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Abstract

Energy-efficient data transmission is an important issue for mobile communication devices. In

this paper, we study throughput and value-based packet scheduling over a wireless link under time

and energy constraints. A mobile node is required to deliver multiple data streams to multiple

receivers. These data streams may have different importance and incur different energy costs. In this

research, point-to-point wireless data transmission is studied. The objective is to develop schemes

that selectively transmit data streams at certain power levels so that the data throughput or the

value of data delivery is maximized without violating the energy and time constraints. Exploiting

the special properties of the throughput maximization problem, we propose an iterative algorithm

that yields the optimal transmission schedule. The value maximization problem is formulated as a

convex optimization problem and the optimal results can be obtained by solving the Kuhn-Tucker

conditions. When time and transmission power are allocated at discrete slots and levels, respectively,

a dynamic programming approach is proposed to find the optimal value.

1 Introduction

Mobile and wireless devices are becoming increasingly popular in the workplace and at home. Wireless

LANs and sensor networks are widely deployed. With increasing processor computation power and

wireless transmission rate, the energy consumption of wireless devices is growing rapidly. As batteries

are the primary energy source of mobile devices, increasing the energy-efficiency of computing and

communications is of critical importance.

Energy-efficient computing systems have been extensively studied in the literature. For example,

processor voltage scaling has been introduced to trade processing speed for lower energy consumption [1–

4]. A similar technique has been developed for wireless communications. With proper wireless channel
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coding or modulation schemes, the energy for transmitting a given amount of data can be reduced

substantially by lowering the transmission power and increasing the transmission time [5–7].

Energy-efficient scheduling of packets with timing constraints over wireless links has received much

attention recently. The objective is usually to minimize energy consumption given a fixed amount

of data [5, 6, 8, 9] or to maximize throughput under a given energy constraint [9]. It is known that

with proper channel coding the energy required for transmitting any given amount of data is strictly

convex and monotonically decreases with transmission time [5]. In other words, sending data over a

longer interval saves energy. Prabhakar et al. have studied the energy minimization problem where

all packets have a common deadline [5], and they have further investigated the multiple receiver case

where transmitting to different receivers incurs different energy costs [6]. In a recent work, it was found

that more energy can be saved by exploiting the energy recovery effect of batteries [8]. Energy-efficient

packet scheduling under a fading channel is more complicated. As the channel states change with time,

the current and future channel states must be considered when allocating transmission power [9, 10].

We consider an ad hoc sensor network where the communication medium (frequency band) is shared

among the nodes by time-division multiplexing (TDMA). To resolve collision and minimize energy

wastage, medium access control can be achieved by implementing periodic reservation protocols such as

the Demand Assigned Multiple Access (DAMA) protocol or using static schemes such as I-EDF which

assigns fixed amount of time to each node periodically [11]. In both cases, a node will receive a finite

number of time slots, during which it can transmit data, in each fixed interval. As the lifetime of a

node is constrained by the battery capacity, only a limited amount of energy should be consumed in

each interval (or period). For solar-powered sensor nodes, this energy budget can be the amount of

solar energy collected in each period. The node should selectively transmit the data accumulated in its

transmit buffer within the time and energy constraints. As data streams destined to different receiving

nodes may consume different amount of energy, the energy cost must be considered in maximizing

data throughput. Furthermore, if data streams have different priorities and are of different importance

(or value), it is also desirable to take the values of the streams into consideration and maximize the

total value. Recently, Fu et al. [9] have studied the throughput and value maximization problem for

energy constrained data transmission in satellite systems. However, they assumed that the value from

successful transmission changed randomly with time and were independent of the streams. The value

maximization problem for real-time tasks has been investigated by Rusu et al. [12], but the iterative

algorithm they proposed does not give the optimal solution.

In this paper, we study throughput and value maximization problems for point-to-point data trans-

mission over wireless links. Given the value functions and energy cost functions for a set of incoming

data streams on the transmitting node, the objective is to maximize the throughput or the total value

from successful data transmission under time and energy constraints. Two types of decisions have to be

made during scheduling: data selection and power control. For the throughput maximization problem,

we analyze the properties of optimal transmission schedules and propose an optimal iterative algorithm

exploiting these properties. The algorithm has low complexity and can be implemented efficiently. The
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value maximization problem can be solved using the Kuhn-Tucker conditions if time and power can be

adjusted continuously. When time is slotted and transmission power is adjustable at discrete levels only,

we propose a dynamic programming approach to compute the optimal schedule. We found that the

optimal value achievable with discrete time and power allocation was close to that for the continuous

case. In designing mobile low-power devices, it may be worthwhile to use slotted time and discrete power

levels so as to simplify the design of wireless transmitters without sacrificing much performance. Fur-

thermore, we show that the dual problem, that is, energy minimization under time and value constraints

can be solved using a similar method.

The rest of the paper is organized as follows: Section 2 introduces the system model. In Section 3 we

present an optimal iterative algorithm for the throughput maximization problem. Value-based packet

scheduling under time and energy constraints is studied in Section 4. Section 5 addresses the energy

minimization problem under time and value constraints. Finally, Section 6 concludes this paper.

