
An Incremental Approach to Scheduling during Overloads in Real-Time Systems*

Pedro Mejia- Alvarezt
CINVESTAV-IPN. Secci6n de Computaci6n

AV. I.P.N. 2508, Zacatenco.
MCxico, DE 07300

pmejia@computacion.cs.cinvestav.mx

Abstract

In this paper we propose a novel scheduling framework
for a real-time environment that experiences dynamic changes.
This framework is capable of adjusting the system workload
in incremental steps under overloaded conditions such that the
most critical tasks in the system are always scheduled and the
total value of the system is m i m i z e d . Each task has an as-
signed criticality value and consists of two parts, a mandatory
part and an optional part. A timely answer is available after
the mandatory part completes execution and its value may be
improved by executing the entire optional part. Optional parts
can be discarded in overloaded conditions.

The process of selecting optional parts to discard while
maximizing the value of the system requires the exploration of
a potentially large number of combinations. Since this process
is too time consuming to be computed on-line, an approximate
algorithm is executed incrementally whenever the processor
would otherwise be idle, progressively rejning the quality of
the solution. This criteria allows the scheduler to handle over-
loads with low cost while maximizing the use of the available
resources and without jeopardizing the temporal constraints of
the most critical tasks in the system. Simulation results show
that few stages of the algorithm need to be executed for achiev-
ing a performance with near-optimal results.

1 Introduction

The use of complex and dynamic real-time systems is nowa-
days becoming common for the management and control of a
variety of applications such as manufacturing, industrial au-
tomation systems, space or avionics and telecommunications
systems. In a critical real-time system, each task must com-
plete and produce correct results by the specified deadline.
Failure to conform with any timing constraint is considered

*This work has been supported by the Defense Advanced Research Projects

'Work done while this author was visiting the Information Sciences and
Agency through the FORTS project (Contract DABT63-96-C-0044)

Telecommunications Department, University of Pittsburgh

Rami Melhem, Daniel Moss6
Computer Science Department

University of Pittsburgh
Pittsburgh, PA 15260

melhem,mosse @cs.pitt.edu

a catastrophic failure. In order to guarantee that the timing
constraints will be satisfied, it is necessary that the resource
requirements for all tasks in the system be known and that re-
sources be available in a timely manner. Therefore, the re-
sources must be reserved for worst-case execution time of tasks
to provide absolute guarantees.

Traditionally, the resource scheduling problem for real-time
tasks is to generate a feasible schedule or to verify if a given
scheduling policy can meet the timing requirements of a spe-
cific set of tasks. In practice, however, real-time environments
experience frequent changes in workloads, caused by new task
arrivals or tasks that leave the system after finishing their ex-
ecution. The problem with accepting new tasks in the system
is that they may result in an overload and cause some of the
tasks already in the system to miss their deadlines. Under such
overload conditions, we may augment the available resources
or reject some tasks (or both).

In this paper we study the problem of scheduling dynamic
tasks in an overloaded single processor environment, where
new tasks arrive or leave the system at arbitrary instances of
time. A framework is proposed for adjusting the system work-
load incrementally by relating the criticality value[2, 31 of the
tasks to the resource allocation problem. The identification
of feasible options that maximize an optimality criteria (ex-
pressed as the total value of the system) requires the explo-
ration of a potentially large combinatorial space of solutions.
Our approach to solve this problem is based on an on-line In-
cremental Server (INCA), which searches feasible solutions by
executing a sequence of approximate algorithms. At each ap-
proximate algorithm execution, the load is adjusted and the
quality of the solution is refined. The minimum number of
approximate algorithms executed produces a feasible but sub-
optimal solution that can be incrementally improved if more
approximate algorithms can be executed. Functions with this
property are called incrementally precise functions or incre-
mental processes.

We consider real-time tasks that consist of mandatory parts
and optional parts for refining the result of the mandatory parts.
Systems exhibiting this behavior include (1) multimedia sys-
tems that receive, enhance or transmit audio, video or images

0-7695-0900-U00 $10.00 0 2000 IEEE
283

mailto:cs.pitt.edu

and process this information for specific intervals of time, (2)
process control systems with sensors and actuators that are ac-
tivated by changing environmental conditions and (3) real-time
database query processing systems. For systems such as these,
our approach is to produce approximate solutions that can be
progressively refined, when the exact solutions cannot be pro-
duced in time, due to overloaded conditions.

The remainder of this paper is organized as follows. In Sec-
tion 2 related models and previous work are reviewed. In Sec-
tion 3, the task model used in this paper is defined. In Section
4, the overload scheduling problem is formulated. In Section
5 , the INCA server is described and in Section 6 we analyze
the merit of the incremental execution of the INCA server, and
compare its performance against a non incremental server. In
Section 7, simulation results are presented to show the perfor-
mance of the INCA Server and to give insight into its effec-
tiveness in handling overload conditions. Finally, Section 8
presents concluding remarks.

2 Related Work
In a dynamic real-time environment, even when the system

is properly designed and sized, a transient overload can oc-
cur for different reasons, such as changes in the environment,
simultaneous arrivals of asynchronous events, faults of periph-
eral devices, or system exceptions[5]. The worst consequence
that may happen is that some critical tasks in the system miss
their deadlines, jeopardizing the correctkafe behavior of the
system. As all systems have finite resources, their ability to
execute a set of periodic and aperiodic tasks while meeting the
temporal requirements is limited. Clearly, overload conditions
arise if the system has to process more new tasks than the avail-
able set of resources can handle.

In the real-time literature several scheduling algorithms
have been proposed to deal with overloaded systems. The de-
velopment of the Best-Effort algorithm [14] introduced a re-
jection policy for overloaded systems based on removing tasks
with the minimum value density. The Best-Effort approach ba-
sically behaves as the Earliest Deadline First [12] when the
system is underloaded and chooses the subset of tasks that
maximize the value of the computation per unit of time (value
density) when the system is overloaded. The Alpha effort [9]
introduced the concept of time-valued functions, which asso-
ciate a value according to the task finishing time. The function
presents a drop in value after the deadline has passed, and be-
yond a certain time the value drops to zero.

