
Multiple-Resource Periodic Scheduling Problem:
how much fairness is necessary? ∗

Dakai Zhu, Daniel Mossé and Rami Melhem
Computer Science Department

University of Pittsburgh
Pittsburgh, PA 15260

{zdk, mosse, melhem}@cs.pitt.edu

Abstract

The Pfair algorithms are optimal for independent peri-
odic real-time tasks executing on a multiple-resource sys-
tem, however, they incur a high scheduling overhead by
making scheduling decisions in every time unit to enforce
proportional progress for each task. In this paper, we will
propose a novel scheduling algorithm, boundary fair (BF),
which makes scheduling decisions and enforces fairness to
tasks only at period boundaries. The BF algorithm is also
optimal in the sense that it achieves 100% system utiliza-
tion. Moreover, by making scheduling decisions at period
boundaries, BF effectively reduces the number of schedul-
ing points. Theoretically, the BF algorithm has the same
complexity as that of the Pfair algorithms. But, in practice,
it could reduce the number of scheduling points dramati-
cally (e.g., upto 75% in our experiments) and thus reduce
the overall scheduling overhead, which is especially impor-
tant for on-line scheduling.

1. Introduction
The multiple-resource periodic scheduling problem was

first addressed by Liu in 1969 [9]. It concerns allocating
m identical resources to n periodic tasks, where a task
Ti = (ci, pi) is characterized by two parameters: a re-
source requirement ci and a period pi. A feasible periodic
schedule will allocate exactly ci time units of a resource
to task Ti within each interval [(k − 1) · pi, k · pi) for all
k ∈ {1, 2, 3, . . .} with the constraints that a resource can
only be allocated to one task and a task can only occupy
one resource for any time unit.

Proportional fair (Pfair) scheduling, first proposed
by Baruah et al. [4], is the well-known optimal schedul-
ing method for scheduling periodic tasks on multiple

∗ This work has been supported by the Defense Advanced Research
Projects Agency through the PARTS project (Contract F33615-00-C-
1736).

resources, which explicitly requires tasks to make propor-
tional progress; that is, at any time t, the accumulated re-
source allocation for task Ti will be either �t · wi� or
�t · wi�, where wi = ci

pi
is the weight of Ti. While achiev-

ing full system utilization, the Pfair algorithms incur very
high scheduling overhead by making scheduling deci-
sion at every time unit [1, 2, 4, 5, 8, 11].

Since a task can only miss its deadline at a period bound-
ary, we propose in this paper a novel algorithm, boundary
fair (BF), which makes scheduling decisions only at period
boundaries. That is, at any period boundary, the BF algo-
rithm allocates resources to tasks for the time units between
current boundary and next boundary. Similar to the Pfair al-
gorithms, to prevent deadline misses, BF ensures fairness
for tasks at the boundaries; that is, for any period bound-
ary time bt, the difference between bt · wi and the number
of time units allocated to task Ti is less than one time unit.

The BF algorithm is optimal in the sense that it can
achieve 100% system utilization. Although it has the
same complexity as that of the Pfair algorithms in the-
ory, the BF algorithm could reduce the number of
scheduling points dramatically in practice, and thus re-
duce the overall scheduling overhead, which is especially
important for on-line scheduling. While the actual reduc-
tion depends on the task sets, from our experiments, the
number of scheduling points is reduced upto 75% com-
pared to that of the Pfair algorithms. Moreover, the over-
all time overhead to generate a feasible schedule for BF
is much less than that of PD [5] (an efficient Pfair algo-
rithm) when the number of tasks is less than 100.

There are several contributions of this work. First, we
introduce the concept of boundary fairness in the periodic
scheduling problem, which is not as fair as Pfair (at any
time) but fair enough (only at period boundaries) to get a
feasible schedule. Second, we propose a BF scheduling
algorithm and prove its correctness to generate a feasible
schedule. Finally, the proposed algorithm is also optimal in
the sense of achieving 100% system utilization.

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

0 10 15 20 25 30

1 14 3 4 1 4 1 2 5 4 1 1 3 5 1 4 1 3 4 1 4 1 2 5 4 1

5 5 2 5 6 5 5 5 3 6 25 5 4 6 5 5 2 5 6 5 5 5 3 6 5 2 5

5 6 12 18 24

1 3

4

5

6

a. A proportional fair schedule

0 10 15 20 25 305 6 12 18 24

1 1 1 1 1 1 1 12 2 3 3 2 2 3 43 4 3 4 4 2 4

5 6

3 5

65 54

2

4 4 5 45 6 5 6 65 54 65

b. A boundary fair schedule

Figure 1. Different fair schedules for the example; the dot lines are period boundaries

The remainder of this paper is organized as follows. Sec-
tion 2 defines the boundary fairness and related concepts
and gives a motivating example. Section 3 presents a BF al-
gorithm and its complexity analysis. The correctness of the
BF algorithm is presented in Section 4. Experimental re-
sults are reported in Section 5. Closely related work is dis-
cussed in Section 6 and Section 7 gives out our conclusion.

2. Preliminaries

In this section, we formally state the multiple-resource
periodic scheduling problem, and define the boundary fair-
ness as well as related notations. An example is also pre-
sented to illustrate the idea of boundary fairness.

The system consists of m identical resources and n pe-
riodic tasks, {T1, . . . , Tn}, where each task Ti = (ci, pi)
is characterized by its resource requirement ci and its pe-
riod pi. ci and pi are integer multiples of a system unit time.
The deadline for each task instance is the task’s next period
boundary. The weight for task Ti is defined as wi = ci

pi
,

and the system utilization is U =
∑n

i=1 wi. Without loss
of generality, we assume that wi < 1 (notice that actu-
ally 0 < wi ≤ 1; if wj = 1, we can dedicate one re-
source to Tj and consider the remaining tasks on the re-
maining resources). We also assume that the system utiliza-
tion U = m, the number of resources available1.

The multiple-resource periodic scheduling problem is to
construct a periodic schedule for the above tasks, which al-
locates exactly ci time units of a resource to task Ti within
each interval [(k−1)·pi, k·pi) for all k ∈ {1, 2, 3, . . .}, sub-
ject to the following constraints [5]:

1 If m − 1 < U < m, we can add one dummy task Tn+1 = (c, p)

such that
∑n+1

i=1
wi = m. If U ≤ m − 1, we can just use �U� re-

sources [11].