2 System model

2.1 Data model

We consider an ad hoc network environment where a single node is transmitting to multiple receivers

over a wireless channel. The data to be transmitted are stored in the buffer before transmission. These

data are either generated by the local sensor or forwarded from remote nodes, so the buffer may contain

a number of different streams with different priorities or values. At any time, the transmitter can only

communicate with one receiver. We assume in each period L, T units of time are allocated to the

transmitter, where 0 ≤ T < L depending on the MAC layer protocol. Furthermore, let E be the energy

budget in each period. The problem is to selectively transmit data to maximize throughput or the

transmission value within the time constraint T and energy constraint E. Without loss of generality,

we assume there are n data streams destined to m receiving nodes waiting to be transmitted during

interval (0, T ].

The system receives an increment in value for each successful data transmission. Transmission of

partial data is acceptable but is of lower value. Practical examples include transmitting a lower resolution

picture instead of a full size one, and selectively sending only part of the sensor data collected. The

value received from stream k follows the value function Vk(sk) where sk is the number of units of data

transmitted. Following common practice, we make the following assumptions about the value function

Vk(sk):

1. Vk(sk) is non-negative.

2. Vk(sk) is continuous and monotonically increases with sk.

3. Vk(sk) is differentiable anywhere and is concave.
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R′
k(Pk) · tk − µ · tk + λ1

k · R′
k(Pk) · tk − λ2

k · R′
k(Pk) · tk + λ3

k − λ4
k = 0, (2)

Rk(Pk) − µ · Pk − ν + λ1
k · Rk(Pk) − λ2

k · Rk(Pk) = 0, (3)

λ1
k · (dk − Rk(Pk) · tk) = 0, (4)

λ2
k · (Rk(Pk) · tk − Dk) = 0, (5)

λ3
k · Pk = 0, (6)

λ4
k · (Pk − Pmax) = 0, (7)

For each data stream k, at least dk units of data must be transmitted. Furthermore, the amount of

data transmitted (sk) for stream k cannot exceed its total amount of data Dk. Throughout this paper,

we assume Dk > dk > 0.

2.2 Power model

Using proper channel coding can effectively reduce the energy consumption in wireless communications.

Take the Additive White Gaussian Noise (AWGN) channel model for example. With optimal channel

coding, the maximum channel capacity is:

C =
1

2
log2

(

1 +
P ′

N

)

bits/transmission, (1)

where P ′ is the received signal power and N is the noise power. Let B be the channel bandwidth, the

relationship between transmission rate R and received power P ′ can be described as:

P ′ = N ·
(

2
2R

B − 1
)

.

Considering power attenuation, we have:

P = A · P ′ = A · N ·
(

2
2R

B − 1
)

,

where P is the transmission power and A is the attenuation factor for the transmitter-receiver pair. The

maximum transmission power is denoted as Pmax. It is easy to see that the required transmission power

P is strictly increasing and strictly convex in transmission rate R. When suboptimal channel coding

is deployed, the power function still bears the same characteristics [5]. We further assume the power

function P (R) is continuous and has continuous first derivatives. The inverse function of the power

function, namely the rate function R(P ) is assumed to be continuous, strictly increasing and strictly

concave in the transmission power.

Note that the power functions (and the rate functions) intersect with each other only at point (0, 0)

unless the two functions are identical. Consider two receivers that are at different distances from the

transmitter. With the same transmission power, the node further away nF will always have a lower

transmission rate. Moreover, to maintain the same transmission rate for the two receivers, a higher

transmission power is required to transmit reliably to nF .
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3 Throughput maximization under time/energy constraints

3.1 Problem formulation

Since the receivers are at different distances from the transmitter, the power attenuation at the receivers

is generally different from one another. As a result, the power required to maintain reliable transmission

at a given speed varies from stream to stream. We denote the power function of data stream k by:

Pk(Rk) = Ak · N ·
(

2
2Rk

B − 1
)

.

If two streams are destined to the same receiving node, their power functions are identical. It is not

necessary to distinguish streams destined to the same receiver in the throughput maximization problem.

Therefore, without loss of generality, we assume the n data streams are destined to n distinct receiving

nodes. Note that the coefficient Ak may differ depending on the distance between the transmitter and

the receiver. The channel states and receiving nodes are assumed to be static within (0, T ], so the power

attenuation factors Ak(1 ≤ k ≤ n) do not change over the period. Also, N and B are constant and are

the same for all streams.

In the optimal schedule, the transmission rate throughout the transmission interval of any single

data stream is constant [5]. The transmission power for stream k is denoted by Pk. Given tk units

of time, the data throughput of the stream is sk = Rk(Pk) · tk, where Rk(Pk) is the rate function for

stream k. If all streams can transmit their Dk within the time and energy constraints, the problem can

be solved using the MoveRightExpress algorithm [6] which will give the minimum energy solution. In

the following, we only consider the case in which not all the streams can transmit Dk units of data.