The problem of selecting tasks for rejection in an over-
loaded system is also considered in [SI, where random crit-
icality values are assigned to tasks. An approximate algo-
rithm incorporates simulated annealing to deal with the prob-
lem of selecting a feasible solution within the large combina-
torial space of permutations. The RED (Robust Earliest Dead-
line) algorithm [4] deals with aperiodic tasks in overloaded en-
vironments, combining criticality-based scheduling, deadline
tolerance (the amount of time by which a task is permitted

to be late) and resource reclaiming. It is able to predict not
only deadline misses but also the size of the overload, its du-
ration, and its impact on the system. However, the strategy for
handling the overload is to reject the least-valued task. Other
approaches for handling overload focuses on providing a less
stringent guarantees for temporal constraints. In [101 some in-
stances of a task are allowed to be skipped entirely. The skip
factor determines how often instances of a given task may be
left unexecuted. A best effort approach is introduced in [7],
aiming at meeting k deadlines out of n instances of a given
task. However, it is assumed that the value of the tasks in the
system is proportional to their computation time, provided that
they complete by their deadlines.

Many of these techniques (e.g., [10,7]) assume that a task’s
output is of no value if it is not executed completely. In con-
trast, in the Imprecise Computation(1C) model the task’s out-
put has some value even if a partial or approximate result is
produced [1, 131. In the IC model, every real-time task is
composed of a mandatory part and an optional part. A timely
answer is available after the mandatory part completes execu-
tion; moreover, the longer the optional part executes, the higher
the value of the task (i.e., the higher the quality of the result).
However, the IC model uses an error function as a metric to
evaluate the performance of the system. In [131 an error func-
tion is defined to be inversely proportional to the total amount
of time that the optional parts execute. An optimal schedule
corresponds to the one where the total error of the system is
minimized. In the IC model the shape of the error functions
and policies for scheduling optional parts are crucial in maxi-
mizing the performance of the system.

(a) many
scheduling algorithms have been developed for overloaded
conditions, but few research work studied in practice how far
from optimal is the performance of their algorithms and their
complexity (reference [111 provided a measure for the perfor-
mance of their D-over algorithm using a metric called com-
petitive factor; this metric denotes the cumulative value of the
system compared with the optimal value obtained by a clair-
voyant scheduler that knows the entire task set a prion);(b) In
most developed algorithms, the criteria for rejection in over-
loaded conditions is to select the lesser-valued tasks, a strategy
that clearly yields low cost solutions but may lead to a situa-
tion with underutilized resources and a resulting system with
poor performance; and (c) the time-value function of [9] or the
error functions of the IC model [13] are difficult to obtain, and
performance may be degraded if the system designers are not
familiar with the functions that represent the applications at
hand. Although our model is similar to the IC model, we do
not use error functions but performance metrics that are largely
available, such as utilization and criticality[2,3].

3 TaskModel

From previous work we have learned that:

In our framework we consider periodic preemptive tasks
running on one processor. Tasks are independent and have no

284

precedence constraints. Each task ~i arrives in the system at
time ai. The life-time of each task r, consists of a fixed num-
ber of instances ri. After the execution of ri instances, the task
leaves the system'. The time interval between the arrival of the
first instances of two consecutive tasks r, and rv is defined as
I,, = ay .- a,. We assume that the tasks characteristics (e.g.,
computation time, period, deadline and criticality) are known
at arrival time. Each task ~i is decomposed into a mandatory
part M; followed by an optional part Pi. The use of the impre-
cise computation model is not restrictive in the sense that each
task may have only an optional part and no mandatory part. In
this model, Ti is the period and Ci is the worst case compu-
tation time of task 7,. Each execution time Ci consists of a
mandatory part of length mi and an optional part of length pi
(i.e., Ci = mi + pi). The mandatory part Mi must execute to
completion in order to produce an acceptable and usable result.
The optional part Pi can execute only after the completion of
the mandatory part Mi. However, a partially executed optional
part or an optional part that misses its deadline is of no value
to the system (04 constraint). The task q meets its deadline if
its mandatory part completes by its deadline. It is assumed that
the set of mandatory parts can never cause an overload in the
system. Each task has an associated criticality value vi, which
denotes its importance within the system2. The Earliest Dead-
line First[121 priority assignment scheme will be considered.

Set
s4
s3
Sa
s1
so

4 Formulation of the Problem

Search Space
{1 ,1 ,1 ,1}
t l , l , l , O } t l , l , O , l } t 1 , 0 . 1 , 1 } t 0 , 1 , 1 , 1 }
{1 ,1 ,0 ,0} t l , O , l , O ~ t l ,O.O, lI tO,Ll,O} t O , l > O , l } t O > O , l , l ~
{1 ,0 ,0 ,0) { 0 , 1 , 0 , 0 } ~ 0 , 0 , 1 , 0 } ~ 0 , 0 , 0 , 1 }
t O , O , O , O }

In overloaded conditions, the scheduler should be able to
guarantee the timing constraints of all mandatory parts at ev-
ery periodic task invocation and to select optional parts for ex-
clusion from the schedule while maximizing the performance
of the system. If the criticality of each task is proportional to
its computation time, the decision of excluding optional parts
must be based only on maximizing the usage of the resources
(e.g., CPU time). In the more general case, where criticality
and computation time are not directly related, we would like to
exclude the less critical optional parts and maximize the total
value of the system. Therefore, the problem can be formulated
as follows. If a new task .ri that arrives in the system at time ai
causes an overload, the problem is (a) to determine whether or
not ri can be accepted in the system without interfering with
the deadlines of the mandatory parts of any task already in the
system, (b) if accepted, at what time ~i should be dispatched?,
(c) what optional parts (if any) should be excluded such that
an optimality criteria is satisfied and (d) while searching for a
solution, how can we maximize the usage of the resources and
the performance of the system with a reasonable low cost?

