
On Adaptive Resource Allocation for Complex Real-Time
Applications �

Daniela Roşu, Karsten Schwan, Sudhakar Yalamanchili
Georgia Institute of Technology

801 Atlantic Drive, Atlanta, GA 30332-0208�
daniela,schwan � @cc.gatech.edu

sudhakar.yalamanchili@ee.gatech.edu
Rakesh Jha

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN-55418
jha@src.honeywell.com

GIT–CC–97-26
September 1997

Abstract

Resource allocation for high-performance real-time applications is challenging due to the applications’
data-dependent nature, dynamic changes in their external environment, and limited resource availability
in their target embedded system platforms. These challenges may be met by use of Adaptive Resource
Allocation (ARA) mechanisms that can promptly adjust resource allocation to changes in an application’s
resource needs, whenever there is a risk of failing to satisfy its timing constraints. By taking advantage
of an application’s adaptation capabilities, ARA eliminates the need for ‘over-sizing’ real-time systems to
meet worst-case application needs. This paper proposes a model for describing an application’s adaptation
capabilities and the runtime variation of its resource needs. The paper also proposes a satisfiability-driven
set of performance metrics for capturing the impact of ARA mechanisms on the performance of adaptable
real-time applications. The relevance of the proposed set of metrics is demonstrated experimentally, using a
synthetic application designed to represent time-critical applications in C3I systems.

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332–0280

�
Funded in part by DARPA through the Honeywell Technology Center under Contract No. B09332478 and Contract No. B09333218, and by NSF

equipment grants CDA-9501637, CDA-9422033 and ECS-9411846.

On Adaptive Resource Allocation for Complex Real-Time Applications

Daniela Roşu, Karsten Schwan, Sudhakar Yalamanchili
Georgia Institute of Technology

801 Atlantic Drive, Atlanta, GA 30332-0208�
daniela,schwan � @cc.gatech.edu

sudhakar.yalamanchili@ee.gatech.edu

Rakesh Jha
Honeywell Technology Center

3660 Technology Drive
Minneapolis, MN-55418
jha@src.honeywell.com

Abstract

Resource allocation for high-performance real-time applications is challenging due to the applications’ data-
dependent nature, dynamic changes in their external environment, and limited resource availability in their target
embedded system platforms. These challenges may be met by use of Adaptive Resource Allocation (ARA) mechanisms
that can promptly adjust resource allocation to changes in an application’s resource needs, whenever there is a risk of
failing to satisfy its timing constraints. By taking advantage of an application’s adaptation capabilities, ARA eliminates
the need for ‘over-sizing’ real-time systems to meet worst-case application needs. This paper proposes a model for
describing an application’s adaptation capabilities and the runtime variation of its resource needs. The paper also pro-
poses a satisfiability-driven set of performance metrics for capturing the impact of ARA mechanisms on the performance
of adaptable real-time applications. The relevance of the proposed set of metrics is demonstrated experimentally, using
a synthetic application designed to represent time-critical applications in C3I systems.

1. Introduction

Motivation. Resource management problems for real-time and embedded applications are exacerbated by dynamic
changes in their external environments and by restrictions on resource availability. Solving such problems by using
worst-case needs analysis [10] is typically not viable because of excessive resource estimates resulting from complex
application behavior. Instead, adaptive methods [5, 17, 18] must be used to adjust resource allocation to changes in an
application’s needs and to insure the satisfiability of its real-time constraints.
Contributions. This paper describes and evaluates models and mechanisms for Adaptive Resource Allocation (ARA)
in the context of high performance, embedded applications. We consider applications with data-dependent behavior,
driven by event streams, and composed of multiple, possibly parallel interacting components. Runtime changes in event
rates and more importantly, in the data content of these events cause significant changes in the resource needs of various
application components. For such applications, it is difficult to closely estimate their worst-case event processing and
communication needs. This class of applications includes radar systems [27], robot control [7, 34, 38], target recognition,
multi-object tracking, and hypothesis testing [26].

ARA mechanisms can be used to promptly adjust resource allocation to changes in an application’s resource needs,
whenever there is a risk of failing to satisfy the application’s timing constraints. Such runtime adjustments, constraint
by the application’s adaptation capabilities, eliminate the need for ‘over-sizing’ real-time systems to meet worst-case
application needs.

This paper describes a novel model for capturing an application’s adaptation capabilities. The model specifies the
resources needed for the normal execution and the transfer to each of the application’s acceptable configurations. In
addition, we describe a new model for capturing the application’s resource needs and their runtime variation.

Given the real-time nature of the applications targeted by this research, we propose to evaluate ARA mechanisms
by their impact on the satisfiability of the applications’ real-time constraints. We submit that it is essential to consider
the latencies with which ARA mechanisms respond to changes in application needs when attempting to restore the

1

satisfiability of real-time constraints. Namely, the quality of ARA decisions should be evaluated with respect to both how
fast an application returns to some acceptable performance and how good its performance is in steady state compared
to the one imposed by the application’s real-time requirements. In response, this paper identifies several elements
that contribute to the effectiveness of ARA methods for detecting changes in resource needs and for making resource
allocation decisions.
Assumptions and Experimental Environment. This work assumes a multi-machine environment used by a single,
complex application. As a result, performance perturbations are produced only by dynamics in the application’s external
environment or by changes in resource availability due to failures or explicit removals/additions. Explicit admission
control guarantees sufficient resources for meeting the application’s initial needs.

The models and heuristics proposed here are evaluated in the context of a centralized ARA controller. Online
monitoring is performed with the mechanisms described in [14]. Experiments are conducted with a synthetic application
running on a cluster of workstations. The application is designed by Honeywell in the context of high performance C3I1

applications [26].
Related research. Previous work has described frameworks and mechanisms that facilitate the creation and use of online
adaptation heuristics for real-time applications [5, 18, 23], including mechanisms for runtime monitoring, adaptation
enactment, and mechanisms that ensure the reliable execution of applications [5, 23] or that maintain high application
throughput [18]. In comparison, the focus of this paper is not to define new frameworks, but instead, to define models
and methods to be used in such frameworks and to analyze their effect on adaptive applications.

Extensive research has addressed the problem of dynamic resource allocation for both the real-time [1, 3, 4, 9, 15,
17, 31, 39] and the non-real-time [13, 24, 28, 33] domains. The methods developed in these studies do not fit our target
application model, because our model assumes that the resource needs of a time-constrained task, even when generated
by the same type of event, may vary throughout the execution of the application. This variability prevents us from using
a periodic task model [15, 17] in which performance requirements are fixed throughout an application’s execution, and
therefore worst-case needs have to be considered. It also prevents us from using a sporadic task model, as in the real-time
[9, 31, 39] or the non-real-time [13, 24, 33] domains, because of the high overhead of taking resource allocation actions
at each task arrival.