• C1: A resource can only be allocated to one task at any
time, that is, resources can not be shared concurrently;

• C2: A task can only be allocated at most one resource
at any time, that is, tasks are not parallel and thus can-
not occupy more than one resource at any time.

Assume that the least common multiple of all tasks’ pe-
riod is LCM and the first instance of each task is avail-
able at time 0. Because of the periodic property of the prob-
lem, we only consider the schedule from time 0 to time
LCM . We define a set of period boundary time points
as B = {b0, . . . , bf}, where b0 = 0, bf = LCM and
∀c, ∃(i, k), bc = k · pi and bc < bc+1 (c = 0, . . . , f − 1).
Define time unit (or slot) t as the real interval between
time t − 1 and time t (including t − 1, excluding t), t ∈
{1, 2, 3, . . .}. For convenience, we use [bk, bk+1) to denote
time units between two boundaries, bk and bk+1, including
time unit bk and excluding time unit bk+1. Define alloca-
tion error for task Ti at boundary time bk as the difference
between bk ·wi and the time units allocated to Ti before bk.
A periodic schedule is boundary fair if and only if the ab-
solute value of the allocation error for any task Ti at any
boundary time bk is less than one time unit.

Lemma 1 For the multiple-resource periodic scheduling
problem, if the system utilization, U , is no bigger than m,
the number of resources, a boundary fair schedule exists.

Proof If U ≤ m, a proportional fair (Pfair) schedule is
known to exist for the multiple-resource periodic schedul-
ing problem [4]. From the definitions, we know that any
Pfair schedule is also a boundary fair schedule (a Pfair
schedule also conforms to the allocation error requirements
at boundaries). That is, a boundary fair schedule exists if
U ≤ m. ♦

To illustrate the idea of boundary fairness, we first con-
sider an example task set that has 6 tasks: T1 = (2, 5),

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

T2 = (3, 15), T3 = (3, 15), T4 = (2, 6), T5 = (20, 30),
T6 = (6, 30). Here,

∑6
i=1 wi = 2 and LCM = 30. Fig-

ure 1a shows one proportional fair schedule generated by
PF [4], where the dotted lines are the period boundaries.
Note that this schedule is also a boundary fair schedule.

From Figure 1a we see that there is an excessive number
of scheduling points as well as context switches due to the
requirement of proportional progress (fairness) for each task
at any time. Consider the schedule section between two con-
secutive boundaries, for example, [b0, b1) = [0, 5): here T1

and T4 get 2 time units each, T2, T3 and T6 get 1 unit each
and T5 gets 3 units. If we follow the idea of McNaughton’s
algorithm [10] and pack tasks within this section on two re-
sources sequentially (consecutively fill resources with tasks
one by one), after T1, T2, T3 are packed on the first resource,
there is one time unit left and part of T4’s allocation (one
time unit) is packed on the first resource; the rest of T4’s
allocation (another time unit) is packed on the second re-
source followed by T5 and T6. Thus, we can schedule [0, 5)
as shown in Figure 1b. Continuing the above process for
other schedule sections until LCM , we can get a bound-
ary fair schedule as shown in Figure 1b.

Considering that the deadline misses can only happen at
the end of a task’s period, we propose a novel scheduling
algorithm: at any boundary time point bk (k = 0, . . . , f −
1), we allocate resources to tasks for time units [bk, bk+1)
properly. The details are discussed in the next section.

3. A Boundary Fair (BF) Algorithm

The BF algorithm has the following high-level struc-
ture: at each boundary time, it allocates resources to tasks
for time units between the current and next boundaries; each
task Ti will have some mandatory integer time units that
must be allocated to ensure fairness at the next boundary; if
there are idle resource slots after allocating the mandatory
time units for every task, a dynamic priority is assigned to
all eligible (as defined later) tasks and a few tasks with the
highest priorities will get one optional time unit each.

Before formally presenting the BF algorithm, we give
some definitions. We say that the remaining work for task
Ti after allocating [bk, bk+1) is the same as the allocation
error (see Section 2) of Ti at bk+1 and denoted as RW k+1

i .
The mandatory integer units needed for Ti while allocat-
ing [bk, bk+1) is defined as mk+1

i = max{0, �RW k
i +

(bk+1 − bk) · wi�}, which is the integer part of the sum-
mation of the remaining work from [bk−1, bk) and the work
to be done during [bk, bk+1). The pending work is the corre-
sponding decimal part and denoted as PW k+1

i = RW k
i +

(bk+1 − bk) · wi − mk+1
i . If Ti gets one optional unit

while allocating [bk, bk+1), we say that ok+1
i = 1; other-

wise ok+1
i = 0. From these definitions, after allocating re-

sources in [bk, bk+1), we get RW k+1
i = PW k+1

i − ok+1
i .

Algorithm 1 The BF algorithm at bk

1: for (T1, . . . , Tn) do
2: /*allocate mandatory units for Ti */
3: mk+1

i = max{0, �RW k
i + (bk+1 − bk) · wi�};

4: PW k+1
i = RW k

i + (bk+1 − bk) · wi − mk+1
i ;

5: end for
6: RU = m · (bk+1 − bk) − ∑

mk−1
i ;

7: /*allocate optional time-resource units if any*/
8: /*Pick up the RU highest priority tasks*/
9: SelectedTaskSet = TaskSelection(RU);

10: for (Ti ∈ SelectedTaskSet) do
11: ok+1

i = 1; /*allocate an optional unit for Ti*/
12: end for
13: for (T1, . . . , Tn) do
14: RW k+1

i = PW k+1
i − ok+1

i ;
15: end for
16: GenerateSchedule(bk, bk+1);

Similar to [4], at boundary time bk+1, task Ti is said to
be ahead if RW k+1

i < 0, punctual if RW k+1
i = 0 and be-

hind if RW k+1
i > 0. Furthermore, we define task Ti to be

pre-behind at bk+1 if PW k+1
i > 0.

The BF algorithm is presented in Algorithm 1, where
RU is the remaining units after allocating tasks’ manda-
tory units. It is used to determine how many optional units
need to be allocated. Initially, RW 0

i = 0 (i = 1, . . . , n).
First, the algorithm allocates mandatory units for each

task Ti in the first FOR loop. Next, if there are time units
left (i.e., RU > 0), the function of TaskSelection(RU)
will return the RU highest priority eligible tasks2 and each
of them will get one optional unit. After allocating all time
units, RW k+1

i are updated in the second FOR loop and
the schedule for section [bk, bk+1) is generated by func-
tion GenerateSchedule(), which sequentially packs tasks
to resources following the idea of McNaughton’s algorithm
[10] (see Figure 1b and Section 2).