Each task in the system accrues an accumulated value upon
executing a number of optional parts during its life-time. Our
objective is to maximize the accumulated value obtained after
scheduling the set of optional parts for the complete duration of

'We assume that some tasks that leave the system may retum at a later time.
2Methods to derive this criticality values are proposed in [2,3, 141.

the schedule. The accumulated value will be evaluated in terms
of utilization or criticality as follows. Let us define CU(I) and
CV(I) as the cumulative utilization and cumulative Criticality
potentially achieved by the set of optional parts that execute
during the interval of time I .

The cumulative utilization achieved is computed by,
n

Table 1. Search space for four tasks.

The structure of the search space S is shown in Table 1
through an example with 4 tasks. For example, {1,1,0,0} is
the element in which pl and pz are included for execution and
p3 and p4 are discarded.

4.2 Definition of the Objective Functions
Each element in the search space will be evaluated in terms

of utilization or criticality, using the objective functions p(s)
and y(s) respectively, where s = (2 1 , ..., zn} E S. The ob-
jective functions are defined as follows.

285

p(s): In this function we add the utilization of the set of
optional parts in an element s E S to the total utilization
of all mandatory parts.

Maximize the utilization. The aim of this objective is to
find a feasible element s E S such that the utilization in
the system is maximized. That is

(3) maximize p(s)

subject to UBT(s)
Let Uma2 be the value of p(s) obtained by solving this
optimization problem.

0 Maximize the value. Maximizing the value requires to
find a feasible elements E S such that ~ (s) is maximized.
That is

p(s) denotes the utilization of the system, after choosing
some optional parts for execution. For example, for s =
{0,1,1,0}?P(S) =

~ (s) : In this function we compute the criticality per pe-
nod achieved after including for execution a set of op-
tional parts in an element s E S, recalling that vi is the
criticality of task ~ i .

+ E + E.

maximize y(s)
subject to UBT(s)

n Let VmaZ be the value of ~ (s) obtained by solving this
T(S) = zi(;) (4) optimization problem.

i=l
The optimization problems consist of maximizing the value

of the system at the instant of time at which a new arrival
causes an overload in the system. BY achieving the optimal-
itY criteria, whenever a new task arrives or departs from the
system, we intend to maximize the accumulated value (CU(1)
or CV(1)) obtained after scheduling the entire set of tasks for

For example, for s = {0,1,1,0}, y(s) = +
Note that if the tasks {q , ..., 7,) are to execute during an

interval I, the choice of s that maximizes p(s) and ~ (s) , also
maximizes CU(1) and CV(1) respectively.

4.3 Feasibility Test the complete duration of the schedule.

To evaluate the feasibility of each element in the
search space we apply an utilization-based test (UBT). The
utilization-based test has been chosen because of its simplic-
ity and because it can be used for scheduling policies such as
EDF.

For each elements = {zl, ..., xn} of the search space S the
utilization-based test is defined by,

true if ~ (s) 5 I
U B T (s) =

(false otherwise

Note that, when choosing a feasible solution, the utilization
of the optional parts (Up = C:=, xi$) must satisfy: U, 5
1.0 - U,,,, where U, = cy='=, F. Also, any single optional
part with utilization $ greater than 1 .O - U, can be discarded
without any further test.

4.4 The Optimization Problems
Our first optimization problem is related to shedding a num-

ber of optional parts that maximizes the utilization of the sys-
tem. This objective favors a solution in which the utilization
of the workload is maximized without considering the number
of optional parts to be shed. Our second optimization problem
assumes that different criticality values are associated with op-
tional parts, therefore we are interested in maximizing the total
value obtained after a number of optional parts are shed.

The optimization problems are formally described as fol-
lows,

5 The Incremental Scheduling Server: INCA
The incremental scheduling server is an extension of the

earliest deadline first scheduling algorithm (EDF[121). In re-
sponse to transient overload requests, the INCA Server ad-
justs the load of the system by executing a sequence of ap-
proximate algorithms, AP(O), ..., AP(n) to determine which
optional parts to shed in order to satisfy our optimality crite-
ria. The algorithms are such that AP(i) may obtain a solution
closer to optimal than AP(i - 1) but with longer execution
time. The INCA Server is activated whenever the feasibility
test (UBT) detects an overload caused by the arrival of a new
task in the system. The INCA Server first executes the approx-
imate algorithm AP(0) to eliminate the overload. The solution
provided by AP(0) allows the scheduler to disable temporarily
the execution of some optional parts3, while providing a low
cost non-optimal solution. The slack-time4 introduced in the
system by the removal of the overload is used by the scheduler
to execute approximate algorithms AP(k) (for k = 1, ..., n),
progressively refining the quality of the solution.

If during the execution of the INCA Server a new task ar-
rives or a task leaves the system, it will re-start its execution,
taking into account the modified load of the system.

3Note that after the execution of each approximate algorithm some optional
parts may be disabled temporarily, but not discarded. The w o n for this is
that at each approximate algorithm we may find different solutions involving
different optional parts to execute.

*Slack-time is defined as the time at which the processor is not executing
any task.

286

1 : INCA Server:
2 input: a set of tasks T I , ..., T,, , including the newly arrived task T,,,

3: If
4 Execute AP(0); (remove the overload)
5: Compute the stan time of the new task T,;

6 Schedule the new task at its start tine;
I : k = 1;
8: while (there is slack in the schedule) do
9: begin
1 0
11:

12:
13: elsewit;
14: k = k + l :
15: end:

> 1 then reject the new task T,; exit;

Execute AP(L); (during slack time)
If the result from AP&) is better

than the result from AP(k-I) then
Enable the optional parts selected by A P (k) ;

Figure 1. Incremental Server (INCA)

The INCA Server stops its execution when (a) there is no
more slack in the schedule to execute additional AP(k) algo-
rithms, or (b) the result of AP(k) is not better than the result of
AP(k-1). The INCA Server is described in Figure 1.

5.1 Methodology for Handling Overload

In this section, a methodology for handling overload condi-
tions is introduced.

1. Activating the Incremental Server. The INCA server
is activated if a new task, r,, arrives in the system and causes
an overload. Our feasibility test (UBT) detects this condition.
After detecting the overload, AP(0) is executed5 and some op-
tional parts are chosen to be discarded for removing the over-
load. The INCA server is also activated when a task leaves the
system. In this case, the approximate algorithms AP(k) (for
k=O, ..., n) are executed incrementally to satisfy the optimality
criteria for the new set of optional parts in the system.