Resource reallocation triggered by runtime variation of applicationneeds has received less attention. Previous schemes
proposed for both real-time [1, 4, 17, 32] and non-real-time [18, 24, 28, 37] domains do not consider the transitory effects
of adaptation mechanisms on the satisfiability of application’s performance constraints. Their primary interest is to attain
optimal steady state performance.
Overview of paper. In the remainder of this paper, we first identify the application and the ARA model driving our
research (Section 2). In Section 3, two important components of the application model used for ARA are described: the
application resource usage model and the application adaptation model. Section 4 identifies specific ARA performance
criteria derived from the real-time nature of our target applications. Last, in Section 5, we demonstrate by experiments
the relevance of these criteria and identify methods that help improve ARA performance.

2. Real-Time Applications and ARA

Application Model. Our research targets reactive, high performance applications that must meet well-defined real-time
constraints in dynamic execution environments. Each such application consists of multiple interacting components
capable of executing in a distributed environment consisting of parallel machines, embedded-system components (e.g.,
signal processors), and user interface stations (e.g., workstations). Components are either sequential or parallel tasks
and their resource needs may be data-dependent, varying with changes in the rate or content of data inputs. In response,
many components are programmed such that they can adapt their resource needs at runtime, by changes in their execution
mode, algorithms or specific attributes such as the level of parallelism or communication protocols.

An application’s execution is driven by event streams produced by the external environment or the application
itself. Each event stream is processed by a fixed set of components, with fixed precedence constraints described by
a communication graph. The input pattern of a stream may vary with changes in the execution environment. In the
following, the communication among parallel modules of the same application component is called intra-communication,
and the communication between a component and its neighbors in the communication graph is called inter-communication.
We assume that, for each event, the intra-communication happens throughout the event processing while the inter-
communication happens in a burst, at the end of the event processing.

1Command, Control, Communications and Intelligence

2

The application’s performance requirements are defined by constraints with respect to event rate, end-to-end latency,
and component relative completion times. Each timing constraint has specific miss rate and miss burst bounds.

Radar

Ctrl.
Search Engage

MissileDetect Track Init

InterceptIdentif.Track

1500 Hz

0.5 sec 4 Hz0.2 sec

Radar input
Missile tracing
Missile control

Sensor/actuator
App. component

Figure 1. Radar Application

Sample Application. One sample application driving this research is a phased-array radar system. Figure 1 presents
part of such a system, as described in [27]. Detection, Track Init, and Track Identif are computationally intensive tasks,
each well suited for parallel implementation [26]. Over time, their processing and communication needs vary with the
number and characteristics (e.g., amplitude, direction) of dwells. Given the nature of their computation [26], these tasks
can adapt by changing their internal levels of parallelism.

The main event streams in the radar system are (1) the input from the radar, (2) the input from the missile tracking
device, and (3) the missile control requirements. Timing constraints concern necessary event rates and processing
latencies. For instance, the required rate of the radar input is 1500Hz, and the required missile control rate is 4Hz.
Additional constraints are: a 0.2 second-bound on the latency between Detect-ing a potential missile and engaging
Search Control, and a 0.5 second-bound on the execution of Engage.

The radar system is one of many applications concerned with processing signals from a sensor suite, forming
hypotheses about and assessing the situation, and taking an appropriate response based on data observed and processed
over a period of time. Other examples are multi-hypotheses tracking and image understanding [26]. Often the front
end of these applications consists of signal processing stages whose computational needs are predictable, as they are
independent of the signal values. However, computations at the back end depend on the semantic content of the signal
values, being often heavily data-dependent.
Specific Resource Allocation Problems. The application model presented above raises interesting resource allocation
problems. First, the event stream-based execution makes viable the option of using long term resource allocation.
Alternatively, a short term resource allocation based on dynamic real-time scheduling decisions [3, 31, 39] is prone to
add a large overhead to each event’s processing, in particular when individual application components are parallel tasks
executing in a distributed environment.

Second, worst case-based allocation[10, 21] may not be appropriate for our target applications. In the context of
data-dependent resource needs, it is difficult to evaluate the worst case needs with sufficient accuracy to ensure both a
safe execution and acceptable resource utilization. For example, in the radar system (see Figure 1), the resource needs
of Track Init are highly data-dependent as they vary with the number of dwell returns above a selected threshold and
the ambiguity of spurious tracks. Similarly, the communication needs for Track Identif is determined by the number of
hostile tracks forwarded to Engage, which vary according to changes in external environment. Therefore, the worst case
needs of this application depend on the worst case execution scenarios, which makes them hard to evaluate.

Our solution to these problems is to use adaptive resource allocation (ARA). By taking advantage of the application’s
adaptation capabilities, ARA permits using long-term resource reservations [20] while accommodating runtime changes
in resource needs.
Adaptive Resource Allocation. ARA is a resource management paradigm that takes advantage of an application’s
runtime adaptation capability in order to accommodate its dynamic resource needs and to satisfy the system goals with
respect to performance and resource utilization. In the context of our target application model, the goal of ARA is to
insure that, at any time, the performance requirements of the application are satisfied.

An ARA infrastructure can satisfy two types of resource requests: explicit and implicit. An explicit request is issued
by the application upon a new component arrival or whenever the application deems it necessary to adjust resource
usage. An implicit request is issued by the ARA infrastructure itself, when changes in a component’s resource usage
considerably increase the likelihood of failing to satisfy the application’s performance requirements.

Implicit requests, and sometimes also explicit ones, are satisfied by adjustments of the resource allocation of one or
more application components, that are decided by the ARA infrastructure itself. Such adjustments are called automatic

3

because they are not explicitly requested by the application. They are performed only to prevent violations of the
application’s performance and they are constraint by the application/component-specific adaptation capabilities. For
example, an automatic adjustment may be performed when, due to the lack of resources, a new application component
cannot be accommodated unless other components’ allocations are reduced. Similarly, an automatic adjustment may be
triggered by an unexpected change in the execution environment that causes a change in resource needs which cannot be
accommodated in the current configuration. One example is a change in the input data content that causes an increase
of event processing time for a particular component. This change might require extending the component’s level of
parallelism in order to meet the required event rate.

In an alternative approach [5], the resource management infrastructure can satisfy only explicit requests, but it can
provide the application with information on its observed resource usage. This information is used by the application to
decide adjustments of its resource needs.

