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Abstract 

In this paper we propose a novel scheduling framework 
for a real-time environment that experiences dynamic changes. 
This framework is capable of adjusting the system workload 
in incremental steps under overloaded conditions such that the 
most critical tasks in the system are always scheduled and the 
total value of the system is m i m i z e d .  Each task has an as- 
signed criticality value and consists of two parts, a mandatory 
part and an optional part. A timely answer is available after 
the mandatory part completes execution and its value may be 
improved by executing the entire optional part. Optional parts 
can be discarded in overloaded conditions. 

The process of selecting optional parts to discard while 
maximizing the value of the system requires the exploration of 
a potentially large number of combinations. Since this process 
is too time consuming to be computed on-line, an approximate 
algorithm is executed incrementally whenever the processor 
would otherwise be idle, progressively rejning the quality of 
the solution. This criteria allows the scheduler to handle over- 
loads with low cost while maximizing the use of the available 
resources and without jeopardizing the temporal constraints of 
the most critical tasks in the system. Simulation results show 
that few stages of the algorithm need to be executed for achiev- 
ing a performance with near-optimal results. 

1 Introduction 

The use of complex and dynamic real-time systems is nowa- 
days becoming common for the management and control of a 
variety of applications such as manufacturing, industrial au- 
tomation systems, space or avionics and telecommunications 
systems. In a critical real-time system, each task must com- 
plete and produce correct results by the specified deadline. 
Failure to conform with any timing constraint is considered 
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a catastrophic failure. In order to guarantee that the timing 
constraints will be satisfied, it is necessary that the resource 
requirements for all tasks in the system be known and that re- 
sources be available in a timely manner. Therefore, the re- 
sources must be reserved for worst-case execution time of tasks 
to provide absolute guarantees. 

Traditionally, the resource scheduling problem for real-time 
tasks is to generate a feasible schedule or to verify if a given 
scheduling policy can meet the timing requirements of a spe- 
cific set of tasks. In practice, however, real-time environments 
experience frequent changes in workloads, caused by new task 
arrivals or tasks that leave the system after finishing their ex- 
ecution. The problem with accepting new tasks in the system 
is that they may result in an overload and cause some of the 
tasks already in the system to miss their deadlines. Under such 
overload conditions, we may augment the available resources 
or reject some tasks (or both). 

In this paper we study the problem of scheduling dynamic 
tasks in an overloaded single processor environment, where 
new tasks arrive or leave the system at arbitrary instances of 
time. A framework is proposed for adjusting the system work- 
load incrementally by relating the criticality value[2, 31 of the 
tasks to the resource allocation problem. The identification 
of feasible options that maximize an optimality criteria (ex- 
pressed as the total value of the system) requires the explo- 
ration of a potentially large combinatorial space of solutions. 
Our approach to solve this problem is based on an on-line In- 
cremental Server (INCA), which searches feasible solutions by 
executing a sequence of approximate algorithms. At each ap- 
proximate algorithm execution, the load is adjusted and the 
quality of the solution is refined. The minimum number of 
approximate algorithms executed produces a feasible but sub- 
optimal solution that can be incrementally improved if more 
approximate algorithms can be executed. Functions with this 
property are called incrementally precise functions or incre- 
mental processes. 

We consider real-time tasks that consist of mandatory parts 
and optional parts for refining the result of the mandatory parts. 
Systems exhibiting this behavior include (1) multimedia sys- 
tems that receive, enhance or transmit audio, video or images 
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and process this information for specific intervals of time, (2) 
process control systems with sensors and actuators that are ac- 
tivated by changing environmental conditions and (3) real-time 
database query processing systems. For systems such as these, 
our approach is to produce approximate solutions that can be 
progressively refined, when the exact solutions cannot be pro- 
duced in time, due to overloaded conditions. 

The remainder of this paper is organized as follows. In Sec- 
tion 2 related models and previous work are reviewed. In Sec- 
tion 3, the task model used in this paper is defined. In Section 
4, the overload scheduling problem is formulated. In Section 
5 ,  the INCA server is described and in Section 6 we analyze 
the merit of the incremental execution of the INCA server, and 
compare its performance against a non incremental server. In 
Section 7, simulation results are presented to show the perfor- 
mance of the INCA Server and to give insight into its effec- 
tiveness in handling overload conditions. Finally, Section 8 
presents concluding remarks. 

2 Related Work 
In a dynamic real-time environment, even when the system 

is properly designed and sized, a transient overload can oc- 
cur for different reasons, such as changes in the environment, 
simultaneous arrivals of asynchronous events, faults of periph- 
eral devices, or system exceptions[5]. The worst consequence 
that may happen is that some critical tasks in the system miss 
their deadlines, jeopardizing the correctkafe behavior of the 
system. As all systems have finite resources, their ability to 
execute a set of periodic and aperiodic tasks while meeting the 
temporal requirements is limited. Clearly, overload conditions 
arise if the system has to process more new tasks than the avail- 
able set of resources can handle. 

In the real-time literature several scheduling algorithms 
have been proposed to deal with overloaded systems. The de- 
velopment of the Best-Effort algorithm [14] introduced a re- 
jection policy for overloaded systems based on removing tasks 
with the minimum value density. The Best-Effort approach ba- 
sically behaves as the Earliest Deadline First [12] when the 
system is underloaded and chooses the subset of tasks that 
maximize the value of the computation per unit of time (value 
density) when the system is overloaded. The Alpha effort [9] 
introduced the concept of time-valued functions, which asso- 
ciate a value according to the task finishing time. The function 
presents a drop in value after the deadline has passed, and be- 
yond a certain time the value drops to zero. 

