
Construction of a Coherency Preserving Dynamic Data Dissemination Network

Shweta Agrawal
shweta@it.iitb.ac.in

Krithi Ramamritham
krithi@cse.iitb.ac.in

Indian Institute of Technology, Bombay.

Shetal Shah
shetals@cse.iitb.ac.in

Abstract

In this paper, we discuss various techniques for the effi-
cient organization of a coherency preserving dynamic data
dissemination network. The network consists of sources of
dynamically changing data, repositories to serve this data,
and clients. Given the coherency properties of the data
available at various repositories, we suggest methods to in-
telligently choose a repository to serve a new client request.
The goal is to support as many clients as possible, from the
given network. Secondly, we propose strategies to decide
what data should reside on the repositories, given the data
coherency needs of the clients.

We model the problem of selection of repositories for
serving each of the clients as a linear optimization prob-
lem, and derive its objective function and constraints. In
view of the complexity and infeasibility of using this so-
lution in practical scenarios, we also suggest a heuristic
solution. Experimental evaluation, using real world data,
demonstrates that the fidelity achieved by clients using the
heuristic algorithm is close to that achieved using linear
optimization. To improve the fidelity further through better
load sharing between repositories, we propose an adaptive
algorithm to adjust the resource provisions of repositories
according to their recent response times.

It is often advantageous to reorganize the data at the
repositories according to the needs of clients. To this end,
we propose two strategies based on reducing the communi-
cation and computational overheads. We evaluate and com-
pare the two strategies, analytically, using the expected re-
sponse time for an update at repositories, and by simula-
tion, using the loss of fidelity at clients, as our performance
measure. The results suggest that a considerable improve-
ment in fidelity can be achieved by judicious reorganization.

1. Introduction
The Internet has grown in popularity from being a mere

facility to a necessity. This raises the need for an efficient
and scalable dissemination of Internet data to the clients
all over the globe. The problem becomes even more chal-
lenging when the data is dynamically changing and is used
for on line decision making. Examples of such time criti-

cal data are many - stock prices on finance sites, weather in-
formation, sports data, sensor data, etc. We focus on ways
and means to distribute such dynamically changing (stream-
ing) data to a large number of users with high accuracy, ef-
ficiency, and scalability.

A natural solution of the problem of efficient distribution
is to introduce some repositories that replicate the data be-
tween the sources and clients. These repositories can serve
the clients geographically closer to them and reduce the load
on sources. But, for rapidly changing data, the overheads
can be very large for achieving replication.

Fortunately, we can and should exploit the fact that dif-
ferent users have different requirements for the accuracy of
data. The user can specify the bound on the tolerable impre-
cision for each requested data-item; this can be viewed as
the coherency requirement associated with the data. For ex-
ample, a stock broker might be concerned with every cent
of change in stock prices while a casual user might be con-
tent with a much lower accuracy. The goal is to provide a
user with data at the desired accuracy. The fraction of to-
tal time for which the client receives the data at the desired
precision is called fidelity. (Formal definitions of coherency
requirement and fidelity are given in Section 2.1.)

Meeting user coherency requirements when the data is
changing rapidly and unpredictably is a challenging prob-
lem. We had previously developed an algorithm to construct
a cooperative repository network for dynamic data which
is coherency-preserving, resilient to failures, and scalable
to a large number of data-items and clients [11]. The fo-
cus of this algorithm, called DiTA, is on maintaining co-
herency of dynamic data-items in a network of repositories:
data disseminated (pushed) to one repository is filtered by
that repository and disseminated to the repositories depen-
dent on it, according to their respective data and coherency
requirements. Section 2.2 gives a brief description of DiTA.

This paper makes two key contributions.

1. Given a repository network, we solve the problem of
determining the repository to which a client should
connect in order to satisfy its data needs.

2. Given the data and coherency needs of clients in
the network, we propose techniques to reorga-

nize the repository network, so that the clients receive
the data at a better fidelity.

Our algorithms assume accurate, global knowledge about
the load on repositories and distance of clients to reposito-
ries, at the source. The design and evaluation of a scalable,
distributed architecture for implementing these algorithms
is a topic for future research.