In contrast, our approach to resource management attempts to move part of the burden of making adaptation decisions
from the application to the resource management infrastructure. A similar approach is taken in [17, 18] and, also, in
our previous work [32]. The benefits of this approach are a reduction in application perturbation plus the fact that
unexpected changes in the application’s resource needs are likely to receive fast response. This is due to the resource
management infrastructure’s fast access to all the necessary information related to resource availability and current
resource usage patterns of application components. A drawback is that, compared to application-level decisions [5],
ARA decisions may fail to produce the most appropriate resource assignment for each particular situation. Likewise,
ARA may result in resource allocation changes not necessary for achieving acceptable application performance. The
models and mechanisms embedded in an ARA infrastructure mitigate these potential drawbacks.

Monitoring & Enactment

Component Module

Detection

Enactment

Inter-Communication Link
Intra-Communication Link ARA Controller

Application
Internal

Model Allocation
Decision

Figure 2. Centralized ARA controller

In order to achieve its functionality, the ARA infrastructure should include mechanisms for: (1) collecting information
about application resource usage and resource availability; (2) detecting significant variations in application resource
usage; (3) inferring the cause of observed variations and assessing the necessity of an automatic adjustment of the
resource usage; (4) making decisions about automatic adjustments and resource allocation; (5) notifying the application
about significant changes in its resource usage; (6) notifying the application and resource providers about changes in
resource allocation; and (7) assisting them in the enactment of these changes.

ARA is based on knowledge of the application’s characteristics. These characteristics are described by an appli-
cation model internal to the ARA infrastructure. Besides the structure of the application (components, event streams,
communication graphs) and its performance requirements, this model describes, for each application component, the
acceptable configurations (i.e., those instances of resource allocation that permit the component to perform correctly)
and the runtime variation of its resource usage. The model is used to interpret the monitored information, to estimate
the system performance expected upon changes in resource allocation, and to guide the decision heuristics. This model
provides functionality that is critical to mitigating the ARA infrastructure’s potential drawbacks with respect to the
appropriateness of its decisions, and to minimizing the execution overheads of its mechanisms.

The performance of the ARA is determined both by the appropriateness of its resource allocation decisions and by
the delay with which it responds to unexpected changes in application behavior. A short response time helps reduce the
duration of intervals in which the application fails to satisfy its performance constraints. Delayed ARA decisions, large
decision times, or decisions with high enactment overhead are less likely to help the application cope with its immediate
performance constraints.

In our work, ARA functionality is provided by a module called the ARA controller. This module may have a distributed
or a centralized architecture. Figure 2 depicts a centralized controller, similar to the one used in our experiments. The
controller’s interaction with the application is restricted to monitoring and allocation enactment.

4

In the next sections,we address the internal application model and the performance evaluation of an ARA infrastructure,
both of which significantly impact on the manner in which ARA can help an adaptive application cope with unexpected
changes in its resource usage and with restrictions in resource availability.

3. Internal Application Model

This section describes the first contributionof our research. We propose models that describe the application’s resource
usage and its adaptation capabilities. These models are part of the application model internal to the ARA infrastructure:� The resource usage model (RUM) describes an application’s expected computational and communication needs,

and the runtime variation of both.� The adaptation model (AM) describes an application’s acceptable configurations in terms of expected resource
needs and application-specific configuration overheads.

The RUM is used in the ARA decision making process to evaluate the current application’s resource needs and
to determine how its performance requirements will be satisfied. The AM permits the ARA controller to decide
appropriate resource allocation adjustments without incurring any negotiation overhead, as it is the case with other
resource management solutions that support runtime adaptations [19]. In addition, the knowledge of configuration
overheads permits the ARA controller to understand and evaluate tradeoffs between alternative adaptation strategies.

3.1. The Resource Usage Model

Background. The resources available to an application are nodes and the communication links between them. A node
is characterized by its speed (MIPS or MFLOPS) and the size of its local memory. Each node uses a scheduling policy
able to guarantee the resource reservations and to provide feedback to the application on its actual resource usage, such
as those proposed in [20, 25]. A communication link provides a unidirectional connection between two nodes. It is
characterized by one or more protocols (e.g., reliable, FIFO unreliable), with known available bandwidth and cost of I/O
operations at each end-point – a constant per-message overhead and a per-byte overhead. For simplicity, we currently
consider only uniprocessor nodes. Shared-memory multi-processors can be modeled as sets of nodes, with equally
distributed memory resources and connected by very high-speed communication links.
Model Formulation. The RUM describes the resource needs of each (component, event stream)-pair. In the following,
such a pair is called "a component".

Each component is described as an internally parallel task, with multiple cooperating modules that are independent
from the point of view of resource allocation. The component’s resource needs are described by two models – static RUM
and dynamic RUM. The static RUM describes the expected computation and communication needs, while the dynamic
RUM captures the runtime variation of these needs with respect to the static RUM.

The parameters of the static RUM are the following:� parallelism level,� execution time,� intra-communication protocol,� maximum outgoing intra-communication message size,� total number of outgoing intra-communication messages,� total amount of outgoing intra-communication data,� inter-communication protocol,� total number of outgoing inter-communication messages,� total amount of outgoing inter-communication data, and� processor speed factor.
A set of inter-communication related parameters is defined separately for each successor in the communication graph.
The static RUM is specified by the application as part of an explicit request for resources. Its parameters may be

estimated using traditional approaches like algorithm analysis or code profiling. The processor speed factor describes
the performance of the node used for profiling.

Each parameter of the static RUM is assumed to be the largest value over the corresponding parameters of all of
the component’s modules. This is equivalent to assuming that all modules have identical resource needs, the intra-
communication between any pair of modules is identical, and a module’s incoming intra-communication is the sum of
all messages sent by all other modules.

5

The dynamic RUM refers to those parameters of the static RUM that are likely to vary at runtime due to unexpected
changes in input data content. This model is described by:� execution factor,� total amount of intra-component data factor,� maximum intra-component message size factor, and� total amount of inter-component data factor.

Each factor represents the ratio between the static RUM specifications and the maximum monitored value of the
corresponding metric over an application-specific time interval. The dynamic RUM is maintained by the ARA controller
based on monitoring data received from the application.
Model Discussion. The static RUM can be easily extended to describe the needs of each module of the application
component or to include other resource types such as memory.