The problem of selecting tasks for rejection in an over- 
loaded system is also considered in [SI, where random crit- 
icality values are assigned to tasks. An approximate algo- 
rithm incorporates simulated annealing to deal with the prob- 
lem of selecting a feasible solution within the large combina- 
torial space of permutations. The RED (Robust Earliest Dead- 
line) algorithm [4] deals with aperiodic tasks in overloaded en- 
vironments, combining criticality-based scheduling, deadline 
tolerance (the amount of time by which a task is permitted 

to be late) and resource reclaiming. It is able to predict not 
only deadline misses but also the size of the overload, its du- 
ration, and its impact on the system. However, the strategy for 
handling the overload is to reject the least-valued task. Other 
approaches for handling overload focuses on providing a less 
stringent guarantees for temporal constraints. In [ 101 some in- 
stances of a task are allowed to be skipped entirely. The skip 
factor determines how often instances of a given task may be 
left unexecuted. A best effort approach is introduced in [7], 
aiming at meeting k deadlines out of n instances of a given 
task. However, it is assumed that the value of the tasks in the 
system is proportional to their computation time, provided that 
they complete by their deadlines. 

Many of these techniques (e.g., [ 10,7]) assume that a task’s 
output is of no value if it is not executed completely. In con- 
trast, in the Imprecise Computation(1C) model the task’s out- 
put has some value even if a partial or approximate result is 
produced [1, 131. In the IC model, every real-time task is 
composed of a mandatory part and an optional part. A timely 
answer is available after the mandatory part completes execu- 
tion; moreover, the longer the optional part executes, the higher 
the value of the task (i.e., the higher the quality of the result). 
However, the IC model uses an error function as a metric to 
evaluate the performance of the system. In [ 131 an error func- 
tion is defined to be inversely proportional to the total amount 
of time that the optional parts execute. An optimal schedule 
corresponds to the one where the total error of the system is 
minimized. In the IC model the shape of the error functions 
and policies for scheduling optional parts are crucial in maxi- 
mizing the performance of the system. 

(a) many 
scheduling algorithms have been developed for overloaded 
conditions, but few research work studied in practice how far 
from optimal is the performance of their algorithms and their 
complexity (reference [ 111 provided a measure for the perfor- 
mance of their D-over algorithm using a metric called com- 
petitive factor; this metric denotes the cumulative value of the 
system compared with the optimal value obtained by a clair- 
voyant scheduler that knows the entire task set a prion);(b) In 
most developed algorithms, the criteria for rejection in over- 
loaded conditions is to select the lesser-valued tasks, a strategy 
that clearly yields low cost solutions but may lead to a situa- 
tion with underutilized resources and a resulting system with 
poor performance; and (c) the time-value function of [9] or the 
error functions of the IC model [13] are difficult to obtain, and 
performance may be degraded if the system designers are not 
familiar with the functions that represent the applications at 
hand. Although our model is similar to the IC model, we do 
not use error functions but performance metrics that are largely 
available, such as utilization and criticality[2,3]. 

3 TaskModel 

From previous work we have learned that: 

In our framework we consider periodic preemptive tasks 
running on one processor. Tasks are independent and have no 
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precedence constraints. Each task ~i arrives in the system at 
time ai. The life-time of each task r, consists of a fixed num- 
ber of instances ri. After the execution of ri instances, the task 
leaves the system'. The time interval between the arrival of the 
first instances of two consecutive tasks r, and rv is defined as 
I,, = ay .- a,. We assume that the tasks characteristics (e.g., 
computation time, period, deadline and criticality) are known 
at arrival time. Each task ~i is decomposed into a mandatory 
part M; followed by an optional part Pi. The use of the impre- 
cise computation model is not restrictive in the sense that each 
task may have only an optional part and no mandatory part. In 
this model, Ti is the period and Ci is the worst case compu- 
tation time of task 7,. Each execution time Ci consists of a 
mandatory part of length mi and an optional part of length pi 
(i.e., Ci = mi + pi). The mandatory part Mi must execute to 
completion in order to produce an acceptable and usable result. 
The optional part Pi can execute only after the completion of 
the mandatory part Mi. However, a partially executed optional 
part or an optional part that misses its deadline is of no value 
to the system (04 constraint). The task q meets its deadline if 
its mandatory part completes by its deadline. It is assumed that 
the set of mandatory parts can never cause an overload in the 
system. Each task has an associated criticality value vi,  which 
denotes its importance within the system2. The Earliest Dead- 
line First[ 121 priority assignment scheme will be considered. 

Set 
s4 
s3 
Sa 
s1 
so 

4 Formulation of the Problem 

Search Space 
{1 ,1 ,1 ,1}  
t l , l , l , O }  t l , l , O , l }  t 1 , 0 . 1 , 1 }  t 0 , 1 , 1 , 1 }  
{1 ,1 ,0 ,0}  t l , O , l , O ~  t l ,O.O, lI  tO,Ll,O} t O , l > O , l }  t O > O , l , l ~  
{1 ,0 ,0 ,0)  { 0 , 1 , 0 , 0 }  ~ 0 , 0 , 1 , 0 } ~ 0 , 0 , 0 , 1 }  
t O , O , O , O }  

In overloaded conditions, the scheduler should be able to 
guarantee the timing constraints of all mandatory parts at ev- 
ery periodic task invocation and to select optional parts for ex- 
clusion from the schedule while maximizing the performance 
of the system. If the criticality of each task is proportional to 
its computation time, the decision of excluding optional parts 
must be based only on maximizing the usage of the resources 
(e.g., CPU time). In the more general case, where criticality 
and computation time are not directly related, we would like to 
exclude the less critical optional parts and maximize the total 
value of the system. Therefore, the problem can be formulated 
as follows. If a new task .ri that arrives in the system at time ai 
causes an overload, the problem is (a) to determine whether or 
not ri can be accepted in the system without interfering with 
the deadlines of the mandatory parts of any task already in the 
system, (b) if accepted, at what time ~i should be dispatched?, 
(c) what optional parts (if any) should be excluded such that 
an optimality criteria is satisfied and (d) while searching for a 
solution, how can we maximize the usage of the resources and 
the performance of the system with a reasonable low cost? 