1.1. Assigning clients to repositories

In Section 3.1, we formulate the problem of assign-
ing client requests to repositories as a linear optimization
problem. Given the complexity of the LP solution (expo-
nential in the worst case), we also present a heuristic solu-
tion in Section 3.2. In this solution, the source of a data-
item maintains the information about the availability and
coherency values of the data-item on all the repositories in
the network, using which it chooses the appropriate repos-
itory to serve a request. Experimental evaluation using real
world traces, in Section 3.3, demonstrates that the fidelity
achieved by clients, using the heuristic assignment, is close
to that achieved using linear optimization.

Effective load sharing among repositories can improve
the fidelity experienced at clients by decreasing the average
computational delay at the repositories. The resource con-
tribution limit, which denotes the maximum number of re-
quests a repository can serve, helps controlling the load at
the repositories. In Section 3.4, we propose an algorithm for
adaptive adjustment of individual resource contribution lim-
its of repositories during assignment of client requests, for
better load sharing.

1.2. Reorganizing the repository network

In a practical scenario, client needs change continuously:
the data-items and the coherency requirements of the clients
can change. The repositories in the network should be able
to adapt to these changes and serve the data as per the cur-
rent needs of the clients. In Section 4, we present and evalu-
ate two strategies to reorganize the data served by the repos-
itories according to the current clients’ requirements.

� The first strategy, called the Closest Repository algo-
rithm, is based on reducing the fidelity loss due to
network communication delay, by making the data re-
quired by a client available at a repository close to it.

� The second strategy, called the Divide and Conquer
strategy, extends the Closest Repository approach by
categorizing requests into multiple classes, according
to their respective coherency requirements. A fraction
of repositories is reserved for serving each class of re-
quests. This strategy further improves fidelity by re-
ducing the average computational delay at repositories.

We evaluate and compare the two strategies, analytically, by
calculating the expected response time for updates at repos-

itories, and by monitoring the loss of fidelity at clients dur-
ing simulation. We observe that the fidelity achieved using
the Divide and Conquer method depends on the relative size
of the fraction of repositories reserved for serving each class
of requests. We show that using the fraction size at which
the analytically calculated response time is minimum, the
Divide and Conquer strategy gives a significant improve-
ment in fidelity over the Closest Repository approach.

In Section 5, we present the overall algorithm for the
construction of dynamic data dissemination network, mak-
ing use of the above algorithms and strategies.

In summary, this paper presents strategies for efficient
organization of a coherency preserving dynamic data dis-
semination network. The word “dynamic” here applies to
“data” as well as “network”. We construct a network for the
distribution of dynamically changing data to the clients ac-
cording to their coherency requirements. The network also
periodically changes its organization according to the re-
quirements of the clients.

We give an overview of the related work in Section 6,
and present the conclusion and future work in Section 7.

2. Background: The Basic Framework and
DiTA algorithm

2.1. Data coherency and overlay network

As shown in Figure 1, we build a push based data dis-
semination network of sources and repositories with clients
connecting to the repositories. To maintain coherency of the

Source

Cooperating
Repositories

Clients

Figure 1: The network architecture

cached data at repositories, each data-item must be period-
ically refreshed with the copy at the source. Let the client
specify a coherency requirement

�������
for each data-item of

interest. The value of
���

denotes the maximum permissible
deviation of the value of the data-item at the client from the
value at the server, and thus constitutes the user-specified
tolerance. Observe that

���
can be specified in units of time,

e.g., the data-item should never be out-of-sync by more than
5 minutes (“time domain consistency requirement”, similar
to the data validity interval [9]) or value, e.g., the tempera-
ture should never be out-of-sync by more than one degree
(“value domain consistency requirement”). In this paper, we
only consider coherency requirements specified in terms of
value of the object; maintaining coherency requirements in
units of time is a simpler problem that requires less sophis-
ticated techniques (e.g., push every 5 minutes).

Formally, let ��� ��� � and ��� ��� � denote the value of data-
item � at the source and the client, respectively, at time

�
. Let� � be the coherency requirement of the client for � . Then,

to maintain coherence, we should have	 ��
� ��� ��� ��� ��� ��� ����� � �
Empirically, fidelity � observed by a client can be defined as
the total time for which the above inequality holds, normal-
ized by the total length of observations. The goal of our dis-
semination network is to provide high fidelity at low com-
munication and computational overheads.