To determine tasks’ priorities when allocating optional
units, following the idea in [4], a characteristic string of
task Ti at boundary time bk is a finite string over {−, 0, +}
and is defined as:

α(Ti, k) = αk+1(Ti)αk+2(Ti), . . . , αk+s(Ti)

where αk(Ti) = sign[bk+1·wi−�bk ·wi�−(bk+1−bk)] and
s(≥ 1) is the minimal integer such that αk+s(Ti) �= ′+′.
Then, if αk+s(Ti) =′−′, the urgency factor is defined as
UF k

i = 1−(bk+s·wi−�bk+s·wi�)
wi

, which is the minimal time
needed for a task to collect enough work demand to re-
ceive one unit allocation and become punctual after bk+s.
Finally, the priority for task Ti at time bk is defined as a tu-
ple ηk

i = {α(Ti, k), UF k
i }.

The priority comparison function Compare(Ti, Tj),
used by TaskSelection(), compares two eligible tasks’

2 A task Ti is eligible for an optional unit if PW k+1
i > 0 (it is pre-

behind) and mk+1
i < bk+1 − bk (it is not fully allocated).

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

Algorithm 2 The function Compare(Ti, Tj) at bk

1: /*For task Ti and Tj , assume that i < j;*/
2: s = 1;
3: while (αk+s(Ti) = αk+s(Tj) =′+′) do
4: s = s + 1;
5: end while
6: if (αk+s(Ti) > αk+s(Tj)) then
7: return (Ti > Tj);
8: else if (αk+s(Ti) < αk+s(Tj)) then
9: return (Ti < Tj);

10: else if (αk+s(Ti) = αk+s(Tj) =′0′) then
11: return (Ti > Tj);
12: else if (UF k+1

i > UF k+1
j) then

13: return (Ti < Tj);
14: else
15: return (Ti > Tj);
16: end if

priorities and is shown in Algorithm 2. First, the char-
acteristic strings of the tasks’ are compared, then their
urgency factors if necessary. When comparing the char-
acteristic strings, the comparison is done by comparing
characters starting from bk+1 until one task’s charac-
ter does not equal to ′+′ at the boundary time point bk+s

(the WHILE condition in Algorithm 2). If there is a dif-
ference, the task with higher character (here, we have
′−′ < ′0′ < ′+′) has higher priority; if both of them
equal ′0′, the task with smaller identifier has higher prior-
ity; if both of them equal ′−′, the urgency factors are com-
pared and the task with smaller urgency factor has higher
priority; when there still a tie, the task with the smaller iden-
tifier has higher priority.

Complexity of the BF algorithm
Assume that the maximum period for all tasks is pmax,

that is, pmax = max(pi) (i = 1, . . . , n). In the function
Compare(), there are at most pmax iterations of charac-
ter comparison for corresponding tasks in the WHILE
loop (line 3 in Algorithm 2); this is because after the end
of a period, the character for a task is no longer equal
′+′. So, the complexity for Compare() is O(pmax). Us-
ing any linear-comparison selection algorithm (e.g., [6]),
TaskSelection() from line 9 of Algorithm 1 needs to make
O(n) calls to the function Compare() to decide which RU -
subset of all eligible tasks to receive the optional units. Note
that the function GenerateSchedule() (line 16 in Algo-
rithm 1) has a complexity of O(n) by sequentially packing
all tasks onto resources. Thus, the overall complexity of the
BF algorithm is O(n · pmax), as in the PF algorithm [4].

Constant-Time Priority Comparison
To improve the efficiency of the priority comparison

function, following the idea in [5], we can design a con-
stant time comparison algorithm to compare two eligible

tasks’ priorities. That is, when αk+1(Ti) = αk+1(Tj) =′+′

(i < j), instead of looking forward to future boundaries, we
can compare the priorities for two counter tasks CTi and
CTj , which have the weight of 1 − wi and 1 − wj , respec-
tively. Since the characters for CTi and CTj would be ′−′ at
bk+1, we will need to calculate the urgency factors for them.
If CTi’s urgency factor is less than that of CTj , Tj has the
higher priority; otherwise, Ti has the higher priority. It can
be proved that the above process will return the same re-
sult as that of Compare() for any two eligible tasks. Due
to the space limitation, we will not present the algorithm
and the proof here. Thus, using the constant priority com-
parison function and any linear-comparison selection algo-
rithm (e.g., [6]), the complexity of our BF algorithm will
be O(n), which is comparable to that of the PD algorithm,
O(min{n, m lg n}) [5].

Sample execution of the BF algorithm
Before we present the proof of correctness for our BF

algorithm, we illustrate the execution of BF for the exam-
ple in page 3. There are 10 boundary time points within [0,
30). The parameters used by our algorithm are calculated as
shown in Table 3, where a ′∗′ means the corresponding item
is not eligible or does not need to be calculated.

As we can see, initially, RW 0
i = 0, (i = 1, . . . , 6).

When allocating the first section (from b0 to b1), the manda-
tory units for each task are allocated in the first step,
where T1, . . . , T6 get 2, 1, 1, 1, 3, 1 units, respectively. Since∑6

i=1 m1
i = 9 and the total available time units are (b1 −

b0) · m = (5 − 0) · 2 = 10, there is 1 time unit left (i.e.,
RU = 1). To allocate it, one task is to be selected to receive
an optional unit. Notice that there are 2 eligible tasks T4 and
T5 (at time b1, PW 1

i > 0 and m1
i < 5, i = 4, 5), and their

characteristic strings are α(T4, 0) =′0′ and α(T5, 0) =′0′.
Task T4 has the highest priority (T4 and T5 have same char-
acter ′0′ at b1, so the task with smaller identifier has higher
priority) and will get an optional time unit. After that, the al-
location for [0, 5) is complete and RW 1

i (i = 1, . . . , 6) val-
ues are calculated accordingly. The schedule for the section
[0, 5) will be generated by packing tasks to resources se-
quentially as shown in Figure 1b (see Section 2).