Each task in the system accrues an accumulated value upon 
executing a number of optional parts during its life-time. Our 
objective is to maximize the accumulated value obtained after 
scheduling the set of optional parts for the complete duration of 

'We assume that some tasks that leave the system may retum at a later time. 
2Methods to derive this criticality values are proposed in [2,3, 141. 

the schedule. The accumulated value will be evaluated in terms 
of utilization or criticality as follows. Let us define CU(I)  and 
CV(I )  as the cumulative utilization and cumulative Criticality 
potentially achieved by the set of optional parts that execute 
during the interval of time I .  

The cumulative utilization achieved is computed by, 
n 

Table 1. Search space for four tasks. 

The structure of the search space S is shown in Table 1 
through an example with 4 tasks. For example, {1,1,0,0} is 
the element in which pl and pz are included for execution and 
p3 and p4 are discarded. 

4.2 Definition of the Objective Functions 
Each element in the search space will be evaluated in terms 

of utilization or criticality, using the objective functions p(s) 
and y(s) respectively, where s = ( 2 1 ,  ..., zn} E S. The ob- 
jective functions are defined as follows. 
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p(s): In this function we add the utilization of the set of 
optional parts in an element s E S to the total utilization 
of all mandatory parts. 

Maximize the utilization. The aim of this objective is to 
find a feasible element s E S such that the utilization in 
the system is maximized. That is 

(3) maximize p(s )  

subject to UBT(s) 
Let Uma2 be the value of p(s )  obtained by solving this 
optimization problem. 

0 Maximize the value. Maximizing the value requires to 
find a feasible elements E S such that ~ ( s )  is maximized. 
That is 

p(s)  denotes the utilization of the system, after choosing 
some optional parts for execution. For example, for s = 
{0,1,1,0}?P(S) = 

~ ( s ) :  In this function we compute the criticality per pe- 
nod achieved after including for execution a set of op- 
tional parts in an element s E S, recalling that vi is the 
criticality of task ~ i .  

+ E + E. 

maximize y(s) 
subject to UBT(s) 

n Let VmaZ be the value of ~ ( s )  obtained by solving this 
T(S) = zi(;) (4) optimization problem. 

i=l 
The optimization problems consist of maximizing the value 

of the system at the instant of time at which a new arrival 
causes an overload in the system. BY achieving the optimal- 
itY criteria, whenever a new task arrives or departs from the 
system, we intend to maximize the accumulated value (CU(1) 
or CV(1)) obtained after scheduling the entire set of tasks for 

For example, for s = {0,1,1,0}, y(s) = + 
Note that if the tasks {q , ..., 7,) are to execute during an 

interval I, the choice of s that maximizes p(s) and ~ ( s ) ,  also 
maximizes CU(1) and CV(1) respectively. 

4.3 Feasibility Test the complete duration of the schedule. 

To evaluate the feasibility of each element in the 
search space we apply an utilization-based test (UBT). The 
utilization-based test has been chosen because of its simplic- 
ity and because it can be used for scheduling policies such as 
EDF. 

For each elements = {zl, ..., xn} of the search space S the 
utilization-based test is defined by, 

true if ~ ( s )  5 I 
U B T ( s )  = 

( false otherwise 

Note that, when choosing a feasible solution, the utilization 
of the optional parts (Up = C:=, xi$) must satisfy: U, 5 
1.0 - U,,,, where U, = cy='=, F. Also, any single optional 
part with utilization $ greater than 1 .O - U, can be discarded 
without any further test. 

4.4 The Optimization Problems 
Our first optimization problem is related to shedding a num- 

ber of optional parts that maximizes the utilization of the sys- 
tem. This objective favors a solution in which the utilization 
of the workload is maximized without considering the number 
of optional parts to be shed. Our second optimization problem 
assumes that different criticality values are associated with op- 
tional parts, therefore we are interested in maximizing the total 
value obtained after a number of optional parts are shed. 

The optimization problems are formally described as fol- 
lows, 

5 The Incremental Scheduling Server: INCA 
The incremental scheduling server is an extension of the 

earliest deadline first scheduling algorithm (EDF[ 121). In re- 
sponse to transient overload requests, the INCA Server ad- 
justs the load of the system by executing a sequence of ap- 
proximate algorithms, AP(O), ..., AP(n) to determine which 
optional parts to shed in order to satisfy our optimality crite- 
ria. The algorithms are such that AP(i)  may obtain a solution 
closer to optimal than AP(i - 1) but with longer execution 
time. The INCA Server is activated whenever the feasibility 
test (UBT) detects an overload caused by the arrival of a new 
task in the system. The INCA Server first executes the approx- 
imate algorithm AP(0) to eliminate the overload. The solution 
provided by AP(0) allows the scheduler to disable temporarily 
the execution of some optional parts3, while providing a low 
cost non-optimal solution. The slack-time4 introduced in the 
system by the removal of the overload is used by the scheduler 
to execute approximate algorithms AP(k) (for k = 1, ..., n), 
progressively refining the quality of the solution. 

If during the execution of the INCA Server a new task ar- 
rives or a task leaves the system, it will re-start its execution, 
taking into account the modified load of the system. 

3Note that after the execution of each approximate algorithm some optional 
parts may be disabled temporarily, but not discarded. The w o n  for this is 
that at each approximate algorithm we may find different solutions involving 
different optional parts to execute. 