In this case, the given time and energy will be fully utilized in the optimal solution. The throughput

maximization problem is therefore formulated as follows:

maximize
n

∑

k=1

Rk(Pk) · tk

subject to
n

∑

k=1

Pk · tk − E = 0,

n
∑

k=1

tk − T = 0,

dk ≤ Rk(Pk) · tk ≤ Dk, ∀k, 1 ≤ k ≤ n,

0 ≤ Pk ≤ Pmax, ∀k, 1 ≤ k ≤ n.

Applying the method of Lagrange and Kuhn-Tucker conditions, we obtain the necessary conditions

for the optimal solution: equations (2) — (7) for all k, 1 ≤ k ≤ n, where µ, ν, λ1
k, λ2

k, λ3
k, λ4

k are

generalized Lagrange multipliers and are non-negative constants [13]. The optimal solution can be

obtained by solving equations (2) — (7). However, when the number of streams is large, solving the

equations can be very complicated and time-consuming.
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Fortunately, the optimal solution for the throughput optimization problem possesses a few special

properties. In the following, we shall exploit these properties and compute the optimal transmission

schedule in a much simpler way.

3.2 Properties of the optimal solution

Consider the streams that are transmitted at power Pk where 0 < Pk < Pmax in the optimal schedule.

According to equations (6) and (7), λ3
k = λ4

k = 0, so equations (2) and (3) become (as dk > 0, tk must

be positive):

R′
k(Pk) + λ1

kR
′
k(Pk) − λ2

kR
′
k(Pk) = µ, (8)

Rk(Pk) − µPk + λ1
kRk(Pk) − λ2

kRk(Pk) = ν, (9)

respectively.

We consider the following two cases:

1) µ = 0. This case is further divided into two subcases:

1a) At least one stream is transmitted at power Pk, 0 < Pk < Pmax. According to equation (8), we

have:

(1 + λ1
k − λ2

k) · R
′
k(Pk) = 0.

As Rk(Pk) is strictly increasing, R′(Pk) 6= 0. Therefore, (1 + λ1
k − λ2

k) = 0. As λ1
k, λ

2
k ≥ 0, λ2

k must be

non-zero. From equation (5), we have sk = Rk(Pk) · tk = Dk. Furthermore, from equation (9) we get:

ν = (1 + λ1
k − λ2

k) · Rk(Pk) − µ · Pk = 0.

For all other streams, that is, Pi = Pmax (as di > 0, Pi cannot be 0), equation (3) becomes

(1 + λ1
i − λ2

i ) · Ri(Pi) = 0.

As Pi = Pmax > 0, (1 + λ1
i − λ2

i ) = 0, which indicates λ2
i > 0. From equation (5), we will get

si = Ri(Pi) · ti = Di.

In summary, we have sk = Dk, (∀k, 1 ≤ k ≤ n). As mentioned previously, the optimal transmission

schedule in this case can be obtained using the MoveRightExpress algorithm [6].

1b) All streams are transmitted at power Pmax. In this case, Pmax ·T = E. The problem is simplified

to a time allocation problem. The optimal solution can be obtained as follows: Every stream is first

allocated time such that dk(1 ≤ k ≤ n) units of data can be transmitted. The remaining time will be

allocated to the streams by their transmission rates Rk(Pmax) in descending order. That is, time will be

allocated to the stream with the highest transmission rate first until it has enough time to transmit all

its Dk units of data. Then the stream with the next highest transmission rate will proceed, and so on.

2) µ 6= 0.
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Figure 1: Tangent lines of the rate functions cross the x-axis at the same point.

We first consider the streams transmitted at power Pk where 0 < Pk < Pmax. Dividing both sides

of equation (9) by µ, we get:

(1 + λ1
k − λ2

k) · Rk(Pk)

(1 + λ1
k − λ2

k) · R
′
k(Pk)

− Pk =
ν

µ
⇒

Rk(Pk)

R′
k(Pk)

− Pk =
ν

µ
. (10)

Equation (10) reveals a special relationship of the transmission powers in the optimal solution. We

use an example to demonstrate this relationship. In the example, three streams are transmitted. Their

transmission rate functions are plotted in Figure 1. P1, P2, P3 < Pmax are the transmission powers in

the optimal solution and (P1, R1), (P2, R2) and (P3, R3) are called the solution points. We draw tangent

lines to the three rate function curves as shown at their solution points. The slopes of the three lines

are R′
1(P1), R′

2(P2) and R′
3(P3), respectively. As R′

k(Pk) > 0 (1 ≤ k ≤ 3), all the lines cross the x-axis.

Let the x-coordinates of the cross points be A1, A2 and A3, respectively. It is not difficult to see from

the figure that:

Pk − Ak = Rk/R′
k(Pk), (1 ≤ k ≤ 3).

From equation (10), we have:

A1 = A2 = A3 = −ν/µ,

that is, all the tangent lines cross the x-axis at the same point. We shall call this point the control point,

denoted by A.