For section [5, 6), only T5 gets one mandatory unit
(m2

5 = max{0, �RW 1
5 + 2 ·w5�} = 1) and there is one ad-

ditional unit to be allocated. T1, T2, T3 and T6 are eligible
tasks because PW 2

i > 0 and m2
i < b2 − b1 (i = 1, 2, 3, 6).

All these tasks have α(Ti, 1) = ′−′. T1 has the high-
est priority with the smallest urgency factor and will get
an optional unit. These steps are repeated until after allo-
cating section [25, 30), and we get a boundary fair sched-
ule within the LCM . Note that the schedule generated by
our BF algorithm is shown in Figure 1b, which is also gen-
erated from proportional fair schedule as explained in
Page 3. However, there are only 10 scheduling points for

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

time 0 5 6 10 12 15 18 20 24 25 30
bk b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

RW k
1 0 0 -3/5 0 -1/5 0 -4/5 0 -2/5 0 0

RW k
2 0 0 1/5 0 -3/5 0 -2/5 0 -1/5 0 0

RW k
3 0 0 1/5 0 2/5 0 3/5 0 -1/5 0 0

RW k
4 0 -1/3 0 1/3 0 0 0 -1/3 0 1/3 0

RW k
5 0 1/3 0 -1/3 0 0 0 1/3 0 -1/3 0

RW k
6 0 0 1/5 -0 2/5 0 3/5 0 4/5 0 0

mk
1 * 2 0 1 0 1 1 0 1 0 2

mk
2 * 1 0 1 0 0 0 0 0 0 1

mk
3 * 1 0 1 0 1 0 1 0 0 1

mk
4 * 1 0 1 1 1 1 0 1 0 2

mk
5 * 3 1 2 1 2 2 1 3 0 3

mk
6 * 1 0 1 0 1 0 1 0 1 1

PW k
1 * 0 2/5 0 4/5 0 1/5 0 3/5 0 0

PW k
2 * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

PW k
3 * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

PW k
4 * 2/3 0 1/3 0 0 0 2/3 0 1/3 0

PW k
5 * 1/3 0 2/3 0 0 0 1/3 0 2/3 0

PW k
6 * 0 1/5 0 2/5 0 3/5 0 4/5 0 0

αk(T1) * - - - - - - - 0 - -
αk(T2) * - - - - - - - 0 - -
αk(T3) * - - - - - - - 0 - -
αk(T4) * 0 - - - - - - - - -
αk(T5) * 0 - 0 - - - - - - -
αk(T6) * - - - - - - - 0 - -
UF k

1 * * 3/2 * 1/2 * 2 * * * *
UF k

2 * * 4 * 3 * 2 * * * *
UF k

3 * * 4 * 3 * 2 * * * *
UF k

4 * * * * * * * 1 * 2 *
UF k

5 * * * * * * * 1 * 1/2 *
UF k

6 * * 4 * 3 * 2 * * * *
ok
1 * 0 1 0 1 0 1 0 1 0 0

ok
2 * 0 0 0 1 0 1 0 1 0 0

ok
3 * 0 0 0 0 0 0 0 1 0 0

ok
4 * 1 0 0 0 0 0 1 0 0 0

ok
5 * 0 0 1 0 0 0 0 0 1 0

ok
6 * 0 0 0 0 0 0 0 0 0 0

Table 1. The execution of the BF algorithm for the example

the BF algorithm and 30 for the PF algorithm [4]. Fur-
thermore, the schedule generated by BF (Figure 1b) will
also incur less context switches than the schedule gener-
ated by PF (Figure 1a).

From this example, we can see that when allocating the
resources in [bk, bk+1):

• The summation of the mandatory units is less than or
equal to the time units available (see Lemma 3):∑n

i=1 mk+1
i ≤ (bk+1 − bk) · m;

• There are enough eligible tasks to claim the remain-
ing units if any (see Lemma 4):
the number of eligible tasks ≥ (bk+1 − bk) · m −∑n

i=1 mk+1
i ;

• After allocation,
∑n

i=1 RW k+1
i = 0 (which means

resources are fully allocated) and ∀i |RW k+1
i | < 1

(which means the schedule is fair).

These observations will be used to present the correctness
of our algorithm as shown in the next section.

4. Analysis of the BF Algorithm

First, we recall that PW k
i = RW k−1

i + (bk − bk−1) ·
wi − mk

i (where mk
i = max{0, �RW k−1

i + (bk − bk−1) ·
wi�}), and RW k

i = PW k
i −ok

i . For convenience, we define
some notations. Three task sets are defined as in [4]:

ASk = {Ti|RW k
i < 0} : ahead task set at bk;

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

BSk = {Ti|RW k
i > 0} : behind task set at bk;

PSk = {Ti|RW k
i = 0} : punctual task set at bk;

Furthermore, a task Ti is said to be pre-ahead at bk

if PW k
i < 0, which means that even if Ti does not get

any mandatory unit (mk
i = 0; otherwise, there will be

PW k
i ≥ 0, a contradiction) in [bk−1, bk) it will still be

ahead at bk. The pre-ahead task set is defined as:
PASk = {Ti|PW k

i < 0}.
A task Ti is said to be pre-behind at bk if PW k

i > 0 after
allocating mk

i , but it may “recover” after the optional units
allocation. The pre-behind task set is defined as:
PBSk = {Ti|PW k

i > 0}.
Notice that, if a task Ti is punctual after mandatory units

allocation, it will not get any optional unit and will still be
punctual after optional units allocation; thus, there is no
need to define a pre-punctual task set. Moreover, we de-
fine the eligible task set as:
ESk = {Ti|(Ti ∈ PBSk) AND (mk

i < bk − bk−1)};

PS k−1

BSk−1

ASk−1 PAS k

PBS k

kPS PS k

BSk

ASkm =0k o =0k

 o =1k

 o =0k

 o =0k

Figure 2. Task transitions from bk−1 to bk.

From these definitions, we can get task transitions be-
tween bk−1 and bk as shown by Figure 2. For example,
∀Ti ∈ PASk, Ti was ahead at bk−1 and got no manda-
tory unit. Moreover, Ti will get no optional unit (since it
is not an eligible task) and still be ahead at bk. That is,
PASk ⊆ ASk−1 and PASk ⊆ ASk. For task Ti ∈
ASk−1, it is also possible for Ti to have enough work de-
mand during [bk−1, bk) and belong to PSk or PBSk. For
task Ti ∈ PBSk, Ti may get an optional unit to become
ahead or get no optional unit and remain behind at bk.