Given the static RUM, the ARA infrastructure can obtain a good estimate of each component’s computation and
communication needs. It may then use this information, together with information on the event’s input pattern and on the
component’s deadline, to perform per-resource schedulability analysis and reservations. The component’s computation
needs include its execution time and its communication related computation. The latter is estimated based on the number
of I/O operations and the total amount of data transferred. The communication needs result directly from the model.
In contrast to typical real-time connection models [2], we ignore the intra-communication burst because it influences
only the memory requirements on the nodes and network routers. For a node, such needs may be described by adding
a memory parameter to the static RUM, and for the network, by specifying a ’maximum message size’ large enough to
cover the maximum burst.

The dynamic RUM permits the ARA controller to make appropriate automatic adjustments even when the observed
resource needs are larger than those specified by the application. Such a situation may occur when the static RUM does
not describe worst-case needs, either because it is not possible to estimate them accurately or because the programmer
decided it, possibly due to the small likelihood of runtime behavior in which worst-case needs arise.

The information needed to maintain the dynamic RUM is obtained with low monitoring overhead from the instrumen-
tation of the communication library.
Related Work. The resource usage model introduced here improves upon the deficiencies of real-time task models
used in previous research [36, 10, 11, 16, 22] that do not permit a low-complexity description of a parallel component.
According to such models, a parallel application component is described by a set of tasks with precedence constraints,
each with fixed computation and communication needs, and with the I/O operations occurring only at the beginning and
the end of a task (or event) execution. This would require each parallel component to be decomposed into multiple, small
granularity tasks which leads to significant increases in ARA decision-making overheads. Instead, our ARA approach
advocates using a RUM with reduced levels of detail and low decision overheads, yet able to provide good estimates of
application performance.

The RUM also improves on previous parallel task models used in load balancing or task assignment problems
[6, 12, 17, 28, 29, 30, 35] that describe the communication needs only by the time taken to perform it. By providing
a more detailed description, the RUM can better estimate communication related resource needs in terms of multiple
resource types and in a heterogeneous environment.

3.2. Adaptation Model

Background. Each adaptive application component has several acceptable configurations. In general, the overhead of
instantiating a new configuration has an application-independent and an application-dependent part. The application-
independent part includes the overheads of starting-up a new parallel module and of reserving resources (on the host and
in the network). The application-dependent part, henceforth adaptation overheads, are determined by the component-
specific reconfiguration procedures. We assume that these overheads are primarily due to state transfers and initializations,
and are significant when switching between configurations with different levels of parallelism.
Model Formulation. The adaptation model describes the acceptable configurations and the corresponding adaptation
overheads for each (component, event stream)-pair.

An acceptable configuration is described by: (1) a configuration id, which is used by the ARA infrastructure to
notify the application about changes in its resource allocation; (2) a static RUM, which specifies the resource needs as
described in Section 3.1; and (3) adaptation overheads, which describe the module start-up and shut-down procedures.

6

For each procedure, the adaptation overhead is described by the amount of state to be transferred and by the execution
time (excluding communication).

The adaptation model is specified by the application upon an explicit request for resources. For each application
component, several acceptable configurations may be described. The ARA assumes that the static RUMs for all
configurations in an adaptation model are compatible, in the sense that all describe the resource needs for solving the
same problem, but in different configurations.
Model Discussion. The knowledge of the acceptable configurations permits automatic adjustments of a component
resource usage without negotiation. The adaptation overhead permits the ARA infrastructure to estimate the enactment
overheads and their effects on the application performance.
Related Work. Our model is different from other schemes [1] that allow the application to specify a set of acceptable
configurations at resource request time, by its description of adaptation overheads. The current model does not permit
the specification of the "value" each particular configuration brings to the application, as in [1]. This is motivated by the
current goal of our ARA: to satisfy the application’s performance requirements with no concern for the overall application
"value". However, such mission level information may be easily added to the model.

3.3. Using the Models

In this section we briefly describe how the RUM and the adaptation model are used by the ARA controller (see
Section 2).
Adaptation Model and the Dynamic RUM. The application requests an initial resource allocation by specifying an
adaptation model. The ARA controller receives this request, and based on current resource availability, it chooses an
acceptable configuration, performs the corresponding reservations and notifies the application.

At runtime, each component is described by a current RUM. The current static RUM corresponds to the acceptable
configuration selected by the last allocation decision. The current dynamic RUM is maintained based on the current
static RUM and monitoring information.

When the performance requirements are not satisfied or are considered to be too close to the acceptable threshold, the
ARA controller may decide to adjust the application’s resource allocation. During this decision, for each component,
the static RUMs of its acceptable configurations are scaled by the corresponding dynamic RUM parameters. If some
component experiences current usage larger than its current static RUM, the scaled static RUMs describe needs larger
than the initial specifications, thereby prone to better fit with the application’s current behavior. If the current needs of
some component are lower than its specifications, the scaled static RUMs describe reduced needs, thereby enabling the
ARA controller to evaluate the amounts of unused resources and to use them for providing other components/applications
with better service.

In the decision process, the adaptation overhead is considered when evaluating the impact of a given resource allocation
on the satisfiability of immediate performance constraints. With this purpose, the parameter describing the amount of
state to be transferred is scaled by the same dynamic RUM factor as the memory needs.
Estimation of Computational Needs. In the process of making resource allocation decisions, the computational and
communication needs are estimated based on the selected static RUM and the current dynamic RUM factors. In the
following, we present how the expected computational needs, �	��
������������� , for a component module are derived (see
Table 3.3 for notations).

We make several following assumptions. (1) A node is not shared by multiple application components. This is not an
important restriction provided the EDF scheduling policy is used and enough resources are available. (2) The incomming
and outgoing intra-communication requirements of a module are symmetric. If this is not true, the static and dynamic
RUMs may be easily extended. (3) The components of the communication cost (� and �) for input and output operations
are identical. If heterogeneous communication technology is used for intra-component communication, the � ’s and� ’s correspond to the most costly communication link. Same assumption is made for inter-component communication.
(4) The message latency over the wire are small enough to ignored.

Formula 6 describes how ����
�������������� is derived from the expected execution (Formula 1) and the computational
needs related to handling the expected communication - both intra-component (Formulas 2-3) and inter-component
(Formulas 4-5) communication.