2. Scheduling the new task. After removing the over-
load from the system, the newly arrived task can be scheduled.
However, regardless of the priority of the newly arrived task,
if the task is accepted it may not be scheduled at its arrival
time because it may cause some missing deadlines, even af-
ter executing AF'(0). This is because, at the instant of the new
arrival, we may choose optional parts that (a) already finished
their current execution, or (b) have been preempted while exe-
cuting their optional parts. The resulting utilization cannot be
immediately subtracted from the total processor load because
the discarded optional parts could already have delayed the ex-
ecution of other tasks. As a consequence, to keep the feasibility
test consistent, the utilization of a discarded optional part can
be subtracted from the total load only at the end of its current
period. Thus, the new task should wait until the end of the
longest period of all preempted tasks 6. Clearly, the tasks that

We assume that the execution times of AP(0) and UBT are negligible.
6Computing analytically the best time at which it is possible to accept the

new task may involve some additional run-time overhead[6]. Therefore we

have not already started the execution of their optional parts
allow the utilization to be subtracted immediately.

3. Execution of AP(l), ..., AP(n). After removing the over-
load through AP(O), an increase in the slack available in the
system is expected. AP(1) is then executed on the slack ex-
isting in the system after the execution of AP(0). Analogously,
AP(k) (for k = 2, ..., n) is executed on the slack existing in
the system after the execution of the previous AP(k - 1). The
INCA Server executes the approximate algorithms AP(l), ...,
AP(n) incrementally. After executing each AP(k) , the work-
load of the system is adjusted by enabling and disabling some
optional parts. Since the INCA Server executes on the slack
available in the system, it will execute as many approximate
algorithms as possible.

Algorithm AP(k) may yield better solutions than AP(k-1)
but at the cost of higher execution times. However, the ex-
ecution of each AP(k) may increase the utilization and thus
decrease the amount of available slack. This can eventually
exhaust all the available slack in the system. If this condition
occurs, the execution of AP(k+l) will not be possible, there-
fore, the INCA Server will stop its execution.

During the execution of the some AP(k) algorithm, a new
task may arrive in the system or a task may leave the system.
If this occurs, the INCA Server will re-start its execution, tak-
ing into account the modified load of the system. If the in-
cremental server is invoked when a task leaves the system, the
instructions in lines 3 ,4 ,5 ,6 (from Figure 1) are not executed.

4. Stopping the execution of the server. The conditions
for finishing the execution of the server are a). there is no
more slack in the schedule to execute some AP(k) algorithm, or
b). the result of AP(k) is not better than the result of AP(k-1).
Also, after AP(n) is executed the server finish its execution.

5.2 The Approximate Algorithm: AP(k)

In this section, we describe the approximate algorithm used
by the INCA Server. The approximate algorithm makes use of
a greedy-type procedure[161 which finds a heuristic solution
by selecting for execution optional parts in order of decreasing
utilization 6 if the objective function is p(s) , or & if the
objective function is 7(s)[16]. The algorithm AP(k) considers
all possible subsets in the search space with at least k optional
parts chosen for execution. It first chooses for inclusion in the
schedule a subset of k optional parts, and if this subset does
not satisfy our feasibility condition (UBT) it is discarded and
a new subset with k optional parts is selected. If the subset
passes the UBT, the remaining optional parts are considered for
selection in decreasing order of E or &, while the UBT is
satisfied. The best solution obtained by examining all subsets
of k optional parts is the solution generated by this algorithm.

have decided to schedule the new task at the end of the last period of the in-
stances running in the system when the new task arrives.

287

1: Algorithm AP(k):
2: input: F: Objective Function (See section 4.2)
3:
4 output: X * : set of optional parts chosen for execution.
5:

7 : f o r e a c h M C { l , ..., n}

8:
9:
1 0 begin
1 1 :
1 2
13: end
1 4 procedure SEQ:
15: input: M
1 6 output: X: set of optional parts chosen for execution.
17:
18: z = 0;
19: for i=l ton do
2 0
21: begin
2 2
23: X = X U {i};
24 end

T I , ..., r,, ordered according to 2 or &
2': the optimized value computed for E

6 z* = 0;

such that IMI = k and U B T (M) = true
call SEQ; (to compute z and X)
i f t + F (M) > 2' then

zk = 2 + F (M) ;
x* = x U M ;

z: the value of F for the subset X.
X = 0;

if; $? M and U B T (M U X U {i}) = true then

2 = z + F ({ i }) ;

L , J
2 91.244980 24 44 11001
3 99.715370 17 38 0 1 110
4 99.715370 5 14 0 1 110
5 99.715370 1 6 0 1 110 Figure 2. Approximate Algorithm (AP)

The algorithm is described in Figure 2. The output of al-
gorithm AP(k) is X k and Z k . X k denotes the set of optional
parts chosen for execution and Z k denotes the optimal solution
found by AP(k). Note that Z k approximates UmaZ or Vmaz
depending on the objective function used.

The time complexity of procedure SEQ is O(n): there is a
loop for each task, and the UBT can be computed incremen-
tally in O(1) for each task. Since the number of times SEQ is
executed is O (n k) , the time complexity of AP(k) is O(nk+').
Even for a small number of tasks (e.g., n = 10 tasks) this
complexity seems rather high. However, we will demonstrate
with simulations that for k 5 2 , the value of the system is very
close to optimal. The worst-case performance ratio of AP(k) is

since the complexity of the AP(k) algorithm is high for large
k, we are interested in finding the smallest value of k such
that AP(k) reaches a near-optimal solution. In the following
example we will measure the real performance of the AP(k)
algorithm in terms of complexity and run-time.