For each data-item, we build a logical overlay network,
as follows. Consider a data-item � served by a source � .
The source directly serves some of the repositories. These
repositories in turn serve a subset of remaining reposito-
ries and a subset of clients, such that the resulting network
is in the form of a tree rooted at the source, and consisting
of repositories and clients interested in � . This tree is re-
ferred as the dynamic data dissemination tree, or ��� � for � .
The children of a node in the tree are also called the depen-
dents of the node. When a data change occurs at the source,
it checks which of its direct or indirect dependents are in-
terested in the change, and pushes the change to them. Each
repository acts as a filter and sends only the updates of in-
terest further down.

2.2. DiTA: Data-item-at-a-Time Algorithm

Here is a short description of the DiTA algorithm [11] to
insert a repository with given data-items and coherency re-
quirements, in the overlay network. A repository � inter-
ested in data-item � with coherency

�
requests the source of

� for insertion. If the source has resources to service � , it is
made a child of the source in the ��� � for � . Otherwise, the
source determines the best subtree rooted at its children for
the insertion of � . The subtree is chosen such that the level
of � in the ��� � is the smallest possible and the communica-
tion delay between � and its parent is small. This is recur-
sively applied to select subtrees in this subtree, till a repos-
itory � is chosen that has resources to serve � . If the co-
herency requirement of � is less stringent than � , � pushes
it down in the subtree and replaces � . This ensures that the
repositories with more stringent coherency serve reposito-
ries with less stringent coherency in the ��� � for � . DiTA
requires very little book-keeping and experimental results
in [11] show that it indeed produces ��� � of repositories that
delivers data with high fidelity.

3. Assigning clients to repositories in a given
network

In this section, we focus on the problem of assigning new
client requests to an existing dynamic data dissemination
network. If all the client requests were known in advance,
the task of assignment could be seen as solving an optimiza-
tion problem, as described in Section 3.1, where the aver-

age fidelity observed by clients has to be maximized, sub-
ject to the constraints of data-availability and resource lim-
itations at the repositories. In practice, however, the client
requests are expected to arrive one at a time, and have to be
assigned to some repository as soon as they come. More-
over, the complexity of solving such an optimization prob-
lem also makes it inappropriate for use as and when the re-
quests arrive. Still, this solution can be used to estimate the
goodness of the heuristic solution which we describe in Sec-
tion 3.2, that handles one request at a time.

3.1. Assignment using linear optimization

Assumptions:

1. Each repository has a fixed resource contribution limit.

2. Repository to client communication delay is negligi-
ble. 1.

3. The basic capacity of the repositories (computational
delay for processing a single update) is same.

Problem definition: Given a set of repositories, the data-
items served by each of them, and a set of clients with their
respective data-item requirements, the aim is to find a three
dimensional 0/1 matrix � that gives a mapping between the
repositories and the � client, data-item � requests. A “1”
value at a position

���
 �!
 � � of � recommends that the re-
quest for the data-item � by client

�
should be assigned to

the repository
�

.

Input information about the dissemination tree: The fol-
lowing information about the ��� � of repositories and about
the clients to be inserted is provided as input to the opti-
mization problem.

� served: Two dimensional matrix giving the coherency
values of data-items available at the repositories. A
positive value of "$# �&% #'� ���
 � � denotes the coherency
value at which data-item � is available at repository

�
.

A negative value indicates that
�

does not serve � .
� request: Two dimensional matrix giving the co-

herency requirements of the data-items requested by
the clients. A positive value of

� #&(&)*#!" � ���+
 � � denotes
the coherency with which client

�
needs data-item � .

A negative value indicates that client
�

has not re-
quested � .

� max resources: Single dimensional matrix giving the
resource contribution limit of each repository, deter-
mined by the number of data-items available at the
repository, multiplied by a parameter , . The resource
contribution limit helps in spreading the load across
multiple repositories by limiting the number of re-
quests a repository can serve.