�! �"$#&%&')(��! *#+%-, .�/1032�4657%�(��! *#+%98;: '<2�'=57%�(>> 8 : '<2�'?57%�(��! *#+%(1)

7

Node Characteristics
actual processor speed factor @
fixed per-message overhead of communication link A B$C
per-byte overhead of communication link A D C

Static RUM
parallelism level E$F?G+FIHIJ�K L
execution time E$F?G+FIHIJ�K MNA�OPJ
total number of outgoing intra-communication messages E$F?G+FIHIJ�K QNR1F?SUT�FIV&G&WX@=Y
total amount of outgoing intra-communication data E3F?G&F<HZJ�K Q[R1F?SUT�F<V\G�E$H7]&O
total number of outgoing inter-communication messages for destination ^ E$F?G+FIHIJ�K QNR1F?SUT�F?O)VUW_@`Y�ab^\c
total amount of outgoing inter-communication data E3F?G&F<HZJ�K Q[R1F?SUT�F=O)V&E$H7]&OUab^\c
and processor speed factor E$F?G+FIHIJ�K @

Dynamic RUM
execution factor dfe&T$G&ghHZJ�K M[A�OPJ
total amount of intra-component data factor dfe&T*G+giHIJ�K QNR1F=SUT�FIV&G�E$H7]&O
total number of outgoing intra-communication messages dfe+T*G+giHIJ�K QNR1F?SUT�FIV&G&WX@=Y
total amount of inter-component data factor for destination ^ dfe&T*G+giHIJ�K QNR1F?S\T�F?OjV\E3Hk]&O\al^&c
total number of outgoing inter-communication messages dfe&T$G&ghHZJ�K Q[R1F?SUT�F=O)VUW_@=Y�al^&c

Table 1. Notation

�! �"$#&%&')(�m10n'?o\2 : 57p1#q,
2
8N.�/1032�4657%�(�rfs*'=m10n'=oU2 : 57p1#N8 : 'I2�'=57%�(rfs$'=m10n'=oU2 : 57p1#(2) �! �"*#+%\'j(m10t'?oU2�uv>�wx,

2
8N.�/1032�4657%�(�rfs*'=m10n'=oU2�uy>zw{8 : '<2�'?57%�(�rfs*'=m10n'=oU2�uy>zw

(3) �! �"$#&%&')(�m10n'I#�o : 57p1#1|7}�~�, .�/1032�4657%�(�rfs*'=m10n'<#�o : 57p1#�|7}�~n8 : '<2�'?5Z%�(�rfs$'?m10n'<#�o : 5Zp1#1|7}�~(4) �! �"*#+%\'j(m10t'I#�o+uy>�w$|7}�~�, .�/1032�4657%�(�rfs*'=m10n'<#�o&uv>�w*|7}1~�8 : '<2�'?57%�(�rfs*'=m10n'<#�o&uv>�w*|7}1~
(5) �! �"$#&%&'j(�f�f� , �! �"$#&%&')(��! *#+%���| : 'I2�'=57%�(���

1
~8[|I�9�l���7�)�N8��! �"$#&%&'j(m10n'=oU2�uy>zw��

(6) � �l���7�)� 8[�! �"$#&%&'j(m10n'=oU2 : 57p1#�~t���� |I�
�
8N�! �"*#+%\'j(m10t'I#�o+uy>�w$|7}�~n� �

�
8N�! n'<#&%&')(�m10n'I#�o : 57p1#1|7}�~)~

The expected computational needs, as evaluated above, are used in the schedulability analysis of the corresponding
resource together with information related to the stream inter-arrival rate. Separate analysis is done for each of the
streams a component is processing.

4. ARA Performance Characterization

The formulation of suitable resource usage and adaptation models is the first contribution of our research. A second
contribution is our proposal of a satisfiability-driven approach to evaluating the performance of an ARA infrastructure.
This is in contrast to the optimality-driven approaches used in past research [17, 18]. In the context of a real-time
application, we claim that the reactivity of an ARA infrastructure is often more important than the optimality of its
decisions. In addition, each ARA decision instance is equally important to the application, so that we do not consider it
appropriate to measure ARA performance by averages over a large set of instances.

Our experiments show that delays in adjusting resource allocation to changes in application behavior increase the time
interval during which the application is exhibiting unacceptable performance. Since optimal decisions are likely to be
associated with large decision and enactment overheads, such decision making also increases the likelihood of failing to
satisfy the application’s timing constraints. For instance, in a heterogeneous distributed system, an optimal minimization
of end-to-end latency may require migrating all or many application components to more appropriate nodes. Such a
reallocation decision may not be appropriate if during the enactment more events than acceptable miss their deadlines.

Focusing on the satisfiability of an application’s performance requirements, we evaluate the performance of the ARA
infrastructure (on short, ARA performance) by its response to a single variation in the application behavior that increases
the risk of violating a performance requirement, called critical variation. Specifically, we consider the following metrics
(see Figure 3):� reaction time – the interval between the occurrence of a critical variation and the completion of the correcting

reallocation enactment;

8

bound

Reaction
Recovery

Enactment
Completion

Time

acceptable upper

Performance

Performance
metric

Time
Time

Laxity

Figure 3. Metrics for ARA performance

� recovery time – the interval between enactment completion and the restoration of an acceptable performance level;
and� performance laxity – the difference between the required performance and the steady state performance after
reallocation.

A good ARA controller is expected to exhibit low reaction time, low recovery time, and large performance laxity.
These metrics reflect the performance of ARA mechanisms. Namely, recovery time and performance laxity relate

to the quality of ARA reallocation decision, while reaction time captures the effectiveness of detection, decision, and
enactment mechanisms.

The proposed set of metrics is relevant for a real-time application. Large reaction and recovery times increase the time
interval during which the application’s performance constraints are not satisfied. Low performance laxity increases the
risk of failing to satisfy these constraints. The experiments in the next section demonstrate the relevance of the reaction
time metric.

None of the metrics listed above can completely describe the ARA performance. Specifically, performance laxity
cannot measure the transitory effects of reallocation, while reaction time and recovery time do not reflect steady
state improvements. In addition, trade-offs exist between focusing on performance laxity vs. reaction time. Optimal
performance laxitymay result in reaction times that exceed acceptable delays due to high decision or enactment overheads.

When interested in characterizing the ARA performance over a long interval of time, reaction time and recovery time
may be estimated by their maximum values and performance laxity by its minimum value over all instances of critical
variations.