If the transmission power of a stream is Pmax in the optimal solution, equations (2) and (3) become:

R′
k(Pk)tk − µtk + λ1

kR
′
k(Pk)tk − λ2

kR
′
k(Pk)tk − λ4

k = 0,

Rk(Pk) − µPk − ν + λ1
kRk(Pk) − λ2

kRk(Pk) = 0,

respectively. Based on these two equations, we have:

Rk

R′
k(Pk)

− Pk =
νtk − λ4

kPk

µtk + λ4
k

≤
ν

µ
. (11)
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Figure 2: If the power value of the tangent point exceeds Pmax, then Pmax is the solution.

This means if we draw the tangent line at point (Pmax, Rk(Pmax)), the line will cross the x-axis at or to

the right of the control point. In other words, if we draw a tangent line to the rate function curve from

the control point (−ν/µ, 0), the x-coordinate of the tangent point will be larger than or equal to Pmax

(see streams 2 and 3 in Figure 2 for example).

The two special cases when µ = 0 can be easily identified and tackled with existing techniques. In

the rest of this subsection, we focus on the more general case when µ 6= 0.

Property 1 For any optimal transmission schedule, there exists a control point A(−ν/µ, 0) on the x-

axis such that the optimal transmission power and rate values for all streams are on the tangent lines

from this point to the corresponding rate function curves. However, if the power value of a tangent point

exceeds Pmax, the optimal transmission power for the corresponding stream is Pmax.

Property 1 reveals some characteristics of the transmission powers in the optimal transmission sched-

ule. Next we shall study the relation between the amounts of data transmitted for different streams.

We draw lines Lk (1 ≤ k ≤ n) between the control point A(ν/µ, 0) and every optimal solution point

(Pk, Rk). If the data transmitted in stream k is more than dk but less than Dk, then by equation (3)

the slope of Lk is:
Rk

ν/µ + Pk

=
µPk + ν

ν/µ + Pk

= µ.

If stream i transmits Di units of data, the slope of Li is:

Ri

ν/µ + Pi

=
µPi + ν + λ2

i Ri(Pi)

ν/µ + Pi

= µ +
µλ2

i Ri(Pi)

ν + µPi

≥ µ.

Similarly, if stream j transmits dj units of data in the optimal solution, the slope of Lj is:

Rj

ν/µ + Pj

=
µPj + ν − λ1

jRj(Pj)

ν/µ + Pj

= µ −
µλ1

jRj(Pj)

ν + µPj

≤ µ.

As a stream must fall into one and only one of the above categories, we have the following property:
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Figure 3: The order of the slopes does not change with the control point.

Property 2 Given the optimal solution, draw lines from the control point to all the solution points

(Pk, Rk) (1 ≤ k ≤ n). If the transmitted data volume for stream k is larger than dk and smaller than

Dk, the slope of Lk is equal to µ. If the slope of Li is larger than µ, in order to obtain the optimal

schedule, stream i should transmit Di units of data. Otherwise, if the slope of Lj is smaller than µ, then

stream j should transmit dj units of data.

As the rate functions of all streams intersect only at point (0, 0) (see Section 2.2), the ordering of the

slopes of Lk is equal to the ordering of R′
k(0) (1 ≤ k ≤ n) and does not change with the control point.

For example, in Figure 3, the slope of stream 1 is always larger than those of the other two streams

despite the position change of the control point. This claim still holds if some streams are transmitted

at Pmax. According to Property 2, a stream is allowed to transmit more than its minimum data volume

dk only if all the streams with larger slopes have transmitted all their data. Based on these observations,

an iterative algorithm is presented in the next section that yields the optimal transmission schedule.

3.3 An iterative algorithm

We propose an iterative algorithm to tackle the throughput maximization problem. This algorithm does

not address the special cases when T ·Pmax ≤ E or sk = Dk(∀k, 1 ≤ k ≤ n), both of which can be solved

using the methods described in Section 3.2. In the following discussion, we assume at least one stream

will be transmitted at a power level lower than Pmax and not all streams transmit Dk units of data in

the optimal solution.

By the two properties presented in Section 3.2, given the energy and time constraints, there exists

a control point on the x-axis corresponding to the optimal transmission schedule that maximizes data

throughput. In fact, given a control point and a time interval of length T , it is also possible to find

the energy E such that the control point corresponds to the optimal solution of the (E, T ) constrained

throughput maximization problem.

Suppose the streams are sorted in decreasing order of R′
k(0). We use function Energy(a, T ) to
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calculate the required energy given the time constraint T and the control point (a, 0). The procedure

is as follows. Given the control point, we can determine the transmission power of each stream by

Property 1. Let them be P1, P2, . . . , Pn corresponding to streams 1 to n, respectively. We first allocate

time to each stream such that every stream can transmit dk(1 ≤ k ≤ n) units of data. The remaining

time is allocated to the streams in decreasing order of R′
k(0). Therefore, a stream will receive additional

time only if all streams before it have been allocated adequate time to transmit all their data.