From the BF algorithm, we can easily get the following
properties of the defined task sets.

Property 1 For the defined task sets:
(a) If Ti ∈ BSk−1 and mk

i = 0, Ti ∈ PBSk;
(b) If αk−1(Ti) =′+′ and Ti ∈ ASk, mk

i + ok
i = bk − bk−1;

(c) ∀Ti ∈ PASk, mk
i = ok

i = 0 and RW k−1
i < RW k

i < 0;
(d) If Ti ∈ BSk−1 and mk

i = ok
i = 0, Ti ∈ BSk and

0 < RW k−1
i < RW k

i ;
(e) If Ti ∈ ASk and mk

i = ok
i = 0, Ti ∈ ASk−1 and

αk−1(Ti) =′−′;
(f) If Ti ∈ BSk and mk

i = bk − bk−1, Ti ∈ BSk−1 and
αk−1(Ti) =′+′;
(g) If Ti ∈ ASk−1 ∩ ASk and mk

i + ok
i = bk − bk−1, RW k

i <
RW k−1

i < 0;

(h) If Ti ∈ BSk−1 ∩ BSk and mk
i + ok

i = bk − bk−1, 0 <
RW k

i < RW k−1
i .

♦
Below we give a proof sketch of Lemma 2, which will be

used by Lemmas 3 and 4; the formal proof is omitted for the
sake of brevity. For task Tx ∈ PASk ⊆ ASk, from Proper-
ties 1c and 1e, we have mk

x = ok
x = 0 and αk−1(Tx) =′−′.

If Tx gets an optional unit during last iteration when al-
locating [bk−2, bk−1) (i.e., ok−1

x = 1), for any task Ty

(x �= y) that is behind at bk−1 and is not fully allocated
during last iteration (i.e., Ty ∈ ESk−1), from the BF al-
gorithm, we have that Ty’s priority is lower than that of Tx;
that is, αk−1(Ty) = αk−1(Tx) =′−′ and Ty’s urgency fac-
tor (UF k−1

y) is bigger than or equal to that of Tx (UF k−1
x).

Since Tx ∈ PASk ⊆ ASk, we have UF k−1
x > bk − bk−1

(otherwise, there will be PW k
x ≥ 0 and Tx /∈ PASk, a con-

tradiction).
This scenario is further illustrated in Figure 3, where

tx and ty are the nearest punctual time points after bk−1

for Tx and Ty, respectively. Recall that, the urgency fac-
tor is the minimal time needed for a task to collect enough
work and become punctual after bk−1. We have UF k−1

y =
ty − bk−1 ≥ UF k−1

x = tx − bk−1 > bk − bk−1, that is,
ty ≥ tx > bk. Thus, we have Lemma 2.

Ty

Tx

bk−1 bk

Punctual time point for tasks

t y

UFx
k−1

UFy
k−1 t x

t

t

Figure 3. Urgency factors for different tasks.

Lemma 2 If ∃Tx ∈ PASk, ok−1
x = 1, and ∀Ty ∈ ESk−1

(x �= y), then αk−1(Ty) =′−′ and UF k−1
y ≥ UF k−1

x >
bk−bk−1. ♦

To prove that the BF algorithm correctly generates a
boundary fair schedule, first we show that two conditions
are always satisfied during allocating [bk−1, bk): (1) the
summation of all tasks’ mandatory integer units is at most
equal to the available time units on the m resources; (2)
there are enough eligible tasks to claim any available op-
tional units. The proof for these conditions is by contradic-
tion, that is, if any one of these two conditions is not met,
we can show that there will be at least one task ahead and
one task behind in every one of the previous boundaries;
this will contradict the fact that there is at least one bound-

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

ary (i.e., b0) in which every task is punctual. This is for-
mally proved in the following two lemmas.

Lemma 3 If
∑

i wi = m and Algorithm 1 is followed at
boundary time b0, . . . , bk−1 and for v = 0, . . . , k − 1,∑

i RW v
i = 0 and |RW v

i | < 1, then when allocating re-
sources in [bk−1, bk), we have

∑
i mk

i ≤ (bk − bk−1) · m.

Proof The proof is by contradiction, that is, if the equa-
tion does not hold, we will show that both ahead set and be-
hind set are not empty for each of the previous boundaries,
which contradicts the fact that there is at least one bound-
ary (i.e., b0) in which every task is punctual.

Suppose
∑

i mk
i > (bk − bk−1) · m. By assumption,∑

i RW k−1
i = 0 and

∑
i wi = m. Thus:

∑

i

PW k
i =

∑

i

(RW k−1
i + (bk − bk−1) · wi − mk

i)

= (bk − bk−1) · m −
∑

i

mk
i ≤ −1

Define two task sets PWAS (possibly-wrong ahead
set) and PWBS (possibly-wrong behind set) for bound-
ary bk−1 as follows:

PWASk−1 = {Tx|Tx ∈ PASk};
PWBSk−1 = {Ty |(Ty ∈ BSk−1)AND(mk

y ≥ 1)};

Notice that, both PWASk−1 and PWBSk−1 are not
empty. Otherwise, if PWASk−1 = ∅, we have

∑
i PW k

i ≥
0, which contradicts

∑
i PW k

i ≤ −1. If PWBSk−1 = ∅,
we have ∀Ti ∈ BSk−1, mk

i = 0. From Property 1a,
Ti ∈ PBSk and BSk−1 ⊆ PBSk. Therefore:

∑

Ti∈PBSk

PW k
i ≥

∑

Ti∈BSk−1

PW k
i >

∑

Ti∈BSk−1

RW k−1
i > 0

Notice that PASk ⊆ ASk−1, therefore:
∑

Ti∈ASk−1

RW k−1
i <

∑

Ti∈PASk

RW k−1
i <

∑

Ti∈PASk

PW k
i < 0

By assumption,
∑

i RW k−1
i = 0. Since ∀Ti ∈ PSk−1,

RW k−1
i = 0, thus

∑
Ti∈ASk−1 RW k−1

i =
−∑

Ti∈BSk−1 RW k−1
i . Therefore:

∑

Ti∈PBSk

PW k
i >

∑

Ti∈BSk−1

RW k−1
i =

−
∑

Ti∈ASk−1

RW k−1
i > −

∑

Ti∈PASk

PW k
i

hence
∑

i PW k
i > 0 that contradicts

∑
i PW k

i ≤ −1.
So, both PWASk−1 and PWBSk−1 are not empty.