*Slack-time is defined as the time at which the processor is not executing 
any task. 
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1 : INCA Server: 
2 input: a set of tasks T I ,  ..., T,, , including the newly arrived task T,,, 

3: If 
4 Execute AP(0); (remove the overload) 
5: Compute the stan time of the new task T,; 

6 Schedule the new task at its start tine; 
I :  k =  1; 
8: while (there is slack in the schedule) do 
9: begin 
1 0  
11: 

12: 
13: elsewit; 
14: k = k + l :  
15: end: 

> 1 then reject the new task T,; exit; 

Execute AP(L);  (during slack time) 
If the result from AP&) is better 

than the result from AP(k-I) then 
Enable the optional parts selected by A P ( k ) ;  

Figure 1. Incremental Server (INCA) 

The INCA Server stops its execution when (a) there is no 
more slack in the schedule to execute additional AP(k) algo- 
rithms, or (b) the result of AP(k) is not better than the result of 
AP(k-1). The INCA Server is described in Figure 1. 

5.1 Methodology for Handling Overload 

In this section, a methodology for handling overload condi- 
tions is introduced. 

1. Activating the Incremental Server. The INCA server 
is activated if a new task, r,, arrives in the system and causes 
an overload. Our feasibility test (UBT) detects this condition. 
After detecting the overload, AP(0) is executed5 and some op- 
tional parts are chosen to be discarded for removing the over- 
load. The INCA server is also activated when a task leaves the 
system. In this case, the approximate algorithms AP(k) (for 
k=O, ..., n) are executed incrementally to satisfy the optimality 
criteria for the new set of optional parts in the system. 

2. Scheduling the new task. After removing the over- 
load from the system, the newly arrived task can be scheduled. 
However, regardless of the priority of the newly arrived task, 
if the task is accepted it may not be scheduled at its arrival 
time because it may cause some missing deadlines, even af- 
ter executing AF'(0). This is because, at the instant of the new 
arrival, we may choose optional parts that (a) already finished 
their current execution, or (b) have been preempted while exe- 
cuting their optional parts. The resulting utilization cannot be 
immediately subtracted from the total processor load because 
the discarded optional parts could already have delayed the ex- 
ecution of other tasks. As a consequence, to keep the feasibility 
test consistent, the utilization of a discarded optional part can 
be subtracted from the total load only at the end of its current 
period. Thus, the new task should wait until the end of the 
longest period of all preempted tasks 6.  Clearly, the tasks that 

We assume that the execution times of AP(0) and UBT are negligible. 
6Computing analytically the best time at which it is possible to accept the 

new task may involve some additional run-time overhead[6]. Therefore we 

have not already started the execution of their optional parts 
allow the utilization to be subtracted immediately. 

3. Execution of AP(l), ..., AP(n). After removing the over- 
load through AP(O), an increase in the slack available in the 
system is expected. AP(1) is then executed on the slack ex- 
isting in the system after the execution of AP(0). Analogously, 
AP(k)  (for k = 2, ..., n) is executed on the slack existing in 
the system after the execution of the previous AP(k - 1). The 
INCA Server executes the approximate algorithms AP(l), ..., 
AP(n) incrementally. After executing each AP(k) ,  the work- 
load of the system is adjusted by enabling and disabling some 
optional parts. Since the INCA Server executes on the slack 
available in the system, it will execute as many approximate 
algorithms as possible. 

Algorithm AP(k) may yield better solutions than AP(k-1) 
but at the cost of higher execution times. However, the ex- 
ecution of each AP(k) may increase the utilization and thus 
decrease the amount of available slack. This can eventually 
exhaust all the available slack in the system. If this condition 
occurs, the execution of AP(k+l) will not be possible, there- 
fore, the INCA Server will stop its execution. 

During the execution of the some AP(k) algorithm, a new 
task may arrive in the system or a task may leave the system. 
If this occurs, the INCA Server will re-start its execution, tak- 
ing into account the modified load of the system. If the in- 
cremental server is invoked when a task leaves the system, the 
instructions in lines 3 ,4 ,5 ,6  (from Figure 1) are not executed. 

4. Stopping the execution of the server. The conditions 
for finishing the execution of the server are a). there is no 
more slack in the schedule to execute some AP(k) algorithm, or 
b). the result of AP(k) is not better than the result of AP(k-1). 
Also, after AP(n) is executed the server finish its execution. 

5.2 The Approximate Algorithm: AP(k)  

In this section, we describe the approximate algorithm used 
by the INCA Server. The approximate algorithm makes use of 
a greedy-type procedure[ 161 which finds a heuristic solution 
by selecting for execution optional parts in order of decreasing 
utilization 6 if the objective function is p(s) ,  or & if the 
objective function is 7(s)[16]. The algorithm AP(k) considers 
all possible subsets in the search space with at least k optional 
parts chosen for execution. It first chooses for inclusion in the 
schedule a subset of k optional parts, and if this subset does 
not satisfy our feasibility condition (UBT) it is discarded and 
a new subset with k optional parts is selected. If the subset 
passes the UBT, the remaining optional parts are considered for 
selection in decreasing order of E or &, while the UBT is 
satisfied. The best solution obtained by examining all subsets 
of k optional parts is the solution generated by this algorithm. 

have decided to schedule the new task at the end of the last period of the in- 
stances running in the system when the new task arrives. 
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1: Algorithm AP(k): 
2: input: F: Objective Function (See section 4.2) 
3: 
4 output: X * : set of optional parts chosen for execution. 
5: 

7 : f o r e a c h M C { l ,  ..., n} 

8: 
9: 
1 0  begin 
1 1 :  
1 2  
13: end 
1 4  procedure SEQ: 
15: input: M 
1 6  output: X: set of optional parts chosen for execution. 
17: 
18: z = 0; 
19: for i=l ton do 
2 0  
21: begin 
2 2  
23: X = X U  {i}; 
24 end 

T I ,  ..., r,, ordered according to 2 or & 
2': the optimized value computed for E 

6 z* = 0; 

such that IMI = k and U B T ( M )  = true 
call SEQ; (to compute z and X) 
i f t  + F ( M )  > 2' then 

zk = 2 + F ( M ) ;  
x* = x U M ;  

z: the value of F for the subset X. 
X = 0; 

if; $? M and U B T ( M  U X U {i}) = true then 

2 = z + F ( { i } ) ;  

L ,  J 
2 91.244980 24 44 11001  
3 99.715370 17 38 0 1  110  
4 99.715370 5 14 0 1  110  
5 99.715370 1 6 0 1  110  Figure 2. Approximate Algorithm (AP) 

The algorithm is described in Figure 2. The output of al- 
gorithm AP(k) is X k  and Z k .  X k  denotes the set of optional 
parts chosen for execution and Z k  denotes the optimal solution 
found by AP(k). Note that Z k  approximates UmaZ or Vmaz 
depending on the objective function used. 