Theorem 1 Suppose the control point (a, 0) and time constraint T are given. If the energy computed

by Energy(a, T ) is E, then (a, 0) is the control point corresponding to the optimal solution of the

throughput maximization problem with energy constraint E and time constraint T .

Proof: We prove the claim by contradiction. Suppose the control point corresponding to the (E, T )

constrained throughput maximization problem is (b, 0) instead of (a, 0). As the optimal solution must

satisfy the two properties presented in Section 3.2, we consider the following two cases:

1) a < b. As (b, 0) corresponds to the optimal solution, according to the two properties listed in

Section 3.2, all streams should transmit more (or at least the same amount of) data compared with the

solution corresponding to (a, 0). However, since b > a, the transmission rate of at least one stream is

decreased, so it takes longer time to complete data transmission. Note that the solution corresponding

to the control point (a, 0) fully utilizes the available time T , so the solution for (b, 0) would violate the

time constraint.

2) a > b. Similar to the first case, all streams should transmit more (or at least the same amount

of) data compared with the solution corresponding to (a, 0). Furthermore, the transmission rate of at

least one stream is increased in the schedule for point (b, 0). As the power function is strictly convex in

the transmission rate, the energy consumption of this solution will exceed the energy consumed in the

solution corresponding to (a, 0) which is E. Therefore the energy constraint is violated. ¤

By Theorem 1, if the time constraint is fixed, there is a correspondence between the control point

and the energy constraint. In the following we show that it is a one-to-one mapping.

Theorem 2 Suppose the data streams and the time constraint are given. The energy computed by

function Energy() strictly increases as the control point moves towards the left. Similarly, the energy

computed by function Energy() strictly decreases as the control point moves towards the right.

Proof: As the transmission power of a stream is on the tangent line from the control point to the rate

function, when the control point moves to the left, the transmission power of each stream will increase

unless it has already reached Pmax. As the time constraint is fixed, by Property 2, the throughput of at

least one stream will increase while the throughput of the other streams will remain the same. Due to

the increasing data throughput and transmission power, the total energy consumption would increase.

The same reasoning can be applied to the case when the control point moves to the right. ¤

Suppose the energy constraint E and time constraint T are given. To find the optimal solution, we

just need to find the control point of this (E, T ) constrained problem. We first use the MoveRightExpress
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Iterative Algorithm:
Input: E, CPTL, CPTR, ε
Output: CPT

energy = 0;
while |energy − E| > ε

CPT = (CPTR + CPTL)/2;
energy = Energy(CPT, T );
if energy < E

CPTR = CPT ;
else

CPTL = CPT ;
end if

end while

Figure 4: The iterative algorithm.

algorithm [6] to compute the minimum energy solutions for the two extreme cases when all streams

transmit dk or Dk(1 ≤ k ≤ n) units of data, respectively. Let the corresponding control points1 be

(CPTR, 0) and (CPTL, 0), respectively, where |CPTR| ≤ |CPTL|. The energy consumption in the

two cases are denoted by Ed and ED, respectively. If Ed > E, there is no valid solution. If ED ≤ E

or Ed = E, the solution generated by MoveRightExpress is the optimal solution. If Ed < E < ED,

the control point corresponding to the (E, T ) constrained throughput maximization problem must fall

between (CPTR, 0) and (CPTL, 0). The optimal control point can then be found by the iterative

algorithm in Figure 4

The algorithm utilizes a bisection method and is guaranteed to converge. If in an iteration, the

required energy corresponding to the current CPT exceeds the given energy constraint E, the optimal

control point must fall to the right of the current CPT ; otherwise the optimal control point must fall to

the left. The algorithm terminates when the difference between the energy corresponding to CPT and

the energy constraint E is smaller than ε, the termination threshold. After the algorithm terminates,

the transmission schedule can be formed easily based on the computed control point (CPT, 0). Note

that although the energy may not be exactly equal to E, the difference is usually negligible when ε is

sufficiently small. Otherwise, the schedule can be adjusted to satisfy the energy constraint as follows.

Suppose the streams are sorted in decreasing order of R′
k(0). If energy < E, the unused (E − energy)

units of energy can be allocated to the first stream k which transmits less than Dk units of data, until it

has sufficient energy to transmit Dk units of data or its transmission power reaches Pmax. The remaining

energy can be allocated to the subsequent streams in the same way. If energy > E, then (energy − E)

units of energy should be deducted from the last stream k that transmits more than dk units of data,

until it transmits only dk units of data. The remaining energy can be deducted from the preceding

1The optimal solution of the energy minimization problem with given data and time constraints also satisfies Property 1
(see appendix). The control point can be found in the same way.
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Figure 5: Optimal data throughput under time and energy constraint (5 receivers, time constraint =
300ms).

streams in the same way.