Another interesting issue about the ARA infrastructure performance is the necessity of automatic adjustments. The
perturbation induced on the application by an unnecessary adjustment increases the risk of failing to meet its performance
constraints. To assess the necessity of an adjustment often requires knowledge about the future evolution of the system,
which is typically not available. For instance, a singular spike in CPU needs should not trigger an increase in CPU
resource allocation for the corresponding component. Although we do not include in our set a metric capturing the
necessity, we consider it when designing the ARA mechanisms, primarily those related to detection and state assessment.
Related Work. Previous studies considering automatic ARA adjustments for real-time applications [1, 17, 18] are
interested only in the steady state, usually seeking to attain optimal performance. The mechanisms presented in [1]
have the goal to maximize the value of the system, which is equivalent to optimizing the steady state performance. [17]
proposes algorithms for optimal resource allocation decisions, which can trade optimality for short decision times. [18]
evaluates the ARA performance by the loss in application performance with respect to the performance enabled by an
ideal ARA infrastructure with instantaneous detection, optimal decision, and no overheads. In contrast, we submit that
satisfying the application’s performance requirements is more important than achieving optimal application performance.

5. Factors for ARA Reaction Time

In this section, we consider the detection and the reallocation decision mechanisms, and show how their design
can affect the reactivity of the ARA controller, and consequently, the satisfiability of an application’s performance
requirements. In addition, our experiments show that reaction time is an important performance metric: improved ARA
reaction time implies improved application performance.

9

The experimental results reported in this study are obtained with a synthetic, distributed application designed by
Honeywell in the context of high performance C3I applications [26]. The application performs on a cluster of eleven
UltraSPARC-I Model 170 workstations with an MPI-1 interface over 100Mbit switched Ethernet links. The application
consists of multiple communicating components connected by an acyclic graph of communication links. Each component
can adapt its execution to span over any number of processors. Components do not share nodes, and each node is executing
the same program. Each component module executes the following steps: (1) receive a message from each module of its
component immediate predecessors, (2) execute according to the computation and intra-communication pattern specific
to its component, (3) send a message to each module of its component immediate successors.

A B C D SinkSource

Figure 4. Synthetic Application Example

In the following experiments, the synthetic application has a pipeline configuration (see Figure 4). All events have
the same type. They are produced periodically by the Source, consumed by the Sink, and processed by the intermediate
components. For each component, the step (2) above consists of: (2.1) exchanging a message with all of the modules
in the same component; (2.2) computing for an amount of time that depends on the component’s parallelism level and
speedup coefficient; and (2.3) exchanging messages as in (2.1). A stochastic model is used to emulate a step-like
data-dependent variation of computation and communication needs.

Enactment is performed on event boundaries. The moment of performing the resource exchanges is determined by the
state of the closest predecessor of all components participating in the resource exchange: each component will release
or request resources after completing the last event completed by the coordinating predecessor. This method minimizes
enactment overhead because it requires no synchronization among resource donors, receivers, and the components with
which they communicate.

In the context of this synthetic application, the adaptation overhead is small and identical for all components.
In the following, the "acceptable limit" for a particular performance metric is the upper bound derived from a

corresponding performance constraint. In all of the experiments, the acceptable miss burst is set to one. Also, any
detection signal triggers an automatic adjustment.

5.1. Detection

In this section, we address the effects of detection method on the ARA performance. With this respect, a detection
method is evaluated by: promptness – how soon after its occurrence, a critical variation is signaled; trustworthiness –
what ratio of signaled variations is critical. A prompt detector implies rapid detection, and thereby low ARA reaction
time. Detector trustworthiness is related to the necessity of allocation adjustment: the trustworthier the detector, the
lower the likelihood of making an unnecessary adjustment.

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(s
ec

s)

Event ID

Effects of early detection

Acceptable limit

Detection
Enactment

component-based approach
direct approach

Figure 5. Effects of metric evaluation method

10

Early detection requires a prompt detector. In order to observe the impact of early detection, we experiment with
two methods for the end-to-end latency evaluation. The first method, called direct approach, uses the observed value of
the metric, while the second method, called component-based approach, uses a value predicted based on the execution
times of each component on the event’s critical path.

The second method is characterized by a higher sampling rate – whenever monitoring information is received from
some component of interest, compared to the first method, where sampling occurs only when the last component on the
path has completed the event processing. This difference results in the component-based approach being prompter than
the direct approach. In addition, the difference is particularly significant when the event path is long (in terms of latency)
and the critical variation occurs early on the path.

In the experiment presented in Figure 5,where component A’s execution time increases, the component-based approach
enables better performance due to shorter reaction times.

A detector using component-based prediction can be used whenever the performance metric of interest can be
decomposed in several independent metrics. However, although such method enables a higher-sampling rate, and
consequently, an increased likelihood for early detection, its effectiveness depends on the accuracy of the application
models, whereas a detector based on observed values is independent of the application models integrated in the ARA
controller.

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(s
ec

s)

Event ID

Effects of detection technique on latency

Acceptable limit

 Unnecessary

Detection

Sobel detection

variation-driven
threshold-driven

Figure 6. Promptness vs. trustworthiness

Promptness is more important than trustworthiness when performance constraints are being violated. In order
to understand the effects of a trustworthy detector we experiment with two detectors (see Figure 6): a threshold-driven
detector, which checks the current sample of the metric of interest against the acceptable limit, and a variation-driven
detector, which checks whether a significant variation of the metric of interest has occured. Our variation-driven detector
is similar to the Sobel detector used for edge-detection in computer vision [8]. This detector is trustworthier than the
threshold-based detector because it employs smoothing techniques to eliminate the effect of noise, and uses a range of
samples around the sample of interest. Unfortunately, these techniques result in poor promptness. The threshold-driven
detector, on the other hand, is prompt, but is likely to be untrustworthy because it is sensitive to noise. The benefit of
prompt detection is demonstrated in Figure 6 which shows (e.g., see Event ID 80) that the number of events failing the
end-to-end latency constraint can be larger with the variation-driven detector (with smoothing size 5, and sample-range
size 11).

On the other hand, a trustworthy detector can be used to detect changes in the application behavior which do not
immediately cause the performance constraints to be violated, but which increase the risk of such a situation. In our
experiment, a change in execution time which causes the end-to-end latency to get within 10% of the acceptable limit
(see Event ID 25), is signaled by the variation-driven detector and triggers a reallocation which reduces the latency to
more than 15% below the acceptable threshold. A threshold-driven detector cannot be used for detecting similar changes
because it can not distinguish between a spike and a steady variation.

11

5.2. Reallocation Decisions

In this section, we address the effects of considering the enactment overheads and of using application state-specific
incremental heuristics in the ARA decision making.