The time complexity of procedure SEQ is O(n):  there is a 
loop for each task, and the UBT can be computed incremen- 
tally in O( 1) for each task. Since the number of times SEQ is 
executed is O ( n k ) ,  the time complexity of AP(k) is O(nk+'). 
Even for a small number of tasks (e.g., n = 10 tasks) this 
complexity seems rather high. However, we will demonstrate 
with simulations that for k 5 2 ,  the value of the system is very 
close to optimal. The worst-case performance ratio of AP(k) is 

since the complexity of the AP(k) algorithm is high for large 
k, we are interested in finding the smallest value of k such 
that AP(k) reaches a near-optimal solution. In the following 
example we will measure the real performance of the AP(k) 
algorithm in terms of complexity and run-time. 

Example 1: Consider the set of tasks with its associated timing 
constraints and criticality values described in Table 2. Our goal 
is to apply the approximate algorithm for our objective func- 
tions and to evaluate its performance. The total utilization of 
the set of tasks in Table 2 denotes an overload (load = 120%). 
The utilization of the mandatory parts is 54% and the utiliza- 
tion of the optional parts is 66%. The problem to be solved 
is to handle the overload for this workload using the AP(k) 
algorithms, selecting the number of task to be included for ex- 
ecution such that our optimality criteria is satisfied. Tables 3 
and 4 show the results from algorithm AP(k), for k = 0, ..., 5. 
The results shown in the Tables are: (a) the result from al- 

- k.!l [ 161, which directs us to a solution with large k. However, 

gorithm AP(k), which is X k  and Z k  (see Figure 2); (b) the 
number of combinations (N.C) necessary to obtain a solution; 
(c) the run-time of AP(k), which denotes the physical time in 
microseconds, using a PC Intel 233 MHz running Linux with 
48MB of RAM; and (d) the set of optional parts chosen for 
execution (xk).  

39.0 116.0 18.0 21.0 0.336 37.0 

44.0 174.0 18.0 26.0 0.253 27.0 
47.0 195.0 20.0 27.0 0.241 29.0 

Table 2. Example Real-Time Workload: Mandatory and Op- 
tional parts and Criticality Values 

k I Zk sz U""' (NC) Run-lime (ps) Result Set 

1 I 91.244980 16 33 11001  
0 I 89.030136 4 16 11000  

1 0 0 1 0  
0.492 10011  
0.559 25 58 0 1 1 1 0  
0.559 17 0 1 1 1 0  
0.559 18 01 110  
0.559 0 1  110  

Table 4. Results for maximizing criticality. 

For the goal of maximizing utilization, it is possible to ob- 
serve that AP(k) with k = 3 yields optimal results, while for 
maximizing criticality AP(k) for k = 2 yields the optimal so- 
lution. For the case of utilization, tasks are ordered in terms of 
decreasing 5 (i.e., 7 1 ,  72,73, 74, TS), while for the case of the 
criticality the order is by decreasing fi (i.e., 74 ,  7 1 ,  73, 7 2 ,  

7 5 ) .  

5.2.1 Measuring the Performance and Complexity of the 
Solutions 

To extend the previous results, an experiment with lo00 ran- 
domly generated task sets has been conducted for measuring 
the performance and the complexity of the algorithm. For each 
experiment, a workload of 10 tasks has been generated with an 
overload (120% utilization for each task set). Results shown in 
Table 5 indicate the number of solutions within a certain per- 
cent close to optimal. For the two optimality criteria a near 
optimal solution (more than 91%) is obtained using AP(2) .  
For example, for maximizing utilization, results for AP(2) in- 
dicate that 951 experiments yield a near optimal solution (0- 
0.1 %) and the remaining 49 yield a 1 - 5% near optimal solu- 
tion. 
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Figure 3. Complexity of AP(k) for different values of E .  Y axis is in log scale. 
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Figure 4. Complexity of AP(k) for different number of tasks, (a) E= 0.001 (b) E= 0.01 (c) E= 0.02. Y axis is in log scale. 

For maximizing criticality, results show that for AP(2) 91 1 
experiments yield a near optimal solution (0-0.1%). This sur- 
prising result shows the excellent performance of the approxi- 
mate algorithm AP(k). 

Maximizing Utilization 

999 0 
0 

Maximizing Criticality 

lo00 
4 lo00 0 

Table 5. Number of Solutions within z percent near optimal 
for 1000 Tasks Sets. 