3.4 Time analysis

As stated previously, time is assigned to the transmitting nodes by the MAC protocol at the beginning

of each period L. In order to guarantee successful transmission of the minimum data requirement

(
∑n

i=1 di), a certain amount of time can be reserved by the transmitting node instead of obtained by

contention. Given the energy budget, calculating the minimum time requirement T ∗ for the transmitter

is analogous to the energy minimization problem under time constraints, and can be solved in a way

similar to the MoveRight algorithm [5]. When the data streams of a transmitting node change, the

required time T ∗ can be recalculated and the reservations can be adjusted accordingly. After all the

reservations have been made, the remaining bandwidth can be allocated dynamically by bidding or

contention periodically.

Consider an individual node. Stream i is entitled to di units of data in each period L. If the actual

data rate of stream i is below or equal to di in each period, then the delay experienced by the stream is

at most L+T ∗, where T ∗ is the reserved transmission time of the node. The worst case occurs when the

data arrive at the beginning of the transmission in the current period, and are eventually transmitted

at the end of the transmission in the next period. The out-of-band data will be served in a best-effort

manner if the transmitter is allocated extra time besides the reserved transmission time.

3.5 Numerical results

Data transmission in an AWGN channel with 1MHz bandwidth was simulated. The transmission power

was continuously adjustable between 0 to 100. Transmitting at power i (0 ≤ i ≤ 100) would consume

i units of energy every millisecond. The signal attenuation factors and the noises at the receivers are

generated such that the signal-to-noise ratios (SNR) at the receivers were uniformly between 18db and

30db when the transmission power was 1. Based on formula (1), the corresponding channel capacities
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were 3 to 5 bits/transmission. The transmission rates were therefore 3 to 5 Mbits/second when the

transmission power was 1.

We have conducted simulations with 5 and 10 data streams, destined to 5 and 10 distinct receivers,

respectively. The lower bound of the data transmitted for each stream was uniformly distributed between

100Kbits to 400Kbits. The upper bound of a stream was uniformly distributed between 1 to 2 times

its lower bound. For the 5-receiver case, the time constraint was set at 300ms. The minimum energy

required to transmit the data lower bound and upper bound, computed using the MoveRightExpress

algorithm, were 358 and 2241 units, respectively. Therefore, if the energy constraint was lower than

358 units, no feasible solution could exist. On the other hand, if the energy constraint was higher than

2241 units, all data could be transmitted. We therefore varied the energy constraint in our simulation

between 400 and 2200 units. The results for the 5-receiver case is shown in Figure 5, the optimal data

throughput was a concave function of the energy constraint. The results of the 10-receiver case had the

same characteristics. The computation overhead of the iterative algorithm is low. For example, in the

5-receiver case, it took less than 10 milliseconds to find a feasible schedule with a throughput within

0.1% of the optimal value on a 900MHz Athlon processor.

4 Value maximization under time/energy constraints

4.1 Problem formulation

Maximizing the transmission value is much more complicated than maximizing the data throughput.

The value of a stream may not be a linear function of the data transmitted. In fact, even for the case

where the value functions are linear, that is, Vk = vk ·Rk · tk where vk is the value per data unit, because

the vk · Rk(Pk) functions of different streams may intersect at more than one point, it is impossible to

maintain a fixed order of the streams based on their slopes as presented in Section 3.2. Therefore, the

iterative algorithm given in the last section is not applicable.

Suppose sk units of data are transmitted for stream k using tk units of time. The optimization

problem is formulated as follows:

maximize

n
∑

k=1

Vk(sk)

subject to
n

∑

k=1

Pk(
sk

tk
) · tk − E ≤ 0,

n
∑

k=1

tk − T ≤ 0,

sk/Rk(Pmax) − tk ≤ 0,∀k, 1 ≤ k ≤ n,

dk − sk ≤ 0, ∀k, 1 ≤ k ≤ n,

sk − Dk ≤ 0, ∀k, 1 ≤ k ≤ n,

(12)

The objective function
∑n

k=1 Vk(sk) is the sum of concave functions, so it is also concave. As Pk(x)
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is strictly convex, we can prove that the first constraint is convex (see Appendix). The other constraints

are linear functions. With a concave objective function and convex constraint functions, the Kuhn-

Tucker conditions are both sufficient and necessary for the global maximum to exist [13]. The optimal

solution can therefore be obtained by solving the Kuhn-Tucker conditions.

4.2 The discrete case

Due to the large number of constraint functions, it is sometimes computationally prohibitive to find

a solution by solving the Kuhn-Tucker conditions. More importantly, the value function and power

function of a data stream may not be continuous. For a data stream there may exist several discrete

versions with different values from which the transmitter can choose to deliver. On the other hand, the

transmission power of a mobile transmitter may be adjustable only at a few discrete levels.

Assume each data stream k contains up to M versions whose sizes are s1
k, s

2
k, . . . , s

M
k with correspond-

ing values v1
k, v

2
k, . . . , v

M
k . The transmission rate is adjustable in N levels r1

k, r
2
k, . . . , r

N
k corresponding

to the N transmission power levels. Dynamic programming is used to find the optimal solution.

