i j = K:

Figure 5 shows an example of a C-G-P ring, which is the
connection server graph of the ring with four switches de-
picted in Figure 1. The source traffic for each connection
in the C-G-P ring is constrained by a(�; �) traffic bounding
function as defined in Equation (2).
Simulation Methodology. We measured the performance
by simulating the behavior of the five algorithms with ran-
domly generated connection sets. For each data point1; 000

connection sets were randomly generated, and each was was
tested for admission. For each connection,�i and�i were
chosen from uniform distributions, and the relative dead-
lines of connections where chosen from a general exponen-
tial distribution. Statistics were collected from the sample
set to estimate the admission probability defined earlier. For
all measurements, the 99-percentile confidence intervals are
below 1% of the admission probability range. Similar re-
sults have been obtained with different network topologies
and settings of parameters.

5.2.1 Numerical Results and Observations
Figure 6 shows the admission probability results for our ex-
ample network. The performance figures are corresponding

8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
dm

is
si

on
 P

ro
ba

bi
lit

y

Network long term utilization

Mean = 40, STDDEV = 30

FCFO
Cruz
RDM

Partition
Integrated

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
dm

is
si

on
 P

ro
ba

bi
lit

y

Network long term utilization

Mean = 40, STDDEV = 33

FCFO
Cruz
RDM

Partition
Integrated

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
dm

is
si

on
 P

ro
ba

bi
lit

y

Network long term utilization

Mean = 40, STDDEV = 35

FCFO
Cruz
RDM

Partition
Integrated

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

A
dm

is
si

on
 P

ro
ba

bi
lit

y

Network long term utilization

Mean = 40, STDDEV = 37

FCFO
Cruz
RDM

Partition
Integrated

Figure 6. Admission Probability vs. Long-Term Utilization

S1

S2

S3

S4

S5

S6

S7

S8

M1 M2

M3M4

s(i; 1) s(i; 2) s(i; 3) s(i; 4)

M1 1 2 3 5
M2 2 3 4 6
M3 3 4 1 7
M4 4 1 2 8

Figure 5. Cruz-Gallager-Parekh Ring with 4
Switches

to the case when the average relative deadline is 40, and
the standard deviation of deadlines (STD(D)) ranges from
30 to 37. From these figures, we can make the following
observations:

First, we found that in general, the admission probability
is sensitive to the average link utilization. As the utilization
increases, the admission probability decreases. This is ex-
pected because a higher network utilization makes it more
difficult for the system to admit a set of connections.

Second, in all the cases tested, it is seen that Algorithm
Partition performs far better than both the FCFS and the
RDM methods. This comes from the fact that, whenever a
feasible assignment can be found by either FCFS or RDM,
Algorithm Partition finds it as well. Sometimes, the im-
provement is significant. For example, when link utilization
is 0.4 and STD(D) = 33 (Figure 6), either FCFS or RDM ad-
mitted no more than 30% of connection sets while our new
algorithm can admit around 50% of connection sets.

Furthermore, we observe that the integrated method out-
performs all the other four methods, namely FCFS, RDM,
Cruz, and AlgorithmPartition. For example, when the uti-
lization is 50%, the integrated method admits up to 75%
more message sets than the partition method, and up to

9

seven times more than RDM. While the results are encour-
aging, they are not surprising. Recall from the design of this
algorithm that it inherently considers all the possible prior-
ity assignments that would be examined by any of the other
four methods while maintaining the same order of com-
plexity as the partition method. This demonstrates that by
properly integrating the timing and topology information,
performance can indeed be improved without introducing
much overhead.

6. Final Remarks
We have studied ATM networks with static priority

scheduling. We developed a condition under which the net-
work is guaranteed to be stable. In an unstable network, the
worst case delays could be unbounded. This is not accept-
able for many time-constrained applications. We also de-
veloped an iterative method for computing worst case end-
to-end delays. The convergence of the numerical procedure
is formally proved and a closed form for the computation
error is derived.

We also addressed the problem of how to assign priori-
ties to connections in such a system. In particular, we ana-
lyzed five algorithms: FCFS, relative deadline monotonic
(RDM), and Cruz’ Algorithm, in addition two combina-
tions thereof, namely AlgorithmPartition and Algorithm
Integrated. The first three have been proposed in previous
studies, while the latter two are new. Performance evalua-
tions show that the two new algorithms outperform the other
three. Sometimes, the performance difference is significant.