Further reductions in complexity could be obtained by re- 
laxing the feasibility bound (see UBT). According to our fea- 
sibility tests, an element s E S is feasible if its feasibility con- 
dition is met. However a result less than 100% (e.g., 95%) 
could be sufficient for some applications which would cause 
an earlier end to the search for feasible solutions. Let us define 
E, 0 < E < 1.0, as the feasibility error which indicates a relax- 
ation on the feasibility condition. The feasibility test shown in 
Equation (5 )  indicates a suficient feasibiliv condition. 

n 
XiPi 

i= 1 

We are interested in measuring the complexity (the num- 
ber of elements searched) of the algorithm using the sufficient 

feasibility condition for different values of E .  We have con- 
ducted 1000 experiments comprising 10 tasks in each exper- 
iment whose total utilization (mandatory + optional) is 1.2. 
The average complexity of the algorithm is shown in Figure 
3 for a varying value of E .  Note that the complexity of our 
algorithm is much lower than the worst-case complexity (ex- 
emplified by E = and that big reductions in complexity 
can be achieved by increasing the value of E .  For example for 
6 = 0.02 and k = 5 the complexity achieved is 47 and 240 for 
maximizing utilization and criticality, respectively. However, 
it is worth noting that for all values of k the algorithm for maxi- 
mizing utilization performs slightly better than for maximizing 
criticality. A possible explanation for this surprising result is 
the fact that the number of tasks is relatively low (n = 10). 
According to the worst-case complexity of the algorithm, hav- 
ing a higher number of tasks may increase considerably the 
complexity of the algorithm. 

To measure the effect of the number of tasks on the com- 
plexity of the algorithm, an experiment has been conducted 
using 1000 randomly generated tasks sets for three values of 
E = 0 . 0 0 1 , ~  = 0 . 0 1 , ~  = 0.02 and for a varying number of 
tasks (from 5 to 15 tasks). Figure 4 shows that the complexity 
of the algorithm is relatively low even with a high degree of 
quality ( E  = 0.02). 

From the results shown in Table 5 it can be concluded that 
for values of k 5 2, 92.5% and 100% of the solutions are 
95%-close to optimal when the criterion is to maximize criti- 
cality and utilization, respectively. Note that when k = 1, only 
0.2% are less than 95% of optimal for the utilization criterion. 
From Figures 3 and 4, it can be seen that keeping e between 
the values of 0.0001 and 0.02 is reasonable for achieving low 
complexity while maintaining high quality results. 
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Figure 5. INCA-2 and NON-INCA-2 Servers: Execution Sequences. 

6 Analysis of the INCA Server 

As explained above, the INCA server is based on the incre- 
mental execution of several stages (Approximate Algorithms). 
At the end of each stage, information is available regarding the 
optional parts chosen for execution, and the resulting value of 
the objective function for the set of optional parts chosen. The 
process of scheduling the chosen optional parts at every stage 
will be called commitment. The INCA server executes the ap- 
proximate algorithm AP(k) only after AP(k - 1 )  commits. In 
contrast, a non-incremental server would execute a number of 
stages AP(O), ..., AP(k),  before committing to the system. 

In what follows we analyze the merit of the incremental ex- 
ecution by assuming k = 2 and comparing the following two 
servers, 

INCA-2: This is the incremental execution sequence used 
by the INCA Server considering only two stages. That is, 
A P ( l ) ,  commit, AP(2). commit. 

NON-INCA-2: In this case, there is no incremental execu- 
tion, and two stages are executed continuously before commit- 
ting. That is, AP(1) + AP(2), commit. 

In Figure 5 we illustrate a sequence of n tasks arriving in 
the system, where the arrival of task T, causes an overload. 
Un+l  = z and a,+l = y denote two instants of time at which 
a new tasks ~ , + 1  may arrive. Although the following analysis 
considers only two stages of the execution of the incremen- 
tal server, the same analysis can be easily extended to include 
more than 2 stages. 

After executing AP(0) at time a,, X o  and Zo are obtained. 
The set of optional parts, X o ,  selected for execution will ex- 
ecute until AP(1) commits. Then a new set of optional parts 
X' will be chosen for execution and the process repeats. The 
resulting utilization or criticality value, Zo, will depend on the 
objective function used. Let the utilization after committing 
at AP(k) be: zk = ( 1  - a k ) ,  where (Yk denotes the resulting 
slack time expressed in a percentage of resource usage. This 
slack time will be used for the execution of AP(k+l). Note 
that a k + l  5 (Yk if the objective of the AP(k) algorithm is to 
maximize utilization. 

Definition 1. Let $k be the worst-case execution time of alg0- 
rithm AP(k) measured continuously (i.e., without interference 

from other tasks). We assume that the execution time of M(O), 
40, is negligible. 
Definition 2. The interval of time at which AP(k) executes 
is defined as Ik = &. If the execution of AP(1) and 
M ( 2 )  is non incremental, the interval of time at which both 
AP( 1)+AP(2) execute is defined as 11 ,~  = (see Figure 
5). 

Utilization Metric We will compare the cumulative utiliza- 
tion achieved by INCA-2 and NON-INCA-2 during the period 
from a, to a,+l. If during a period I ,  the slack in the system 
is a constant, a, then the cumulative utilization given by Equa- 
tion l can be alternatively computed from CU(I)  = 1(1 - a).  
Given that both INCA-2 and NON-INCA-2 will produce a uti- ' 
lization of ( 1  - ao), resulting from AP(O), during the period 
[a,, a,+I1], and that both will produce a utilization of ( 1 - a z ) ;  
resulting from AP(2) during the period [an + I1 + 1 2 ,  an+l], if 
a,+l > (a ,  + I1 + Iz) ,  we will only compare the utilizations 
during the period [a, + 11, an+l], where an+l 5 an + Ii + 1 2 .  

We will denote the cumulative utilization resulting from 
INCA-2 by CU while denoting the cumulative utilization re- 
sulting from NON-INCA-2 by CU,. The following lemma 
proves that the incremental server always outperforms the non 
incremental server when the goal is to increase the cumulative 
utilization of the system. 

Lemma 1. CU([a,, a,+l]) 2 CUN([U,, a,+l]), if the objec- 
tive of the AP(k) algorithm is to maximize utilization. 