1 This assumption applies only for the optimization problem, in order to
simplify the objective function.

Constraints: The optimization constraints are designed to
ensure the data-availability, resource limit and load balanc-
ing at the repositories.

1. If a data-item � is not available at a repository
�

, or
a client

�
does not request data-item � , the value of

� � ��
 �+
 � � is set to zero.

2. Eliminating redundancy in serving requests: Not more
than one repository should serve a single data-item re-
quest from a client.	 �+
 � � ��� � ����
 �!
 � �����

3. Resource contribution limit: The number of client re-
quests i.e., � client, data-item � pairs served by a
repository, must be less than or equal to the re-
source contribution limit of the repository.	 � � � �	�

� �
� ��
 �!
 � ����
� � � #!"��&) � � #!" ��� �

4. Serving maximum possible requests: The total number
of requests served for a data-item � must be equal to to-
tal number of requests made for � (��������� �	�������������!), or
to total resource contribution limit for � over all repos-
itories (��������� �"����), whichever is smaller. This ensures
that the system serves as many requests as possible.	 � � � � � � � ����
 �!
 � �$#%
'&�(*) �+�,�+�,� �	���-�������.��
 ��������� �	���� 0/

5. Load balancing: If too many requests are assigned to
a repository, the computational delay at the repository
(to check and push the updates) will increase which
will result in loss of fidelity of the dependent clients.
The number of requests should be balanced among
repositories. But, the resource contribution limits of
repositories can be different in which case they may
not serve an equal number of requests, hence, some
deviation must be allowed. We try to achieve load bal-
ancing by introducing the following constraint:
	 � � �1� �32 ��� 4 �	�

� � ���
 �!
 � ���% # �,�65 # � #&(&)*#!" � "
� �7�98:2 �

where,
��% # �,�65 # � #&(&)*#!" � " is given by
'&�(��� � �7�<; � #&(&)*#!" � "
�� � �7�<; � #&"��&) � � # ;�&�
'& � �()
>= # � �+� � # � �+" & � � ��& #!"

and D is the deviation from the average. The value of2
depends on the deviation of ?@�!A �"���-�,�B�"C"��� of var-

ious repositories from the average value. The more the
deviation, the greater should be the value of

2
to pre-

vent any conflict with constraint 3. Empirically, the
value of

2
is kept as 0.5.

Objective function: The objective function should reflect
the need to maximize the fidelity achieved by the clients.
But without the knowledge of the actual changes in values
of various data-items, we cannot calculate the actual fidelity
achieved. Ideally, maximum data-item requests should be

served at the required coherency values, which implies that
the ratio of requested to served coherency value for a data-
item should be as close to “1” as possible. An objective
function with the above target is as follows:
D� � &�
'&+E # �F�� � �	� � , � �,���+& �HG � � ��
 �+
 � �
where

, � �,���+& � #%
'&�(JI � #&(&)*#!" � ���+
 � �
"'# �&% #&� � ��
 � �

-�!K
For example, a client request for 0.05$ coherency can be
served by 0.05$ or 0.01$ coherency data, either of the
choices leads to an addition of “1” to the objective function.
There is no extra gain in the objective function by serving
with more stringent coherency

�.LNM LN� �
than required

�.LNM L6O �
.

This objective ensures that the served coherency is as close
as possible to the requested coherency, but not less.

3.2. Assignment using heuristics

The heuristic algorithm handles the dynamic arrival of
client requests, inserting one request at a time in the net-
work. In this approach, there is a selector node for each
data-item � . The selector maintains a list of reposito-
ries serving � , sorted in the order of coherency values at
which � is available at these repositories. In the DiTA al-
gorithm [11], the source already stores such information
to maintain the coherency of data-items at the reposito-
ries. So, the source of a data-item can act as a selector for it.
Each request initially contacts the selector, which then di-
rects it to the appropriate repository.

When a request from a client � for a data-item � at co-
herency value

�
arrives at the selector, it goes through the

list of repositories serving � and having resources to serve a
new request (they have not exceeded their resource contri-
bution limits), and short-lists those serving � at a coherency
close to

�
. Among those shortlisted, a repository � is se-

lected such that the sum of the computational delay (esti-
mated by the number of client dependents) at � and the
communication delay between the client � and repository
� is the smallest possible.