Example 1: Consider the set of tasks with its associated timing
constraints and criticality values described in Table 2. Our goal
is to apply the approximate algorithm for our objective func-
tions and to evaluate its performance. The total utilization of
the set of tasks in Table 2 denotes an overload (load = 120%).
The utilization of the mandatory parts is 54% and the utiliza-
tion of the optional parts is 66%. The problem to be solved
is to handle the overload for this workload using the AP(k)
algorithms, selecting the number of task to be included for ex-
ecution such that our optimality criteria is satisfied. Tables 3
and 4 show the results from algorithm AP(k), for k = 0, ..., 5.
The results shown in the Tables are: (a) the result from al-

- k.!l [161, which directs us to a solution with large k. However,

gorithm AP(k), which is X k and Z k (see Figure 2); (b) the
number of combinations (N.C) necessary to obtain a solution;
(c) the run-time of AP(k), which denotes the physical time in
microseconds, using a PC Intel 233 MHz running Linux with
48MB of RAM; and (d) the set of optional parts chosen for
execution (xk).

39.0 116.0 18.0 21.0 0.336 37.0

44.0 174.0 18.0 26.0 0.253 27.0
47.0 195.0 20.0 27.0 0.241 29.0

Table 2. Example Real-Time Workload: Mandatory and Op-
tional parts and Criticality Values

k I Zk sz U""' (NC) Run-lime (ps) Result Set

1 I 91.244980 16 33 11001
0 I 89.030136 4 16 11000

1 0 0 1 0
0.492 10011
0.559 25 58 0 1 1 1 0
0.559 17 0 1 1 1 0
0.559 18 01 110
0.559 0 1 110

Table 4. Results for maximizing criticality.

For the goal of maximizing utilization, it is possible to ob-
serve that AP(k) with k = 3 yields optimal results, while for
maximizing criticality AP(k) for k = 2 yields the optimal so-
lution. For the case of utilization, tasks are ordered in terms of
decreasing 5 (i.e., 7 1 , 72,73, 74, TS), while for the case of the
criticality the order is by decreasing fi (i.e., 74 , 7 1 , 73, 7 2 ,

7 5) .

5.2.1 Measuring the Performance and Complexity of the
Solutions

To extend the previous results, an experiment with lo00 ran-
domly generated task sets has been conducted for measuring
the performance and the complexity of the algorithm. For each
experiment, a workload of 10 tasks has been generated with an
overload (120% utilization for each task set). Results shown in
Table 5 indicate the number of solutions within a certain per-
cent close to optimal. For the two optimality criteria a near
optimal solution (more than 91%) is obtained using AP(2) .
For example, for maximizing utilization, results for AP(2) in-
dicate that 951 experiments yield a near optimal solution (0-
0.1 %) and the remaining 49 yield a 1 - 5% near optimal solu-
tion.

288

1024

256
f j s 4

16

4 t i 4
0 1 2 3 4 5 1 2 3 4 5

Figure 3. Complexity of AP(k) for different values of E . Y axis is in log scale.

512

258

128

z w

8

4

2

d :
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

k

Figure 4. Complexity of AP(k) for different number of tasks, (a) E= 0.001 (b) E= 0.01 (c) E= 0.02. Y axis is in log scale.

For maximizing criticality, results show that for AP(2) 91 1
experiments yield a near optimal solution (0-0.1%). This sur-
prising result shows the excellent performance of the approxi-
mate algorithm AP(k).

Maximizing Utilization

999 0
0

Maximizing Criticality

lo00
4 lo00 0

Table 5. Number of Solutions within z percent near optimal
for 1000 Tasks Sets.

Further reductions in complexity could be obtained by re-
laxing the feasibility bound (see UBT). According to our fea-
sibility tests, an element s E S is feasible if its feasibility con-
dition is met. However a result less than 100% (e.g., 95%)
could be sufficient for some applications which would cause
an earlier end to the search for feasible solutions. Let us define
E, 0 < E < 1.0, as the feasibility error which indicates a relax-
ation on the feasibility condition. The feasibility test shown in
Equation (5) indicates a suficient feasibiliv condition.

n
XiPi

i= 1

We are interested in measuring the complexity (the num-
ber of elements searched) of the algorithm using the sufficient

feasibility condition for different values of E . We have con-
ducted 1000 experiments comprising 10 tasks in each exper-
iment whose total utilization (mandatory + optional) is 1.2.
The average complexity of the algorithm is shown in Figure
3 for a varying value of E . Note that the complexity of our
algorithm is much lower than the worst-case complexity (ex-
emplified by E = and that big reductions in complexity
can be achieved by increasing the value of E . For example for
6 = 0.02 and k = 5 the complexity achieved is 47 and 240 for
maximizing utilization and criticality, respectively. However,
it is worth noting that for all values of k the algorithm for maxi-
mizing utilization performs slightly better than for maximizing
criticality. A possible explanation for this surprising result is
the fact that the number of tasks is relatively low (n = 10).
According to the worst-case complexity of the algorithm, hav-
ing a higher number of tasks may increase considerably the
complexity of the algorithm.

To measure the effect of the number of tasks on the com-
plexity of the algorithm, an experiment has been conducted
using 1000 randomly generated tasks sets for three values of
E = 0 . 0 0 1 , ~ = 0 . 0 1 , ~ = 0.02 and for a varying number of
tasks (from 5 to 15 tasks). Figure 4 shows that the complexity
of the algorithm is relatively low even with a high degree of
quality (E = 0.02).

From the results shown in Table 5 it can be concluded that
for values of k 5 2, 92.5% and 100% of the solutions are
95%-close to optimal when the criterion is to maximize criti-
cality and utilization, respectively. Note that when k = 1, only
0.2% are less than 95% of optimal for the utilization criterion.
From Figures 3 and 4, it can be seen that keeping e between
the values of 0.0001 and 0.02 is reasonable for achieving low
complexity while maintaining high quality results.

289

Figure 5. INCA-2 and NON-INCA-2 Servers: Execution Sequences.

6 Analysis of the INCA Server

As explained above, the INCA server is based on the incre-
mental execution of several stages (Approximate Algorithms).
At the end of each stage, information is available regarding the
optional parts chosen for execution, and the resulting value of
the objective function for the set of optional parts chosen. The
process of scheduling the chosen optional parts at every stage
will be called commitment. The INCA server executes the ap-
proximate algorithm AP(k) only after AP(k - 1) commits. In
contrast, a non-incremental server would execute a number of
stages AP(O), ..., AP(k), before committing to the system.