Proof: If a,+l 5 a,  + I1 then both servers produce the same 
utilization, while if a, + I1 5 an+l 5 an + I1,z then the 
INCA server is at least as good as the NON-INCA server, 
since CU([an + Il,a,, + I I , ~ ] )  = ( 4 , ~  - I i ) (1  - ai) and 

Now assume that a,+l = a, + 11,~ + t ,  where 0 5 t 5 
CUN([an+I1 ,an+I l ,~ ] )  = ( I I , Z - I I ) ( ~ - ~ O ) *  

11 + I2 - 11.2. In this case, 

CU([an,an+l]) = 1 1 ( 1 -  00) + I z ( ~ -  a1) 

CU~( [an ,an+l ] )  = I I , z ( ~ - ~ o )  + t ( l  - Q Z )  

using the values of I1,12 and I1,2 from Definition 2 we get 

c v ( [ a n ,  an+l]) = 
CUN([an, an+ll) + $ - $ - t ( 1 -  
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Given that t _< I1 +I2 -I1,2 = $ - g, and that (1 - a2) I 
1, we conclude that CU([a,, a,+,]) is equal to or larger than 
c U ~ ( [ a , ,  a,+l]). Finally, if a,+l > an+11+12, then INCA- 
2 and NON-INCA-2 produce the same utilization, (1 - a2). 
for any period latter than a, + I1 + 12 and thus the result that 
Cu([an, an+l]) 2 CuN([an, an+l]) holds. QED 

Criticality Metric The above lemma assumes that the ob- 
jective of the servers is to maximize the system utilization. 
If however, the goal is to maximize the cumulative criticality 
(see Equation 2), then the relative performance of INCA-2 and 
NON-INCA-2 depends on the performance of the incremental 
algorithms A P ( O ) ,  AP( 1) and AP(2). Let Zk be the criticality 
value achieved by AP(k), when the goal of AP(k) is to max- 
imize Criticality, and let (Yk be the slack of the system after 
AP(k) commits. As before, we will use C V ( I )  and CVn(1) 
to denote the cumulative criticality obtained by INCA-2 and 
NON-INCA-2 respectively during the period I .  

Lemma 2. If an+l I I i , z ,  then CV([an,an+ll) 1 
CVN([an, an+l]), when the objective ofAP(k) is to maximize 
cnticulity. 

Proof: CV([U,, a, + 111) = CvN([a,, a, + 111) = I1 * Zo, 
while for a, + 11 5 t 5 an+l, we have 

CV([an + I1,an + I1 + t ] )  = 
CVN([an + I1,an + 11 + t ] )  = 

t * Z 1  
t * Zo 

The result follows since Z 1  2 Zo. QED 

Lemma 3. If a,+l > 11 + I2 and the objective of 
AP(k) is to maximize criticulity, then CV([an,an+l]) 2 

Proof: Both INCA-2 and NON-INCA-2 produce the same crit- 
icality, namely Z2 after the time 11 + 1 2 .  2' = CV([Il  + 
12, a,+l]) = CV, ([I1 + 1 2 ,  a,+l]). Hence, we will only com- 
pare the cumulative criticality in the period from a, + 11 to 

CVN([a,,an+l]) ifundonlyifa1(22 -21) 5 az (Z2  - 2 0 ) .  

an + 11 + 1 2 .  

CV([an + 11, an + 11 + 121) = 12 * z' 
cVN([an + Illan + 4 + 121) = 

(11,2 - 11) * zo + (I1 + I2 - 11,2) * z2 

* Z' = 
Substituting for the values of 11, IZ and I I , ~  we get 

CV([an + I1,an + 11 + 121) = 

CVN([an+Il ,Un+Il+12])=  e * z o + ( $ - e ) * z 2  
Hence,CV([a,+Il,a,+Il + I z ] )  = CVN([an+Il,an+ 

The lemma follows directly from the last Equation. QED 

Given that AP(k) does not decrease the value of Zk bellow 
Zk- ' ,  then (2' - 2') 5 ( Z 2  - Z0). However, nothing can 
be said about the relative values of a1 and a2 if AP(k) is used 
to improve criticality rather than utilization. The relative per- 
formance of the INCA and NON-INCA servers will be studied 
using simulations in the next section. 

11 + 121) + % ( 2 2  - 20 I - & (  2 2  - 21 1. 

7 Simulation Experiments 

The following simulation experiments have been designed 
to test the performance of the incremental server and its ability 
to achieve our optimality criteria using synthetic workloads. 
We are interested in measuring the performance of the algo- 
rithm using up to five stages of execution. According to the 
results obtained in Section 5.2 we are aware that statically we 
need to execute no more that 3 stages to achieve near-optimal 
results. Our goals are the following: 

0 to measure the quality of the results over a large set of 
dynamic tasks that arrive and leave the system at arbitrary 
instants of time. 

0 to measure and compare the performance among several 
stages for our different optimality criteria. 

Each plot on the graphs represents the average of a set of 
100 independent simulations. Up to the first 5 stages of the 
INCA server are executed in each simulation. Each curve 
INCA-k in the graphs denotes the execution of the INCA server 
in which only the first k stages are executed. That is, only the 
incremental execution of A P ( j ) ,  f o r j  = 0, ..., k is considered. 

On each simulation 5,000 tasks are generated dynamically. 
Each task has a life-time (It;) that follows a uniform distri- 
bution between 400 and 600 instances (periods). At the end 
of its life-time, the task leaves the system. The utilization of 
task T,, Vi, is chosen as a random variable with uniform dis- 
tribution between 5% and 20%. The period T; of each task 
is chosen as a random variable with uniform distribution be- 
tween 30 and 100 time units. The computation time of task 7, 
is C, = Ti * Vi. The experiments were conducted with a to- 
tal utilization UT = xi 2 varying between 80% and 180%. 
The number of tasks in the system (nt) executing at any time 
is computed by nt = $. The task inter-arrival time is com- 
puted by IT; = 9. The computation time of the optional 
part pi is a random variable that follows a uniform distribution 
between 40% and 60% of the total computation time of task 7,. 