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(s
ec

s)

Event ID

Effects of enactment overhead

Acceptable limit

Detection

SPH Enactment

FDH Enactment
SPH
FDH

Figure 7. Influence of enactment overhead

Reallocation heuristics aware of enactment overheads result in improved performance. Figure 7 depicts the
end-to-end latency variation with two decision heuristics distinct in their awareness of enactment overheads: First,
the ‘single-pair’ heuristic (SPH) tries to accommodate a critical variation with node reallocations involving only two
components, thereby likely to result in lower enactment overhead than reallocations involving more components. Second,
the ‘fair-decrease’ heuristic (FDH), ignores enactment overhead, and uses reallocations involving multiple components,
as it tries to be fair about reducing the number of nodes available to different application components.

To accommodate an increase of component B’s computation needs (see Figure 4), the SPH decides a 2-node transfer
from component C to B, while the FDH decides a 1-node transfer from each of the components C and D to B. Both
heuristics lead to similar steady state performance. However, the enactment overhead with FDH (23 msecs) is larger
than with SPH (18 msecs). Thus, the number of events failing their latency requirements is larger with FDH, the heuristic
not accounting for enactment overhead.

Application state-driven incremental decisions can reduce reaction time. Incremental decisions can improve
ARA performance because they can take advantage of current resource allocation. We show that combining incremental
decision algorithms with heuristics aware of the current application state permits to achieve even better performance
when compared to from-the-scratch, state-independent methods[6, 17].

We experiment with a simple incremental decision algorithm that repetitively selects pairs of potential receiver and
donor components and tests whether the performance metric(s) under constraints can be improved by a 1-node transfer.
The time taken to produce an acceptable reallocation depends on the order in which the components are selected, while
the effectiveness of an ordering criterion varies with the state of the application.

We experiment with two ordering criteria: (1) by current execution time, CE, and (2) by expected execution time
variation upon reallocation, EV. CE ranks by the component current execution time, donors in increasing order, and
receivers in decreasing order. EV ranks donors in increasing order of the expected increase in their execution time that
may occur when releasing a node, and receivers in decreasing order of the expected reduction in their execution time that
may occur when being assigned a node. We use these criteria to decide reallocation decisions in two types of application
states: a rate-critical and a latency-critical state.

In a rate-critical state, the primary goal of reallocation is to reduce the maximum execution time in the system. Thus,
the receiver should be the bottleneck component (i.e., largest execution time) and the donor may be any other component,
provided the resulting maximum execution time satisfies the acceptable event rate constraints. The CE ordering helps
to focus immediately on the components with the highest and lowest execution times. In our experiment, an acceptable
pair is found with the CE ordering after testing one (receiver, donor)- pair (1.34 msecs), and with the EV ordering after
testing four pairs (1.58 msecs). Note that in this experiment, it takes approx. 0.080 msecs to test a pair, the rest of the
reported time being spent with other ARA mechanisms or parts of the decision procedure. We expect this overhead to test
a pair to be larger for more complex application structures, when timing requirements more complex than the end-to-end

12

latency and the maximum achievable event rate are considered.
In a latency-critical situation, the primary goal is to improve the sum of the execution times of all of the components

on the event’s critical path. The best solution attainable with a reallocation involving only two components (i.e, with low
enactment) is to select as receiver the component expected to have the largest reduction in execution time, and as donor
the component expected to have the lowest increase in execution time. This is the first pair selected by the EV ordering.
In our experiment, an acceptable pair is found with the EV ordering after testing one pair (2.56 msecs), and with the
CE ordering after testing four pairs (2.83 msecs). In conclusion, the two ordering criteria we experimented with enable
minimal decision overhead, but each in a different system state.

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0 10 20 30 40 50 60 70 80 90 100

La
te

nc
y

(s
ec

s)

Event ID

Effects of predicted variation

Acceptable limit

A’s Execution Time

 Detection
 Enactment

Variation of

 w/ ramp prediction
 w/ 5% prediction

Figure 8. Effects of deciding based on predicted performance

Short-term prediction of resource needs improves the effectiveness of decisions. Another method for improving
the performance of ARA decisions is to consider short-term application-specific prediction. This approach permits to
make reallocation decisions that will better fit application needs after the completion of enactment. Consider for instance
a ramp increase of A’s computation needs (see Figure 4). Being able to predict computation needs at the end of the
transition period enables the decision mechanisms to use the predicted value instead of some intermediary ones. Figure 8
shows the difference in performance between a reallocation based on the observed needs increased by 5% (a conservative
estimation of how much the computation needs will further increase) and the reallocation based on a correct prediction
of the ramp variation. Prediction allows us to eliminate one reallocation, thereby improving the stability of the system.
Experiment Conclusions. To summarize, our experiments show that the ARA performance is improved by considering
both the application characteristics and its current state when choosing the methods for detection and allocation decision.
In addition, application specific prediction combined with the information provided by the dynamic RUMs, permits to
better accommodate the needs of the application.

6. Contributions and Future Work

This paper considers the problem of adaptive resource allocation (ARA) for high-performance real-time applications
executing in dynamic environments. Applications consist of multiple parallel tasks with data-dependent resource needs.
Our contributions are the following:� An application resource usage model that captures those characteristics of parallel real-time tasks that are required

for making good reallocation decisions, even in situations in which observed performance is larger than the specified
values.� An adaptation model enabling automatic resource allocation adjustments and the ability to evaluate their enactment
overheads.� Experimental demonstration of the importance of focusing on the response time of resource allocation mechanisms
rather than on the optimality of their decisions, when real-time constraints must be satisfied.� A novel set of performance metrics for evaluating ARA performance that focuses on the satisfiability of the
application’s timing constraints. These metrics are reaction time, recovery time, and performance laxity.� Identification of factors related to detection and decision mechanisms that influence the satisfiability of the
application’s timing constraints. These factors are early detection, enactment overhead, and application state-

13

driven incremental decision heuristics, prediction.
The models and heuristics presented in this paper are proved useful in the context of processor reallocation for an

adaptive, synthetic application designed to represent time-critical applications in C3I systems. In the future, we plan
to apply them to other types of adaptive applications including a complex, distributed computer vision application. We
also plan to integrate the insights and mechanisms presented here into a broader framework for resource management
destined for systems where multiple real-time applications coexist, and where the ARA mechanisms described in this
paper are used in conjunction with online negotiation mechanisms.

References

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. QoS Negotiation in Real-Time Systems and Its Application to Automated Flight
Control. Real-Time Technology and Applications Symposium, 1997.

[2] A. Banerja and D. Ferrari. The Tenet Real-Time Protocol Suite: Design, Implementation, and Experiences. IEEE/ACM
Transactions on Networking vol.4, no.1, Feb., 1996.

[3] A. Bestavros. Load Profiling in Distributed Real-Time Systems. Journal of Information Sciences, 1997.
[4] T. Bihari and K. Schwan. A Comparison of Four Adaptation Algorithms for Increasing the Reliability of Real-Time Software.