Experimental results, discussed in the next section, in-
dicate that the fidelity achieved by assignment of client re-
quests using this simple approach is close to that achieved
using linear optimization.

We now discuss the space and computational overheads
of this approach. This algorithm involves storing and main-
taining the sorted list of coherencies at the selector, and
finding the repositories with coherency values close to

�
. In

case of a large number of repositories, the overheads at the
source can be prohibitive. To avoid this scalability problem,
the computation can be moved to the repositories served di-
rectly by the source. Each such repository will be at the first
level of the ��� � and act as selector for a subset of data-items.
The source updates these selectors when there are changes

in the coherency values of data available at the repositories
in the network. When a new � client, data-item � request ar-
rives, the source passes it to the repository acting as the se-
lector for that data-item.

3.3. Performance of the assignment algorithms

3.3.1. Experimental methodology The performance of
our solutions is investigated using real world stock price
streams as exemplars of dynamic data. The presented re-
sults are based on stock price traces obtained by continu-
ously polling http://finance.yahoo.com. We collected values
for 1000 stocks making sure that the stocks did see some
trading during that day. [11] gives the details of some of the
traces used. For each of the traces, a new data value was ob-
tained approximately once per second. Since stock prices
change at a slower rate, the traces can be considered to be
“real-time” traces.

We simulated the situation where all the repositories and
clients access data kept at one or more sources. Each of
them requests a subset of data-items, with a particular data-
item chosen with 50% probability. A coherency require-
ment

�
is associated with each of the chosen data-items.

The
�
’s are a mix of stringent and lenient tolerances. A re-

quest for a data-item has a coherency requirement chosen
uniformly from the stringent range with probability � and
from the lenient range with probability

�1� � � �
. Unless oth-

erwise stated, the stringent range is kept as $
LNM LN�

to $
LNM L6O

and the lenient range as $
LNM O

to $
�
, and T as 0.5 for our ex-

periments in this paper. The results stated are an average
over 5 or more independent runs of the simulation. Each
run involves using a different set of traces for the data-items
in the simulation.

The physical network consists of nodes (routers,
sources, repositories & clients) and links. The un-
derlying router topology was generated using BRITE
(http://www.cs.bu.edu/brite). The clients, repositories and
the sources were randomly placed in the router plane and
connected to the closest router. For each client and reposi-
tory, a set of data-items of interest was generated and then
the coherencies were chosen from the desired range.

Our experiments use node-node communication delays
derived from a heavy tailed Pareto [10] distribution: ����
����

8 � � where � is given by 	�	��
 � , �� being the mean and

� � is the minimum delay a link can have. For our experi-
ments, �� was 1.5 ms and � � was 0.2 ms. The average nomi-
nal node-node delay in our networks was around 20-30 ms.
This is lower than the delays reported based on measure-
ments done on the Internet [4].

The computational delay incurred at a repository to dis-
seminate an update to a dependent is taken to be 12.5 ms.
This includes the time to perform any checks to examine
whether an update needs to be propagated to a dependent
and the time to prepare an update for transmission.

For solving the linear optimization problem of
mapping, the GNU Linear programming kit (GLPK)
(http://www.gnu.org/prep/ftp.html) was used.

3.3.2. Performance Metrics The key metric for our ex-
periments is the loss in fidelity experienced by the clients:
fidelity is the degree to which a client’s coherency require-
ments are met. It is measured as the total length of time
for which the inequality

� � � ��� � � ��� ��� �$��� � � holds (nor-
malized by the total length of observations), where �� ��� �
is the value of data-item � at the client and � � ��� � is the ac-
tual value at the source at time

�
. The fidelity of a client is

the mean fidelity over all data-items requested by that client,
while the overall fidelity of the system is the mean fidelity
of all clients. Loss in fidelity is simply

�1�!L L� � � & ��# ; & ��� � .
3.3.3. Comparison of linear optimization and heuristic
algorithm Figure 2 shows the simulation results for var-
ious number of clients for a network with 2 sources, 20
repositories and 40 data-items. To get an idea of the scale
of the problem, let us calculate the total number of requests,
given the number of clients and data-items in the network.
Since each client requests a subset of data-items, with each
data-item chosen with 50% probability, the average number
of data-items requested by a client will be half of the total
number of data-items available. Therefore, the total num-
ber of requests in the network with