From Lemma 2 and the BF algorithm, we will get either:
(a) ∀Tx ∈ PWASk−1, Tx ∈ PASk−1; or
(b) ∀Ty ∈ PWBSk−1, mk−1

y = bk−1 − bk−2;
Otherwise, ∃Tx ∈ PWASk−1 and ∃Ty ∈ PWBSk−1

such that Tx ∈ PBSk−1, ok−1
x = 1 and mk−1

y < bk−1 −
bk−2. From Lemma 2, there will be UF k−1

y > UF k−1
x >

bk−bk−1. Notice that from the definition of PWASk−1 and
PWBSk−1, we have UF k−1

y < UF k−1
x , which is a con-

tradiction.
Below, we extend the construction of the non-empty sets

PWAS and PWBS to earlier boundaries. Recall that our in-
tuition behind this proof is that there will at least one bound-
ary (e.g. b0) in which every task is punctual.

If (a) is true, ∀Tx ∈ PWASk−1, Tx ∈ PASk−1 . Define:

PWASk−2 = {Tx|Tx ∈ PWASk−1} 	= ∅;

PWBSk−2 = {Ty|(Ty ∈ BSk−2)AND(

k∑

l=k−1

(ml
y + ol

y) > 0)};

Suppose PWBSk−2 = ∅, that is, ∀Ty ∈ BSk−2,∑k
l=k−1(m

l
y + ol

y) = 0. From Properties 1a and
1d, Ty ∈ PBSk and BSk−2 ⊆ PBSk. Since
PWASk−2 = PWASk−1 = PASk ⊆ PASk−1 ⊆
ASk−2, from Property 1c, we have ∀Tx ∈ PWASk−2,
mk−1

x = ok−1
x = mk

x = ok
x = 0. Therefore:

∑

Ty∈PBSk

PW k
i >

∑

Ty∈BSk−2

PW k
i

>
∑

Ty∈BSk−2

RW k−1
i >

∑

Ty∈BSk−2

RW k−2
i

= −
∑

Tx∈ASk−2

RW k−2
i ≥ −

∑

Tx∈PASk−1

RW k−2
i

≥ −
∑

Tx∈PASk

RW k−2
i > −

∑

Tx∈PASk

PW k
i

that is,
∑

i PW k
i > 0, which is a contradiction.

So, both PWASk−2 and PWBSk−2 are not empty.
Similarly, this will lead to either:
(i) ∀Tx ∈ PWASk−2, Tx ∈ PASk−2; or
(ii) ∀Ty ∈ PWBSk−2, mk−2

y = bk−2 − bk−3;

If (b) is true, ∀Ty ∈ PWBSk−1, mk−1
y = bk−1 − bk−2.

From Property 1f, Ty ∈ BSk−2 and αk−2(Ty) =′+′. Define:

PWASk−2 = {Tx|(Tx ∈ ASk−2)AND(∃Ty ∈ PWBSk−2,

α(Tx, k − 3) < α(Ty, k − 3))};
PWBSk−2 = PWBSk−1 	= ∅;
If PWASk−2 = ∅, then ∀Tx ∈ ASk−2 and
∀Ty ∈ PWBSk−2, α(Tx, k − 3) ≥ α(Ty, k − 3).
Thus αk−2(Tx) = αk−2(Ty) =′+′. Since mk

y ≥ 1,
whatever the value of αk−1(Tx) is, we will have
Tx ∈ (PBSk ∪ PSk). Notice that PASk �= ∅, we
have ∃Tz ∈ ((BSk−2 − PWBSk−2) ∪ PSk−2),
Tz ∈ PASk ⊆ ASk−1 (i.e., ok−1

z = 1). Note that
αk−2(Tz) <′+′ (otherwise, Tz ∈ PWBSk−2, a contradic-
tion). Since ∀Tx ∈ ASk−2, αk−2(Tx) =′+′ (i.e., Tx’s pri-
ority is higher than Tz’s) and mk−1

x < bk−1 − bk−2,
there will be ok−1

x = 1 and Tx ∈ ASk−1 (notice

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

that mk−1
x + ok−1

x = bk−1 − bk−2 because of Prop-
erty 1b), that is ASk−2 ⊆ ASk−1. Then, there is
ASk−1 ⊇ (ASk−2 ∪ PASk). Since

∑

Ti∈BSk−1

RW k−1
i = −

∑

Ti∈ASk−1

RW k−1
i

=
∑

Ti∈PWBSk−1

RW k−1
i +

∑

Ti∈(BSk−1−PWBSk−1)

RW k−1
i

≥ −
∑

Ti∈ASk−2

RW k−1
i −

∑

Ti∈PWASk−1=PASk

RW k−1
i

Notice that PWBSk−2 = PWBSk−1. From Property 1h:
∑

Ti∈PWBSk−1

RW k−1
i <

∑

Ti∈PWBSk−2

RW k−2
i

≤
∑

Ti∈BSk−2

RW k−2
i = −

∑

Ti∈ASk−2

RW k−2
i

< −
∑

Ti∈ASk−2

RW k−1
i

then, from last two equations, we will have:
∑

Ti∈(BSk−1−PWBSk−1)

RW k−1
i > −

∑

Ti∈PASk

RW k−1
i

Since (BSk−1 − PWBSk−1) ⊆ PBSk, we will have:
∑

Ti∈PBSk

PW k
i ≥

∑

Ti∈(BSk−1−PWBSk−1)

PW k
i

>
∑

Ti∈(BSk−1−PWBSk−1)

RW k−1
i

> −
∑

Ti∈PASk

RW k−1
i > −

∑

Ti∈PASk

PW k
i

that is
∑

i PW k
i > 0, a contradiction.

So, both PWASk−2 and PWBSk−2 are not empty.
The same as before, we will get either:
(i) ∀Tx ∈ PWASk−2, Tx ∈ PASk−2; or
(ii) ∀Ty ∈ PWBSk−2, mk−2

y = bk−2 − bk−3;

Continue the above steps to the boundary time bk−w,
where ∀Ti, RW k−w

i = 0 (note that ∀Ti, RW 0
i = 0). At

that boundary we will have two non-empty sets PWBS
and PWAS, which is a contradiction.