In what follows we analyze the merit of the incremental ex-
ecution by assuming k = 2 and comparing the following two
servers,

INCA-2: This is the incremental execution sequence used
by the INCA Server considering only two stages. That is,
A P (l) , commit, AP(2). commit.

NON-INCA-2: In this case, there is no incremental execu-
tion, and two stages are executed continuously before commit-
ting. That is, AP(1) + AP(2), commit.

In Figure 5 we illustrate a sequence of n tasks arriving in
the system, where the arrival of task T, causes an overload.
Un+l = z and a,+l = y denote two instants of time at which
a new tasks ~ , + 1 may arrive. Although the following analysis
considers only two stages of the execution of the incremen-
tal server, the same analysis can be easily extended to include
more than 2 stages.

After executing AP(0) at time a,, X o and Zo are obtained.
The set of optional parts, X o , selected for execution will ex-
ecute until AP(1) commits. Then a new set of optional parts
X' will be chosen for execution and the process repeats. The
resulting utilization or criticality value, Zo, will depend on the
objective function used. Let the utilization after committing
at AP(k) be: zk = (1 - a k) , where (Yk denotes the resulting
slack time expressed in a percentage of resource usage. This
slack time will be used for the execution of AP(k+l). Note
that a k + l 5 (Yk if the objective of the AP(k) algorithm is to
maximize utilization.

Definition 1. Let $k be the worst-case execution time of alg0-
rithm AP(k) measured continuously (i.e., without interference

from other tasks). We assume that the execution time of M(O),
40, is negligible.
Definition 2. The interval of time at which AP(k) executes
is defined as Ik = &. If the execution of AP(1) and
M (2) is non incremental, the interval of time at which both
AP(1)+AP(2) execute is defined as 11 ,~ = (see Figure
5).

Utilization Metric We will compare the cumulative utiliza-
tion achieved by INCA-2 and NON-INCA-2 during the period
from a, to a,+l. If during a period I , the slack in the system
is a constant, a, then the cumulative utilization given by Equa-
tion l can be alternatively computed from CU(I) = 1(1 - a).
Given that both INCA-2 and NON-INCA-2 will produce a uti- '
lization of (1 - ao), resulting from AP(O), during the period
[a,, a,+I1], and that both will produce a utilization of (1 - a z) ;
resulting from AP(2) during the period [an + I1 + 1 2 , an+l], if
a,+l > (a , + I1 + Iz) , we will only compare the utilizations
during the period [a, + 11, an+l], where an+l 5 an + Ii + 1 2 .

We will denote the cumulative utilization resulting from
INCA-2 by CU while denoting the cumulative utilization re-
sulting from NON-INCA-2 by CU,. The following lemma
proves that the incremental server always outperforms the non
incremental server when the goal is to increase the cumulative
utilization of the system.

Lemma 1. CU([a,, a,+l]) 2 CUN([U,, a,+l]), if the objec-
tive of the AP(k) algorithm is to maximize utilization.

Proof: If a,+l 5 a, + I1 then both servers produce the same
utilization, while if a, + I1 5 an+l 5 an + I1,z then the
INCA server is at least as good as the NON-INCA server,
since CU([an + Il,a,, + I I , ~]) = (4 , ~ - I i) (1 - ai) and

Now assume that a,+l = a, + 11,~ + t , where 0 5 t 5
CUN([an+I1 ,an+I l ,~]) = (I I , Z - I I) (~ - ~ O) *

11 + I2 - 11.2. In this case,

CU([an,an+l]) = 1 1 (1 - 00) + I z (~ - a1)

CU~([an ,an+l]) = I I , z (~ - ~ o) + t (l - Q Z)

using the values of I1,12 and I1,2 from Definition 2 we get

c v ([a n , an+l]) =
CUN([an, an+ll) + $ - $ - t (1 -

290

Given that t _< I1 +I2 -I1,2 = $ - g, and that (1 - a2) I
1, we conclude that CU([a,, a,+,]) is equal to or larger than
c U ~ ([a , , a,+l]). Finally, if a,+l > an+11+12, then INCA-
2 and NON-INCA-2 produce the same utilization, (1 - a2).
for any period latter than a, + I1 + 12 and thus the result that
Cu([an, an+l]) 2 CuN([an, an+l]) holds. QED

Criticality Metric The above lemma assumes that the ob-
jective of the servers is to maximize the system utilization.
If however, the goal is to maximize the cumulative criticality
(see Equation 2), then the relative performance of INCA-2 and
NON-INCA-2 depends on the performance of the incremental
algorithms A P (O) , AP(1) and AP(2). Let Zk be the criticality
value achieved by AP(k), when the goal of AP(k) is to max-
imize Criticality, and let (Yk be the slack of the system after
AP(k) commits. As before, we will use C V (I) and CVn(1)
to denote the cumulative criticality obtained by INCA-2 and
NON-INCA-2 respectively during the period I .

Lemma 2. If an+l I I i , z , then CV([an,an+ll) 1
CVN([an, an+l]), when the objective ofAP(k) is to maximize
cnticulity.

Proof: CV([U,, a, + 111) = CvN([a,, a, + 111) = I1 * Zo,
while for a, + 11 5 t 5 an+l, we have

CV([an + I1,an + I1 + t]) =
CVN([an + I1,an + 11 + t]) =

t * Z 1
t * Zo

The result follows since Z 1 2 Zo. QED

Lemma 3. If a,+l > 11 + I2 and the objective of
AP(k) is to maximize criticulity, then CV([an,an+l]) 2

Proof: Both INCA-2 and NON-INCA-2 produce the same crit-
icality, namely Z2 after the time 11 + 1 2 . 2' = CV([Il +
12, a,+l]) = CV, ([I1 + 1 2 , a,+l]). Hence, we will only com-
pare the cumulative criticality in the period from a, + 11 to

CVN([a,,an+l]) ifundonlyifa1(22 -21) 5 az (Z2 - 2 0) .

an + 11 + 1 2 .