�����������
clients and � ���������

data-items will be approximately

�
�������! �" � ���#���$ % . For exam-

ple, for 500 clients and 40 data-items, number of requests
will be approximately 10,000.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 200 400 600 800 1000 1200 1400

Lo
ss

 o
f f

id
el

ity
 a

t c
lie

nt
s

(%
)

#Clients

For 2 sources, 20 repositories and 40 data-items

Optimization (T=0.5)
Heuristic (T=0.5)

Optimization (T=0.8)
Heuristic (T=0.8)

Figure 2: Fidelity loss for client assignment approaches
As seen in the figure, the heuristic assignment algorithm

gives a loss of fidelity very close to that achieved by lin-
ear optimization at � #�LNM O

. At � #�LNM &
, the coherency re-

quirements of the clients are more stringent. The linear op-
timization approach, aware of all the requests in advance,
is able to keep the stringent resources for the stringent re-
quests, and achieves a better overall fidelity.

Also, Figure 2 shows a sudden rise in the loss of fidelity
as the number of clients in the network increases beyond
1000. This is due to the fixed hard limit of resources at each
repository. The resource contribution limit, or the maximum
number of requests served by a repository, is given by ,
multiplied by number of data-items available at the repos-
itory (?@�!A �"���-�,�B�"C"��� , see Section 3.1). The value of , is

50 for this simulation. As the number of client requests ex-
ceeds the total resource contribution limit of repositories,
the requests start getting dropped. The fidelity experienced
by client is zero for each dropped request. This causes a
quick drop in the average fidelity.

3.4. Setting the resource contribution limit of the
repositories

Resource contribution limit is a way by which the load
on a repository can be controlled. But as seen above, if , ,
and hence the resource contribution limit, is too small, a
large number of requests can get dropped.

Figure 3 shows the effect of the change in value of ,
on the average fidelity achieved by clients. In this simu-
lation, the clients join and leave the network dynamically.
The inter-arrival and inter-departure time of clients follow
exponential distribution. The arrival rate � is 2000 times
the departure rate � and the average number of clients at
a time in the system is 2000. (This can be viewed as an���������

queuing system. The average number of clients
for such a system is given by �
	 �� #��� where N is number
of jobs in the queuing system). The curve labeled “Fixed
resource contribution limit” indicates high loss in fidelity
when , is kept below 100. The loss in fidelity remains at
about

���
at all values of , above 100. Thus a small ,

causes the requests to drop, but a large , does not affect
the performance. This is because the resource contribution

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500 600 700 800

Lo
ss

 o
f f

id
el

ity
 a

t c
lie

nt
s(

%
)

Initial resource limit (R)

2 sources, 20 repositories, 2000 clients(avg.), 40 data-items

Fixed resource contribution limit
Adaptive resource contribution limit

Figure 3: Resource contribution limit of repositories
limit, determined by a common parameter , , only attempts
to make the number of requests served by the repositories
equal. This is already taken care by considering the num-
ber of client dependents on a repository while selecting a
repository in the heuristic client assignment algorithm (and
by the load-balancing constraint #5 in the linear optimiza-
tion method).

Note that even when we assume all the repositories to
be identical in their basic capacity (computational delay for
each update), some repositories may be able to serve less
clients than others. For example, those which are near the
root of the data dissemination tree may be more loaded.
We should be able to determine the individual capacity and
hence the resource contribution limit of various repositories
on the fly, so that the more capable repositories can share
the load of the less capable ones.

3.4.1. Adaptive algorithm to adjust the resource contri-
bution limit The response time for an update gives an indi-
cation of the load on a repository. Varying the resource con-
tribution limit of repositories according to their recent re-
sponse time can help in controlling the load at the reposi-
tories. This leads us to the following algorithm for resource
contribution limit adjustment:

� Adaptive increase: When the resource contribution
limits of all repositories serving a data-item are ex-
hausted, the selector sends a message down the dis-
semination tree to the repositories to increase their lim-
its. A repository with small response time for updates
is expected to be less loaded than one with a large
response time, and can serve more clients. Thus, on
receiving selector’s message, the repositories increase
their resource contribution limit by amount inversely
proportional to their recent average response time.