This work can be extended in a number of ways. For
example, we are currently studying stability issues, delay
computation, and priority assignment in connection-based
heterogeneousnetworks. To establish the criteria for sta-
bility in such networks it will be necessary to investigate
characterizations of the traffic within the network. Utilizing
a consistent traffic characterization function over a series of
network segments is a key step in this process.

Acknowledgment
This work was partially sponsored by the Air Force Office of Scientific Research,

Air Force Materiel Command, USAF, under grant number F49620-96-1-1076 and by
Texas Higher Education Coordinating Board under its Advanced Technology Pro-
gram with grant number 999903-204. The U.S. Government is authorized to repro-
duce and distribute reprints for governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Air Force Office of Scientific
Research, the U.S. Government, Texas State Government , Texas Higher Education
Coordinating Board, or Texas A&M University.

References
[1] N. C. Audsley, A. Burns, M. F. Richardson, and A.

J. Wellings. Hard real-time scheduling: the deadline-
monotonic approach. InProc. of the Eighth RTOSS ,
May 1991.

[2] P. Boyer, F. Guillemin, M. Servel, and J. Coudreuse.
Spacing cells protects and enhances utilization of
ATM network links.IEEE Network, Sept. 1992.

[3] D. D. Clark, S. Shenker, and L. Zhang. Supporting
real-time applications in an integrated services packet

network: Architecture and mechanism. InProc. of
ACM SIGCOMM’92, Aug. 1992.

[4] R. L. Cruz. A calculus for network delay, partI, part II.
IEEE Trans. on Information Theory, Jan. 1991.

[5] A. Dailianas and A. Bovopoulis. Real-time admission
control algorithms with delay and loss guarantees in
ATM networks. InProc. of INFOCOM’94.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. InProc. of
ACM SIGCOMM’89, Sept. 1989.

[7] N. Dunford and J. Schwartz. Linear operators, Part I :
General theory. InInterscience publishers. New York
(1958).

[8] D. Ferrari and D. C. Verma. A scheme for real-time
channel establishment in wide-area networks.IEEE J.
on Selected Areas in Comm., Apr. 1990.

[9] V. Firoiu, J. Kurose, and D. Towsley. Efficient Admis-
sion Control for EDF Schedulers. InProc. of the IEEE
INFORCOM’97.

[10] L. Georgiadis, R. Gu´erin, V. Peris, and K. Sivara-
jan. Efficient network QoS provisioning based on per
node traffic shaping.IEEE ACM Trans. on Network-
ing, Aug. 1996.

[11] S. J. Golestani. A framing strategy for congestion
management.IEEE J. on Selected Areas in Comm.,
Sept. 1991.

[12] S. Kamat and W. Zhao. Performance comparison of
two token ring protocols for real-time communication.
In S. Son, editor,Principles of Real-Time Systems.
Prentice Hall, 1994.

[13] J. Y.-T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, December 1982.

[14] C. Li, A. Raha, and W. Zhao. Stability in ATM net-
works. InProc. of the IEEE INFORCOM’97.

[15] J. Liebeherr, D.E. Wrege, and D. Ferrari.”Exact ad-
mission control in networks with bounded delay ser-
vices.”, to appear inIEEE/ACM Trans. on Networking.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.
J. of the Association for Computing Machinery, Jan.
1973.

[17] A. K. J. Parekh.A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Net-
works. PhD thesis, M.I.T., 1992.

[18] A. Raha, S. Kamat, and W. Zhao. Guaranteeing end-
to-end deadlines in ATM networks. InProc of the 15th
IEEE ICDCS’95.

[19] A. Raha, S. Kamat, and W. Zhao. Admission con-
trol for hard real-time connections in ATM LAN’s. In
Proc. of the IEEE INFORCOM’96.

[20] A. Raha and W. Zhao. Evaluation of admission poli-
cies in ATM based embedded hard real-time systems.
Technical report, Department of Computer Science,
Texas A&M University, June 1994.

[21] J. A. Stankovic. Misconceptions about real-time com-
puting: A serious problem for next generation sys-
tems.IEEE Computer, Oct. 1988.

[22] J. A. Stankovic and K. Ramamritham, editors.Hard
Real-Time Systems. IEEE Computer Society Press,
1988.

[23] A. M. van Tilborg and G. M. Koob.Foundations
of Real-Time Computing: Formal Specifications and
Methods. Kluwer Adademic Publishers, 1991.

10

[24] A. M. van Tilborg and G. M. Koob.Foundations
of Real-Time Computing: Scheduling and Resource
Management. Kluwer Academic Publishers, 1991.

[25] H. Zhang and D. Ferrari. Rate-controlled static prior-
ity queueing. InProc. of IEEE INFORCOM’93.

11