The execution time of AP(k) used was obtained from the 
experiments described by Figure 5, using a value of E = 0.001. 
Throughout this simulation experiments we will consider ran- 
domly generated correlated tusks sets [ 151, which means that 
the criticality is a linear function of the utilization'. The value 
'U; of each task is randomly distributed in [U; - 0.10, U, +0.10] 
such that vi > 0 (i.e., plus or minus 10% from the utilization 
of the task). 

The performance of our algorithms was measured according 
to the following metrics: 

'It is hard to maximize the criticality value ratio for correlated tasks sets 
because many task combinations give similar results, therefore a larger number 
of combinations must be computed in order to find an optimal solution. We do 
not consider uncorrelated task sets because it is relatively easier to maximize 
their criticality value ratio (there is a large variation between the utilization of 
the tasks, making it easier to obtain a feasible and optimal solution). 
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0 Utilization Ratio: This metric is computed as follows, 

(6)  cum Utilization Ratio = 
Total Utilization 

where CU(I)  is the cumulative utilization of the system 
(see Section 4), for the interval of time I that denote the 
total duration of the schedule. The total utilization that 
can be achieved is computed by: xi ri * pi, where the 
sum is over all tasks that anive to the system in the inter- 
val of time I. Recall that ri denotes the total number of 
instances of 7;. 

Criticality Ratio: This metric is computed as follows, 

(7) CV(I)  Criticality Ratio = 
Total Criticality 

where CV(I)  is the cumulative criticality (see Section 4), 
for the interval of time I that denote the total duration of 
the schedule. The total criticality that can be achieved is 
computed by, xi ri * vi. 

Two sets of experiments were conducted for our simula- 
tions. The first experiment, shown in Figures 6 and 7 was 

designed to compare the performance of INCA-k for different 
values of k, 0 5 IC 5 5. The second experiment, shown in Fig- 
ure 8 was designed to compare the performance of the INCA-2 
algorithm against the NON-INCA-2 algorithm. In the graphs 
shown in Figures 6 and 7, the utilization and the criticality ratio 
were measured. The left graph shows the value of the utiliza- 
tion metric, while the graph on the right shows the ratio of the 
value obtained by INCA-k and INCA-5, called iteration ratio. 

The results shown in Figures 6 and 7 indicate that for val- 
ues of k > 2 there is no significant improvement on the per- 
formance of the INCA server. Therefore, we will consider that 
INCA-5 achieves the maximum value possible in the system. 
For the utilization ratio, it is observed that INCA-2 achieves 
results close to those obtained by INCA-5 for all load values. 
Notice that for the iteration ratio, Figure 6 shows that INCA-0 
achieves a performance that varies from 96% of INCA-5 for a 
load of 0.80, to 78% of INCA-5 for a load of 1.80. The perfor- 
mance of the algorithm for INCA-2 varies from 99% to 98.5% 
of INCA-5. It is important to note that even INCA-1 achieves 
a utilization performance higher or equal to 95% of INCA-5. 
The performance results for the criticality ratio indicate that 
INCA-k (k = 0, ..., 4) yield a performance higher than 90% of 
INCA-5 for all values of the load. 
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For our second experiment, Figure 8 shows the utilization 
and criticality ratio for the INCA-2 and the NON-INCA-2 
servers. Our main interest in this experiment is to validate the 
results obtained previously in the analysis of the INCA server 
(see Section 6). In this experiment, the load of the system has 
a fixed value of 120%, and the life-time of each task lti varies 
between 100 and 500. 

The behavior of the INCA-2 and NON-INCA-2 servers can 
be explained as follows: For low values of lti (e.g., 100 in- 
stances) both servers yield similar values because both servers 
are only able to execute AP(0) (which removes the overload). 
For It; = 200, ..., 300 the INCA-2 server yields much bet- 
ter results, because the INCA-2 server is capable of commit- 
ting more frequently than NON-INCA-2. In this situation, the 
NON-INCA-2 server is able to execute a few times AP( 1) and 
AP(2) but is mostly only able to execute AP(0). Finally, for the 
last values of lti (e.g. 400 and 500 instances) the performance 
of INCA-2 and NON-INCA-2 servers get closer because both 
servers are now able to commit both AP(1) and AP(2). In any 
case, the performance of the INCA-2 server is better that that 
of the NON-INCA server for all values of l t i .  

The results obtained in our simulations confirm the results 
obtained Section 6 and indicate that the INCA Server is a low 
cost and effective mechanism for scheduling real-time tasks 
under overloaded conditions. 

8 Conclusion 

In this paper, the problem of scheduling an overloaded real- 
time system has been studied. As observed by different re- 
search studies[& 4, 9, 111, a significant performance degrada- 
tion may occur in the system if the overload is not addressed 
efficiently. The set of tasks selected for execution is crucial for 
the proper operation of an overloaded real-time system. In our 
framework, each task has an assigned criticality value, and an 
objective function is evaluated in overloaded conditions such 
that an optimality criteria is met. The process of selecting tasks 
to discard while meeting the optimality criteria requires the ex- 
ploration of a potentially large number of combinations. Since 
this process is too time consuming to be computed on-line, 
we have developed an Incremental Server (INCA) scheduling 
paradigm, which is based in a sequence of approximate algo- 
rithms. The execution of the approximate algorithms is con- 
ducted in an incremental manner, during the time at which the 
processor would otherwise be idle (slack-time), progressively 
refining the quality of the solution. The computational com- 
plexity of the INCA Server is high. However, we have shown 
that in practice only few stages need to be executed for achiev- 
ing near-optimal solutions. An important feature of the incre- 
mental algorithm is that its run-time overhead and the quality 
of the solutions are parameters that can be controlled on-line. 
Our simulation results show that our approximate algorithm 
is efficient, has low overhead, and most importantly generates 
near-optimal solutions for overloaded real-time systems. 
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