� Adaptive decrease: The selector node periodi-
cally monitors the difference between the total
resource contribution limit of all repositories and to-
tal number of client requests in the network. If the
total limit is much more than total number of re-
quests, it sends a message to all repositories to
decrease their limits. A large response time at a repos-
itory indicates heavy load. Thus, on receiving the
selector’s message for decrease, the repositories de-
crease their future resource contribution limit by an
amount directly proportional to their recent aver-
age response time. This reduces the future assignment
of clients to the overloaded repositories.

Note that a repository may reduce its future re-
source contribution limit to a number less than the
number of requests already assigned to it. No reassign-
ment of extra requests is done; but as the clients join
and leave, in due course, the requests assigned to the
repository is reduced to the desired number. Also, if at
some point, the total resource contribution limit of all
the repositories goes below the total requests in the net-
work, the selector node will automatically detect this
and call for an “Adaptive increase”.

3.4.2. Performance of the adaptive algorithm The
adaptive algorithm achieves better performance through
better load sharing techniques, as is evident from the curve
labeled “Adaptive resource contribution limit” in Fig-
ure 3. The variation of the resource contribution limit of
repositories was examined over time. It was seen that the re-
source contribution limit of the source remains at a value
lower than that of the repositories. The algorithm de-
tects that the assignment of clients to the source increases
its response time considerably, and keeps the resource con-
tribution limit at the source low. This suggests that it
might be beneficial not to assign any clients to the sources.

We compared the fidelity obtained [1] in case the re-
quests are assigned only to sources, assigned to sources
and repositories both, and only to the repositories. The ex-
periments showed that the loss of fidelity rises rapidly
if we have no repositories in the network; the computa-
tional delay at the source, to push the updates to a large
number of clients, results in high loss of fidelity. Fur-
ther, it is seen that better fidelity can be achieved if the
client requests are assigned only to repositories.

For subsequent experiments, we assign the client re-
quests only to the repositories in the network, using the
heuristic assignment algorithm. But, as these experiments
are snapshot based (all the repositories and clients are in-
serted in the network and then the updates are simulated),
we do not use the adaptive algorithm for adjusting the re-
source contribution limit. However, it is kept sufficiently
large such that the requests are not dropped.

4. Reorganization of a repository Network

Ideally, the choice of data-items available at the reposi-
tories should be driven by the data needs of the clients, and
the repositories should be able to adapt to the changing de-
mands for the data-items. In this section, we address the fol-
lowing problem: Given the needs of the current clients in the
network, determine the data-items to be served, and their re-
spective coherency values, at each repository. The goal is to
minimize the loss of fidelity experienced at clients. Fidelity
loss is mainly due to two kinds of delays in receiving up-
dates - the communication delay, and the computational de-
lay at the repositories. In the following two strategies, we
try to deal with each of these delays.

4.1. Reducing the communication delay: the Clos-
est Repository algorithm

In a widely distributed network, the delay in communi-
cation from a repository to a client can affect the fidelity ex-
perienced by the client, significantly. The Closest Reposi-
tory algorithm is based on reducing this communication de-
lay by making the data required by a client available at a
repository close to it (in terms of network link delay).

In this algorithm, a data-structure is created that maps
each client request to a repository close to it. Instead of
mapping the request to the closest repository, to balance the
number of requests mapped to various repositories, a set of
closest repositories is short-listed and the request is mapped
to the repository with the least number of already mapped
requests. The set of data-items served by a repository is de-
rived as the union of the data-items in the requests mapped
to the repository. The repository serves each of these data-
items with the most stringent of the coherency values de-
manded for it in the mapped requests.