Therefore, when allocating [k−1, bk), we have
∑

i mk
i ≤

(bk − bk−1) · m. ♦
Lemma 4 If

∑
i wi = m and Algorithm 1 is followed at

boundary time b0, . . . , bk−1 and for v = 0, . . . , k − 1,∑
i RW v

i = 0 and |RW v
i | < 1, then when allocating re-

sources in [bk−1, bk), we have |ESk| ≥ (bk − bk−1) · m −∑
i mk

i ; that is, the number of eligible tasks is no less than
the number of remaining units (RU) to be allocated. ♦

The proof for Lemma 4 is similar to that for Lemma 3
and is omitted here due to space limitation. From Lemma 3
and 4, we can get the following theorem.

Theorem 1 The schedule generated by Algorithm 1 is
boundary fair, that is, at boundary time bk (after allocat-
ing [bk−1, bk)), we have

∑
i RW k

i = 0 and |RW k
i | < 1

(i = 1, . . . , n).

Proof The proof is by induction on boundary time bk.
Base case: At time b0, we have RW 0

i = 0, i = 1, . . . , n,
that is,

∑
i RW 0

i = 0 and |RW 0
i | < 1;

Induction step: Assume that for boundary time
b0, . . . , bk−1, we have

∑
i RW v

i = 0 and |RW v
i | < 1

(v = 0, . . . , k − 1, i = 1, . . . , n);
When allocating [bk−1, bk), from Lemma 3 and 4, the

following two conditions are satisfied:
(1)

∑
i mk

i ≤ (bk − bk−1) · m; and
(2) |ESk| ≥ (bk − bk−1) · m − ∑

i mk
i ;

After allocating mk
i , task Ti will belong to one of the

sets in the middle column of Figure 2. Below we consider
the four possible transitions (arrows from the middle sets to
the sets on the right):
∀Ti ∈ PASk ∩ ASk, −1 < RW k

i = PW k
i < 0;

∀Ti ∈ PBSk ∩ ASk, −1 < RW k
i = PW k

i − 1 < 0;
∀Ti ∈ PBSk ∩ BSk, 0 < RW k

i = PW k
i < 1;

∀Ti ∈ PSk, RW k
i = PW k

i = 0;
Hence, ∀Ti, |RW k

i | < 1. Next,
∑

i

RW k
i =

∑

i

(PW k
i − ok

i)

=
∑

i

(RW k−1
i + (bk − bk−1) · wi − mk

i − ok
i)

= 0 + (bk − bk−1) · m −
∑

i

(mk
i + ok

i);

Since
∑

i(m
k
i + ok

i) = (bk − bk−1) · m, we will have, at
time bk,

∑
i RW k

i = 0.
Thus, the schedule generated by the BF algorithm in Al-

gorithm 1 is boundary fair.
♦

As we noted above, a boundary fair schedule maintains
fairness for tasks at the boundaries, which means that there
is no deadline miss and the BF algorithm generates a fea-
sible schedule. Moreover, BF is optimal in the sense that it
utilizes 100% of each of the resources in a system.

5. Evaluation
In this section, we will experimentally demonstrate the

performance of our BF algorithm on reducing the num-
ber of scheduling points as well as the overall scheduling
overhead compared with that of the PD algorithm. Note
that PD [5] is more efficient than PF [4] and both of them
make scheduling decisions at every time unit. Another algo-
rithm, PD2, improves on PD by using a simplified prior-
ity comparison function which has two less parameters [3].

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

 25

 30

 35

 40

 45

 50

 20 30 40 50 60 70 80 90 100

sc
he

du
lin

g
po

in
ts

 o
f B

F
 v

s.
 P

D
 (

%
)

the maximum period

100 tasks
80 tasks
60 tasks
40 tasks
20 tasks

Figure 4. The number of scheduling points of
BF vs. PD

However, both priority comparison functions have the same
complexity of O(1) and we do not expect PD2 can improve
on PD too much, especially when both of them are imple-
mented in O(n) where PD can effectively limit the search
space as discussed in this paper while PD2 cannot.

In our experiments, each task set contains 20 to 100 tasks
and the period for a task is uniformly distributed within the
minimum and maximum periods considered. The minimum
task period is set as 10. For each data point, we averaged
the results for 100 randomly generated task sets. First, we
vary the maximum period from 20 to 100 and show the re-
duction of scheduling points of BF compared with PD.
The scheduling points for BF are the period boundaries of
all tasks which are independent of tasks’ resource require-
ment, while there are LCM scheduling points for PD. The
results are shown in Figure 4; these results are conserva-
tive since we discarded all task sets with LCM > 232.

From Figure 4, we can see that the number of schedul-
ing points of our BF algorithm varies from 25% to 48% of
the PD algorithm. For a fixed maximum period, when there
are more tasks in a task set, a time point is more likely to
be a period boundary and there are more scheduling points
for BF . For a task set with fixed number of tasks, the pe-
riods of tasks are more separated with higher maximum
period and thus there are less period boundaries and thus
scheduling points for BF . Even when there are 100 tasks
in a task set, BF has only 48% scheduling points compared
with PD. For applications in real-time systems, tasks are
more harmonic than randomly generated task sets and more
scheduling points reduction is expected. For example, in a
harmonic task set, the number of scheduling points for BF
is LCM/mini(pi). In the future, we will characterize this
issue more accurately.

Next, we compare the run-time overhead of our BF al-
gorithm with that of the PD algorithm by running both

 0

 10

 20

 30

 40

 50

 60

 70

 80

 20 30 40 50 60 70 80 90 100
 1

 1.5

 2

 2.5

 3

 3.5

pe
r-

in
vo

ca
tio

n
cy

cl
es

 (
10

3)

ov
er

al
l c

yc
le

s
of

 P
D

 o
ve

r
B

F

the number of tasks

per-BF
per-PD

overall PD vs. BF

Figure 5. The per-invocation and overall exe-
cution time (in cycles) of BF and PD

algorithms on the SimpleScalar micro-architecture simula-
tor [7]. As mentioned before, to select k highest priority
tasks from n tasks, the task selection function can be im-
plemented in O(n) [6]. However, our implementation uses
a simple search technique with a complexity of O(k · n).