The dynamic programming approach is formulated as follows. Sort the available data streams in

any order. The value maximization problem is divided into n stages. At stage k, the amount of data

transmitted for stream k and the corresponding transmission power is determined. Let tk denote the

transmission time and rk be the transmission rate. We use Vk[Tk, Ek] to denote the optimal obtainable

value by transmitting data from streams k, k + 1, . . . , n given residue time Tk and available energy Ek.

The optimal total value that can be obtained from all the streams is:

V1[T1, E1] = V1[T, E].

The optimal value function for each stage k is:

Vk[Tk, Ek] = max
0≤i≤M ; 0≤j≤N

{

Vk+1[Tk − ti,j , Ek − Pk(r
j
k) · ti,j ] + vi

k

}

, 1 ≤ k ≤ n − 1,

where ti,j = si
k/rj

k is the required time to transmit si
k units of data at rate rj

k. The maximization is

taken over the size of the transmitted data si
k and the transmission rate rj

k.

The value function at the final stage, that is, the boundary condition is:

Vn[Tn, En] = max
0≤i≤M ; 0≤j≤N

{

vi
n | ti,j ≤ Tn andPn(rj

n) · ti,j ≤ En, where ti,j = si
n/rj

n

}

.

The data for transmission is chosen subject to the time and energy constraints (Tn, En). The optimal

total value can be obtained by iteratively computing Vn, Vn−1 up to V1.

The computation complexity can be derived as follows. For any given (k, Tk, Ek), the time complexity

of computing the optimal Vk[Tk, Ek] is O(MN). For each stage k, as there are at most TE different

system states, the time complexity is multiplied by TE. The time complexity for all n stages is O(n ·

TEMN), linear with the number of data streams. As the interval (0,T] under investigation is usually

short, the overall computation cost is low.

14



 0

 100

 200

 300

 400

 500

 600

 100 150 200 250 300

V
al

ue

Energy

Time = 200
Time = 150
Time = 100

Figure 6: Optimal value with varying time and energy.

Note that in the dynamic programming formulation, no assumption is made regarding the convexity

or concavity of the value and power functions. Furthermore, this approach can easily be modified to

solve the throughput maximization problem with discrete time and power.

4.3 Numerical results

We have built simulators to evaluate the performance of the proposed algorithms. The experimental

results for the value maximization problem are presented in this section.

The simulator simulated scheduling 20 data streams destined to 5 different receivers. For each

stream, the scheduler could choose to transmit one out of four versions — a basic version and three

extended versions. The sizes of the extended versions were two, three, and four times that of the basic

version, respectively. The sizes of the basic versions were uniformly distributed between 5kb and 10kb.

The values of different versions were proportional to their sizes. The value of the basic version was

uniformly distributed between 5 and 10.

The AWGN channel with 1MHz bandwidth was simulated. The transmission power was adjustable

at 10 discrete levels. Transmitting at power level i (1 ≤ i ≤ 10) would consume i units of energy in

every time slot. The receiving hosts were generated in the same way as in Section 3.5 with comparable

signal-to-noise ratios. Each time slot was 1ms.

We have conducted simulations with T = 200, 150 and 100 time slots. The available energy was

varied between 300 and 60 units. For each time/energy constraint setting, 100 distinct sets of data

streams were generated and the average achieved value was taken. The results are shown in Figure 6.

Given the same amount of energy, a higher value can be obtained when the time is increased. As the

usable energy decreases, the value drops. Furthermore, as the number of energy units decreases to below

the number of time slots, the value curve drops sharply. In this case, as the lowest power level is 1, not

all available time slots can be used for transmission. For example, if 70 units of energy are available,

then at most 70 time slots can be used for data transmission. The remaining time slots have to be left

idle. In Figure 6, the three curves eventually coincide as the energy decreases. As energy becomes the
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bottleneck, the number of available time slots would not make a difference.

The dynamic programming approach is designed for the case when time is slotted and transmission

power levels are discrete. If both time and power can be allocated continuously, a higher value can usually

be obtained. To study the impact on performance due to the discreteness assumption, we simulated the

continuous case using the optimization toolbox of Matlab where the transmission power was continuously

adjustable between 1 and 10. As shown in Figure 7, the optimal values in the continuous case are only

slightly higher than those in the discrete case.

5 Energy minimization under time/value Constraints

5.1 Problem formulation

In the previous section, the value maximization problem under energy and time constraints was inves-

tigated. In the following, we study how to minimize energy consumption subject to time and value

constraints.

This problem is analogous to the value maximization problem. Let sk and tk be the transmitted data

size and transmission time for data stream k respectively, and V be the value that should be achieved.

The energy minimization problem can be formulated as follows.

The objective is to minimize:
n

∑

k=1

Pk(
sk

tk
) · tk.

The value constraint can be written as:

V −
n

∑

k=1

Vk(sk) ≤ 0.