CV([an + 11, an + 11 + 121) = 12 * z'
cVN([an + Illan + 4 + 121) =

(11,2 - 11) * zo + (I1 + I2 - 11,2) * z2

* Z' =
Substituting for the values of 11, IZ and I I , ~ we get

CV([an + I1,an + 11 + 121) =

CVN([an+Il ,Un+Il+12])= e * z o + ($ - e) * z 2
Hence,CV([a,+Il,a,+Il + I z]) = CVN([an+Il,an+

The lemma follows directly from the last Equation. QED

Given that AP(k) does not decrease the value of Zk bellow
Zk- ' , then (2' - 2') 5 (Z 2 - Z0). However, nothing can
be said about the relative values of a1 and a2 if AP(k) is used
to improve criticality rather than utilization. The relative per-
formance of the INCA and NON-INCA servers will be studied
using simulations in the next section.

11 + 121) + % (2 2 - 20 I - & (2 2 - 21 1.

7 Simulation Experiments

The following simulation experiments have been designed
to test the performance of the incremental server and its ability
to achieve our optimality criteria using synthetic workloads.
We are interested in measuring the performance of the algo-
rithm using up to five stages of execution. According to the
results obtained in Section 5.2 we are aware that statically we
need to execute no more that 3 stages to achieve near-optimal
results. Our goals are the following:

0 to measure the quality of the results over a large set of
dynamic tasks that arrive and leave the system at arbitrary
instants of time.

0 to measure and compare the performance among several
stages for our different optimality criteria.

Each plot on the graphs represents the average of a set of
100 independent simulations. Up to the first 5 stages of the
INCA server are executed in each simulation. Each curve
INCA-k in the graphs denotes the execution of the INCA server
in which only the first k stages are executed. That is, only the
incremental execution of A P (j) , f o r j = 0, ..., k is considered.

On each simulation 5,000 tasks are generated dynamically.
Each task has a life-time (It;) that follows a uniform distri-
bution between 400 and 600 instances (periods). At the end
of its life-time, the task leaves the system. The utilization of
task T,, Vi, is chosen as a random variable with uniform dis-
tribution between 5% and 20%. The period T; of each task
is chosen as a random variable with uniform distribution be-
tween 30 and 100 time units. The computation time of task 7,
is C, = Ti * Vi. The experiments were conducted with a to-
tal utilization UT = xi 2 varying between 80% and 180%.
The number of tasks in the system (nt) executing at any time
is computed by nt = $. The task inter-arrival time is com-
puted by IT; = 9. The computation time of the optional
part pi is a random variable that follows a uniform distribution
between 40% and 60% of the total computation time of task 7,.

The execution time of AP(k) used was obtained from the
experiments described by Figure 5, using a value of E = 0.001.
Throughout this simulation experiments we will consider ran-
domly generated correlated tusks sets [151, which means that
the criticality is a linear function of the utilization'. The value
'U; of each task is randomly distributed in [U; - 0.10, U, +0.10]
such that vi > 0 (i.e., plus or minus 10% from the utilization
of the task).

The performance of our algorithms was measured according
to the following metrics:

'It is hard to maximize the criticality value ratio for correlated tasks sets
because many task combinations give similar results, therefore a larger number
of combinations must be computed in order to find an optimal solution. We do
not consider uncorrelated task sets because it is relatively easier to maximize
their criticality value ratio (there is a large variation between the utilization of
the tasks, making it easier to obtain a feasible and optimal solution).

291

1 I

0.7

0.6

0.5

0.4

0.3

0.9

0.8

0.7

0.8

0.5

0.4

0.3

-
-
-
~

.

0.2 -
100 120 140 160 180

Load
80

INCA-0 - .
INCA-1 ----
INCA-2 -.--
INCA-3 -
INCA-4 ---.
INCA-5 -.*-- -

0.8 -

NON-INCA-2 - 0.9
INCA-2 - 0.9 . NON-INCA-2 -

INCA-2 -- -
1

0.8

0.7

0.8

0.5

0.4

1
100 120 140 180 180

Load
80

0.2 I

1

. .P
a

- 0.7 -
* ---------7

- */--------

,/-'

-

0 . 4 - ' ' ' ' ' ' '

0 Utilization Ratio: This metric is computed as follows,

(6) cum Utilization Ratio =
Total Utilization

where CU(I) is the cumulative utilization of the system
(see Section 4), for the interval of time I that denote the
total duration of the schedule. The total utilization that
can be achieved is computed by: xi ri * pi, where the
sum is over all tasks that anive to the system in the inter-
val of time I. Recall that ri denotes the total number of
instances of 7;.

Criticality Ratio: This metric is computed as follows,

(7) CV(I) Criticality Ratio =
Total Criticality

where CV(I) is the cumulative criticality (see Section 4),
for the interval of time I that denote the total duration of
the schedule. The total criticality that can be achieved is
computed by, xi ri * vi.

Two sets of experiments were conducted for our simula-
tions. The first experiment, shown in Figures 6 and 7 was

designed to compare the performance of INCA-k for different
values of k, 0 5 IC 5 5. The second experiment, shown in Fig-
ure 8 was designed to compare the performance of the INCA-2
algorithm against the NON-INCA-2 algorithm. In the graphs
shown in Figures 6 and 7, the utilization and the criticality ratio
were measured. The left graph shows the value of the utiliza-
tion metric, while the graph on the right shows the ratio of the
value obtained by INCA-k and INCA-5, called iteration ratio.

The results shown in Figures 6 and 7 indicate that for val-
ues of k > 2 there is no significant improvement on the per-
formance of the INCA server. Therefore, we will consider that
INCA-5 achieves the maximum value possible in the system.
For the utilization ratio, it is observed that INCA-2 achieves
results close to those obtained by INCA-5 for all load values.
Notice that for the iteration ratio, Figure 6 shows that INCA-0
achieves a performance that varies from 96% of INCA-5 for a
load of 0.80, to 78% of INCA-5 for a load of 1.80. The perfor-
mance of the algorithm for INCA-2 varies from 99% to 98.5%
of INCA-5. It is important to note that even INCA-1 achieves
a utilization performance higher or equal to 95% of INCA-5.
The performance results for the criticality ratio indicate that
INCA-k (k = 0, ..., 4) yield a performance higher than 90% of
INCA-5 for all values of the load.