For the PD algorithm, we implement its constant time
priority comparison function. To limit the search space of
the task selection function, tasks are first divided into 7 pri-
ority categories [5] with the complexity of O(n); then the
tasks are selected from high priority category to low prior-
ity category; if not all tasks in a category can be selected,
the O(k ·n) task selection function is used within that cate-
gory. In this way, we effectively reduced the number of pri-
ority comparison needed by the PD algorithm. While the
complexity of implemented PD algorithm is still O(m ·n),
where m is the number of resources, the results (see below)
are almost linear with the number of tasks.

Similarly, for BF , eligible tasks are first divided into 3
categories based on their characters (corresponding to ′+′,
′0′ and ′−′) for the current boundary time. We implement
the constant time priority comparison function as described
in Section 3 and the implemented BF algorithm has an
overall complexity of O(n2). Note that at most n − 1 op-
tional units need to be allocated per-invocation for BF .

Figure 5 shows the execution time (in cycles) of each
scheduling instance. We fix the maximum period as 100
and the resource requirement of a task (ci) is uniformly dis-
tributed between 1 and its period (pi); thus, on average, the
number of resources is around half of the number of tasks.
From Figure 5 we can see that BF uses more cycles per-
invocation than PD (note that, the actual per-invocation cy-
cles of the implemented PD algorithm is almost linear with
the number of tasks) and BF becomes worse as the number
of tasks increases. However, as shown through the dotted
line (which corresponds to the Y-axis on the right side of

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

the figure), when the number of tasks is less than 100, BF
uses much less time to generate the whole schedule than
PD because of less scheduling points. For applications with
very large number of tasks and fewer number of resources,
the PD (especially, PD2) algorithm with a more efficient
implementation (with complexity of O(m lg n)) may out-
perform BF by using less time to generate a schedule.
However, realistic systems will have fewer than 100 tasks
and, furthermore, the schedule generated by BF incurs less
context switches (see Figure 1 in Section 2).

6. Closely Related Work

Although much work has been done on multiple-
resource scheduling, we will focus on the related work
about Pfair scheduling. The first optimal solution for
the general periodic scheduling problem of multiple re-
sources, PF [4], makes scheduling decisions at every
time unit and explicitly requires all tasks to make pro-
portional progress. By separating tasks as light (with
task weight less or equal 50%) and heavy (with task
weight larger than 50%) tasks, a more efficient Pfair al-
gorithm, PD, is proposed in [5]. A simplified PD algo-
rithm, PD2, uses two less parameters than PD to com-
pare the priorities of tasks [3], however, both of them have
the same with complexity of O(min{n, m lg n}). A vari-
ant of Pfair scheduling, early-release scheduling, was pro-
posed in [1]. By considering intra-sporadic tasks, where
subtasks may be released later, the same authors pro-
posed another polynomial-time scheduling algorithm,
EPDF , that is optimal on systems of one or two re-
sources [2].

The supertask approach [11] was first proposed to sup-
port non-migratory tasks: tasks bound to a specific resource
are combined into a single supertask which is then sched-
uled as an ordinary Pfair task. When a supertask is sched-
uled, one of its component tasks is selected for execution
using earliest deadline first policy. Unfortunately, the su-
pertask approach cannot ensure all the non-migratory com-
ponent tasks to meet their deadline even when the super-
task is scheduled in a Pfair manner. To solve this problem,
[8] reconsiders this approach furnishing it with a reweight-
ing technique, which inflates a supertask’s weight to ensure
that its component tasks meet their deadlines if the super-
task is scheduled in a Pfair manner. While this technique
ensures that the supertask’s non-migratory component tasks
meet their deadlines, some system utilization is sacrificed.

7. Conclusion

In this paper, we present a novel scheduling algorithm
for multi-resource systems. Unlike its predecessor, the Pfair
scheduling, which makes scheduling decisions at every time

unit to ensure proportional progress for all tasks at any time,
our algorithm, boundary fair (BF) scheduling, only makes
scheduling decisions and maintains fairness for tasks at the
period boundaries, which effectively reduces the number of
scheduling points as well as context switches compared to
that of the Pfair algorithms. Although the acutal reduction
of the scheduling points depends on the task sets, from our
experiments, the number of scheduling points in the BF
algorithm is as little as 25% of that in Pfair algorithms.
The complexity of BF is the same as that of the PF algo-
rithm [4] and a more efficient implementation with a con-
stant time priority comparison function achieves compara-
ble complexity to that of the PD algorithm [5]. However,
by reducing the number of scheduling points, BF reduces
the overall scheduling overhead, which is especially impor-
tant for on-line scheduling. The correctness of the BF algo-
rithm to generate a boundary fair schedule is presented and
an example is used to illustrate how BF algorithm works.

References

[1] J. Anderson and A. Srinivasan. Early-release fair schedul-
ing. In Proc. of the 12th Euromicro Conference on Real-Time
Systems, Jun. 2000.

[2] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond pe-
riodic task systems. In Proc. of the 7th International Work-
shop on Real-Time Computing Systems and Applications,
Dec. 2000.

[3] J. Anderson and A. Srinivasan. Mixed pfair/erfair schedul-
ing of asynchronous periodic tasks. In Proc. of the 13th Eu-
romicro Conference on Real-Time Systems, Jun 2001.

[4] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varel.
Proportionate progress: A notion of fairness in resource allo-
cation. Algorithmica, 15(6):600–625, 1996.

[5] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast schedul-
ing of periodic tasks on multiple resources. In Proc. of The
International Parallel Processing Symposium, Apr. 1995.

[6] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E.
Tarjan. Time bounds for selection. Journal of Computer and
System Sciences, 7:448–461, 1973.

[7] D. Burger and T. M. Austin. The simplescalar tool set, ver-
sion 2.0. Technical Report 1342, Department of Computer
Science, University of Wisconsin-Madison, Jun. 1997.

[8] P. Holman and J. Anderson. Guaranteeing pfair supertasks
by reweighting. In Proc. of the 22nd IEEE Real-Time Sys-
tems Symposium, Dec. 2001.

[9] C. L. Liu. Scheduling algorithms for multiprocessors in a
hard real-time environment. JPL Space Programs Summary
37-60, pages 28 – 37, Nov. 1969.

[10] R. McNaughton. Scheduling with deadlines and loss func-
tions. Management Science, 6:1–12, 1959.

[11] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and
migrating tasks on multiple resources. In Proc. of the 20th

IEEE Real-Time Systems Symposium, Dec. 1999.

Proceedings of the 24th IEEE International Real-Time Systems Symposium (RTSS’03)
0-7695-2044-8/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