Real-Time Systems Symposium, 1988.
[5] T. Bihari and K. Schwan. Dynamic Adaptation of Real-Time Software. ACM Transactions on Computer Systems, May, 1991.
[6] S. H. Bokhari. Partitioning Problems in Parallel, Pipelined and Distributed Computing. IEEE Transactions on Computers, Jan.,

1988.
[7] R. A. Brooks. A Robust Layered Control System For A Mobile Robot. IEEE Journal of Robotics and Automations, Jan., 1986.
[8] J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,

Nov., 1986.
[9] Y.-C. Chang and K. Shin. Optimal Load sharing in Distributed Real-Time Systems. Journal of Parallel and Distributed

Computing, pp.38-50, 1993.
[10] S. Chatterjee and J. Strosnider. Distributed Pipeline Scheduling: End-to-End Analysis of Heterogeneous, Multi-Resource

Real-Time Systems . 15th International Conference on Distributed Computing Systems, 1995.
[11] S. Cheng, S. Hwang, and A. Agrawala. Schedulability-Oriented Replication of Periodic Tasks in Distributed Real-Time Systems.

15th International Conference on Distributed Computing Systems, 1995.
[12] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Speedup Versus Efficiency in Parallel Systems. IEEE Transactions on Computers,

Mar., 1989.
[13] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive Load Sharing in HomogeneousDistributed Systems. IEEE Transactions

on Software Engineering, May, 1986.
[14] G. Eisenhauer, B. Schroeder, K. Schwan, V. Martin, and J. Vetter. DataExchange: High Performance Communication in

Distributed Laboratories. 9th International Conference on Parallel and Distributed Computing and Systems, Oct., 1997.
[15] J. Huang and P.-J. Wan. On Supporting Mission-Critical Multimedia Applications. 3rd IEEE International Conference on

Multimedia Computing and Systems, 1996.
[16] K. Jeffay and D. Bennett. A rate-based execution abstraction for multimedia computing. 5th International Workshop on

NOSDAV, 1995.
[17] J. Jehuda. Automated Meta-Control for Adaptable Real-Time Software. Real-Time Systems Journal, (to appear).
[18] R. Jha, M. Muhammad, S. Yalamanchili, K. Schwan, and D. I. Rosu. Adaptive Resource Allocation for Embedded Parallel

Applications. 3rd Int. Conference on High Performance Computing, 1996.
[19] M. B. Jones, P. J. Leach, R. Draves, and J. I. Barrera. Modular Real-Time Resource Management in the Rialto Operating System.

5th Workshop on Hot Topics in Operating Systems, pages 12–17, May, 1995.
[20] M. B. Jones, D. Rosu, and M. Rosu. CPU Reservations and Time Constraints: Efficient, Predictable Scheduling of Independent

Activities. 16th ACM Symposium on Operating Systems Principles, 1997.
[21] D.-I. Kang, R. Gerber, and M. Saksena. Performance-Based Design of Distributed Real-Time Systems. IEEE Real-Time

Technology and Applications Symposium, Jun., 1997.
[22] J. W. Liu, K.-J. Lin, and W.-K. Shih. Algorithms for Scheduling Imprecise Computations. IEEE Computer Vol.24, No.5, pages

58–68, May, 1991.
[23] K. Marzullo and M. Wood. Making Real-Time Reactive Systems Reliable. 4th European SIGOPS Workshop, 1990.
[24] C. McCann and J. Zahorjan. Processor Allocation Policies for Message-Passing Parallel Computers. ACM Sigmetrics, 1994.
[25] C. W. Mercer, S. Savage, and H. Tokuda. Processor Capacity Reserves for Multimedia Operating Systems. "IEEE Int. Conference

on Multimedia Computing and Systems", 1994.
[26] R. C. Metzger, B. VanVoorst, L. S. Pires, R. Jha, W. Au, M. Amin, D. A. Castanon, and V. Kumar. C3I Parallel Benchmark

Suite - Introduction and Preliminary Results. Supercomputing, 1996.
[27] J. Molini, S. Maimon, and P. Watson. Real-Time System Scenarios. Real-Time Systems Symposium, 1990.

14

[28] D. M. Nicol and P. F. J. Reynolds. Optimal Dynamic Remapping of Data Parallel Computations. IEEE Transactions on
Computers, Feb., 1990.

[29] K.-H. Park and L. W. Dowdy. Dynamic Partitioning of Multiprocessor Systems. International Journal of Parallel Programming,
No.2, 1989.

[30] E. W. Parsons and K. C. Sevcik. Benefits of speedupknowledge in memory-constrained multiprocessor scheduling. Performance
Evaluation Review 27&28, 1996.

[31] K. Ramamritham and J. A. Stankovic. Dynamic Task Scheduling in Hard Real-Time Distributed Systems. IEEE Software, Vol.
1, No. 3, Jul., 1984.

[32] D. I. Rosu and K. Schwan. Improving Protocol Performance by Dynamic Control of Communication Resources. 2nd IEEE
International Conference on Engineering Complex Computer Systems, 1996.

[33] H. Rotithor and S. Pyo. Decentralized Decision Making in Adaptive Task Sharing. 2nd IEEE Symposium on Parallel and
Distributed Processing, 1990.

[34] K. Schwan, T. Bihari, B. W. Weide, and G. Taulbee. High-Performance Operation System Primitives for Robotics and Real-Time
Control Systems. 6th Symposium on Reliability in Distributed Software, 1987.

[35] K. Sevcik. Characterization of Parallelism in Applications and Their Use in Scheduling. Performance Evaluation Review, vol.
17, May, 1989.

[36] M. Spuri and J. A. Stankovic. How to Integrate Precedence Constraints and Shared Resources in Real-Time Scheduling. IEEE
Transactions on Computers, Vol. 43, No. 12, pages 1407–1412, Dec., 1994.

[37] A. Tucker and A. Gupta. Process Control and Scheduling Issues for Multiprogrammed Shared-Memory Multuprocessors. 12th
ACM Symposium on Operating Systems Principles, 1989.

[38] R. A. Volz, T. N. Mudge, and D. A. Gal. Using ADA as a programming Language for Robot-Based Manufacturing Cells. IEEE
Transactions on Systems, Jun., 1984.

[39] H. Zhou, K. Schwan, and I. Akyildiz. Performance Effects of Information Sharing in a Distributed Multiprocessor Real-Time
Scheduler. Real-Time Systems Symposium, 1992.

15