Assume the value function Vk(sk) is concave, V −
∑n

k=1 Vk(sk) is convex in sk. The other constraints

are the same as in (12) and are linear. As both the objective function and the constraint functions are

convex, the Kuhn-Tucker conditions are sufficient and necessary for a global minimum to exist.
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5.2 The discrete case

Similar to its dual problem, if time and power are allocated in discrete slots and levels, dynamic pro-

gramming can be used to solve the energy minimization problem.

Assume data stream k contains up to M versions and the transmission power is adjustable in N

levels. The dynamic programming problem can be formulated as follows. Sort the data streams in any

order. The problem is divided into n stages. At stage k, the amount of data to be transmitted for

stream k and the transmission time are determined. We use Ek[Tk, Vk] to denote the minimum energy

required to obtain a total value of Vk from streams k, k + 1, . . . , n within time Tk. The minimum total

energy required is:

E1[T1, V1] = E1[T, V ].

The minimum energy function for each stage k is:

Ek[Tk, Vk] = min
0≤i≤M ; 0≤j≤N

{

Ek+1[Tk − ti,j , Vk − vi
k] + Pk(r

j
k) · ti,j

}

, 1 ≤ k ≤ n − 1,

where ti,j = si
k/rj

k is the required time interval to transmit si
k units of data at rate rj

k. The energy

minimization is taken over all possible data versions and transmission rates.

The energy function at the final stage is:

En[Tn, Vn] = min
0≤i≤M ; 0≤j≤N

{

Pn(rj
n) · ti,j | ti,j ≤ Tnand vi

n ≥ Vn, where ti,j = si
n/rj

n

}

.

The minimum energy can be obtained by iteratively solving En, En−1, . . . , E1. The computation com-

plexity is similar to that of the value maximization problem, i.e., O(n · TEMN).

6 Conclusion

In this paper, throughput and value-based wireless packet scheduling under time and energy constraints

has been studied. As transmitting data streams to different receivers incurs different amounts of energy

and produces different values, two schemes were proposed, one for maximizing the data throughput and

the other for the total value of successful transmissions. The throughput maximization problem is solved

using an iterative algorithm, exploiting the special characteristics of optimal transmission schedules.

The value maximization problem is formulated as a convex optimization problem. The optimal solution

can be found by solving the corresponding Kuhn-Tucker conditions. Furthermore, for the case when

time and power are allocated at discrete slots and levels respectively, we have developed a dynamic

programming approach that computes the optimal transmission schedule efficiently. Simulation results

have shown that allocating time and power at discrete levels only slightly affects performance adversely

compared to the continuous case.

We have also studied the dual problem of the value maximization problem, that is, minimizing energy

while achieving a given value within a given time constraint. Similarly, the Kuhn-Tucker conditions can

be used in the continuous case while the dynamic programming approach can be applied in finding the

optimal solution in the discrete case.
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Appendix

Claim: The optimal solution of the energy minimization problem with given data and time constraints

satisfies Property 1 in Section 3.2.

Proof: The energy minimization problem can be formulated as follows:

minimize

n
∑

k=1

Pk · tk

subject to
n

∑

k=1

tk − T = 0,

Rk(Pk) · tk = sk, ∀k, 1 ≤ k ≤ n,

0 ≤ Pk ≤ Pmax, ∀k, 1 ≤ k ≤ n,

(13)

where sk(1 ≤ k ≤ n) are the data to be transmitted. Using the Lagrange method and Kuhn-Tucker

conditions, we get the following necessary conditions for the optimal solution:

tk + λ1
k · R′

k(Pk) · tk − λ2
k + λ3

k = 0

Pk + µ + λ1
k · Rk(Pk) = 0

λ2
k · Pk = 0

λ3
k · (Pk − Pmax) = 0.

Similar to Section 3.2, we can get:

Rk(Pk)/R′
k(Pk) − Pk = µ, (0 < Pk < Pmax), and

Rk(Pk)/R′
k(Pk) − Pk ≤ µ, (Pk = Pmax).

Therefore the optimal solution satisfies Property 1 and the control point is (−µ, 0). ¤

Claim:
∑n

k=1 Pk(
sk

tk
) · tk − E is convex in sk and tk.

Proof: In order to prove
∑n

k=1 Pk(
sk

tk
) · tk−E is convex, it is sufficient to prove each individual Pk(

sk

tk
)·tk

(k = 1, . . . , n) is convex. For simplicity, we rewrite the above function as:

f(x, y) = P
(x

y

)

· y.
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We prove f(x, y) is convex by evaluating the corresponding Hessian matrix. Calculating the second

derivatives of f(x, y), we get its Hessian matrix:

H =

(

fxx(x, y) fxy(x, y)

fyx(x, y) fyy(x, y)

)

=





1
y
P ′′

(

x
y

)

− x
y2 P ′′

(

x
y

)

− x
y2 P ′′

(

x
y

)

x2

y3 P ′′
(

x
y

)



 .

The leading principal minor of the Hessian is fxx(x, y) > 0 and the determinant |H| = 0, so the Hessian

matrix is positive semidefinite. Therefore, f(x, y) is convex. ¤
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