292

For our second experiment, Figure 8 shows the utilization
and criticality ratio for the INCA-2 and the NON-INCA-2
servers. Our main interest in this experiment is to validate the
results obtained previously in the analysis of the INCA server
(see Section 6). In this experiment, the load of the system has
a fixed value of 120%, and the life-time of each task lti varies
between 100 and 500.

The behavior of the INCA-2 and NON-INCA-2 servers can
be explained as follows: For low values of lti (e.g., 100 in-
stances) both servers yield similar values because both servers
are only able to execute AP(0) (which removes the overload).
For It; = 200, ..., 300 the INCA-2 server yields much bet-
ter results, because the INCA-2 server is capable of commit-
ting more frequently than NON-INCA-2. In this situation, the
NON-INCA-2 server is able to execute a few times AP(1) and
AP(2) but is mostly only able to execute AP(0). Finally, for the
last values of lti (e.g. 400 and 500 instances) the performance
of INCA-2 and NON-INCA-2 servers get closer because both
servers are now able to commit both AP(1) and AP(2). In any
case, the performance of the INCA-2 server is better that that
of the NON-INCA server for all values of l t i .

The results obtained in our simulations confirm the results
obtained Section 6 and indicate that the INCA Server is a low
cost and effective mechanism for scheduling real-time tasks
under overloaded conditions.

8 Conclusion

In this paper, the problem of scheduling an overloaded real-
time system has been studied. As observed by different re-
search studies[& 4, 9, 111, a significant performance degrada-
tion may occur in the system if the overload is not addressed
efficiently. The set of tasks selected for execution is crucial for
the proper operation of an overloaded real-time system. In our
framework, each task has an assigned criticality value, and an
objective function is evaluated in overloaded conditions such
that an optimality criteria is met. The process of selecting tasks
to discard while meeting the optimality criteria requires the ex-
ploration of a potentially large number of combinations. Since
this process is too time consuming to be computed on-line,
we have developed an Incremental Server (INCA) scheduling
paradigm, which is based in a sequence of approximate algo-
rithms. The execution of the approximate algorithms is con-
ducted in an incremental manner, during the time at which the
processor would otherwise be idle (slack-time), progressively
refining the quality of the solution. The computational com-
plexity of the INCA Server is high. However, we have shown
that in practice only few stages need to be executed for achiev-
ing near-optimal solutions. An important feature of the incre-
mental algorithm is that its run-time overhead and the quality
of the solutions are parameters that can be controlled on-line.
Our simulation results show that our approximate algorithm
is efficient, has low overhead, and most importantly generates
near-optimal solutions for overloaded real-time systems.

References
[11 H. Aydin, R. Melhem, D. MossC, P. Mejfa-Alvarez. “Op-

timal Reward-Based Scheduling of Periodic Real-Time
Tasks”, Proc. of the IEEE Real Time Systems Symposium,
Dec. 1999.

[2] A. Bums, D. Prasad, A. Bondavalli, EDi. Giandomenico,
K. Ramamritham, J. Stankovic, L. Strigini “The Mean-
ing and Role of Value in Scheduling Flexible Real-Time
Systems”, J. of Systems Architecture, Jan. 2000

[3] A. Bums and D. Prasad, “Value-Based Scheduling of
Flexible Real-Time Systems for Intelligent Autonomous
Vehicle Control”, Proc. of the 3rd. IFAC Symposium on
Intelligent Autonomous Vehicles March 1998.

[4] G.C. Butazzo, “Red: A Robust Earliest Deadline
Scheduling Algorithm”, Proc. of Third Int. Workshop on
Responsive Computing Systems, Spain, Dec. 1998.

[5] G.C. Butazzo, “Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications”,
Kluwer Academic Publisher, 1997.

[6] H. Chetto and M. Chetto. “Some Results of the Earliest
Deadline Scheduling Algorithm”, IEEE Transactions on
Sofhvare Engineering, Oct. 1989.

[7] M. Hamdaoui, P. Ramanathan. “A Dynamic Priority As-
signment Technique for Streams with (m,k)-firm Dead-
lines”, IEEE Transactions on Computers, Dec. 1995.

[8] S. Hwang, C.M. Chen and A.K. Agrawala. “Scheduling
an Overloaded Real-Time System”, Proc. of the 1996
IEEE Conference on Computers and Communications.

[9] E.D. Jensen, J.D. Northcutt, R.K.Clark, S.E. Shipman,
ED. Reynolds, D.P. Maynard, K.P. Loepfere. “Alpha:
An Operating System for the Mission-Critical Integration
and Operation of Large, Complex, Distributed Real-lime
Systems - An Overview”, OSMCC, Sept. 1989.

[lo] G. Koren and D. Shasha. “Skip-over: Algorithms and
Complexity for Overloaded Real-Time Systems”, Proc.
of the IEEE Real lime Systems Symposium, Dec. 1995.

[113 G. Koren and D. Shasha. “D-over: An Optimal Schedul-
ing Algorithm for Overloaded Real-Time Systems”,
Proc. of the IEEE Real Time Systems Symposium, 1992.

[121 C.L. Liu, J. Layland. “Scheduling Algorithms for Multi-
programming in Hard Real-Time Environments”, J. ACM
20(1). pp. 46-61, Jan. 1973.

[131 J.W. Liu and W.K. Shih. “Imprecise Computations”, Pro-
ceedings of the IEEE, Jan. 1994.

[141 C.D. Locke. “Best-effort Decision Making for Real-Time
Scheduling”, PhD. Thesis, CS-CMU. 1986

[I51 S. Martello, P. Toth. “Knapsack Problems”, Wiley, 1990
[161 S. Sahni. “Approximate Algorithms for the 0/1 Knapsack

Problem”, J. of the ACM, Jan. 1975.

293