C4

P2
(0.01)

P1

(0.01)
C1

(0.8)
C2 C3

(0.9)

(0.01)

(0.01)

Dissemination network

(a) Closest Repository

C2 C3

C4
C1

P1 P2
Dissemination network

(0.9)

(0.01)(0.8)

(0.01)

(0.8)(0.01)

(b) Divide and Conquer

Figure 4: Coherency requirements of repositories for the
two approaches

4.2. Reducing the computational delay: Di-
vide and Conquer strategy

In case of large number of clients, the requests assigned
to a repository are likely to cover a wide range of coherency
values. To satisfy these requests, the repository has to ob-
tain the data from its parent at the minimum of these co-
herency values. As a result, the repositories end up receiv-
ing almost all the changes. This defeats the purpose of co-
herency based dissemination. For example, consider Fig-
ure 4(a) where a repository � � serves a data-item � at 0.01
coherency to a client � � , and at 0.8 coherency to � % . Sim-
ilarly, � % serves � at 0.01 to � � , and at 0.9 to ��� . Both the
repositories have to receive � at a coherency of 0.01 from
the source.

Instead of each repository serving all kinds of requests,
suppose that the requests are divided into various classes
according to their coherency demands, and a different frac-
tion of repositories is reserved for serving each of them. The
network can now take a better advantage of the coherency
based dissemination. For example, as shown in Figure 4(b),
if the requests for 0.8 and 0.9 coherency values are assigned
to � % and both the 0.01 coherency requests to � � , � % will
need to get � at 0.8 coherency only.

This strategy of categorizing the client requests into var-
ious classes according to their respective coherency de-
mands, and reserving a fraction of repositories for each of
them, is called the Divide and Conquer strategy. In this
strategy, the data served by a repository is derived using the
Closest Repository approach applied within a class, i.e., the
requests are mapped to one of the closest repositories within
the request’s class only; the data-items served and their re-
spective coherency values are derived from the mapped re-
quests in the same way as before. Similarly, a repository
to assign a new client request is selected using the heuris-
tic client assignment algorithm (Section 3.2), only from the
repositories in the request’s class.

Divide and Conquer strategy improves the fidelity by re-
ducing the computational delay at repositories:

� Less traffic in the repository network: Coherency-
based classification allows repositories serving the
class of lenient requests to have the data at less strin-

gent coherency values. This results in less overall
data traffic in the network. Decrease in data traf-
fic implies decrease in the number of updates to be
processed by the repositories, which leads to lower de-
lays at the repositories, and a better fidelity at clients.

� Load sharing: The load on a repository due to a data-
item request depends on the coherency value of the
data-item. A stringent request is expected to incur
more load on a repository than a lenient request since
more updates will have to be transmitted for a strin-
gent request. Reserving a larger fraction of reposito-
ries to serve stringent requests can help in a better shar-
ing of load among repositories which reduces the av-
erage computational delay at repositories.

4.3. Evaluation of the reorganization strategies us-
ing analytically calculated response time

For a large number of clients and data-items, the com-
putational delay dominates other delays. The expected re-
sponse time reflects the loss of fidelity due to computational
delay. So, the expected response time can be used to com-
pare the two reorganization strategies.

For the Divide and Conquer strategy, we consider the
case when the requests are divided into two classes. The
tight class is defined as the class of requests with coherency
demands in the stringent rang, and the loose class as re-
quests with lenient coherency demands. A fraction � of the
total repositories are reserved for the tight class, while the
remaining

�7� � � � fraction of repositories serve the requests
in the loose class. � is termed as the cut-off value of the
division. The expected response time for the Divide and
Conquer strategy depends on the value of cut-off � . For
complete derivation, and formulae of the expected response
times for the two strategies, please refer to [1].

Figure 5 shows a plot of the expected response time for
the Closest Repository (C R) and Divide and Conquer (D
& C) strategies, as a function of the cut-off � . The strin-
gent range of coherency values is taken as

��L�M L��
 �+&.5�� ��� � � �
and the lenient range as

�.LNM O�
!� �
, with � # LNM O

. � is var-
ied from

LNM O
to
�
. The expected response time is plotted for

various values of
�+& 5�� ��� � � (the values listed in brackets).

Some important observations from the plots and the results
listed in Table 1, are as follows:

1. The value of the expected response time at reposito-
ries, in case of Divide and Conquer strategy, is highly
sensitive to the value of cut-off � . If � is small, the
repositories serving the tight class of requests are con-
gested with load, and their response time increases; if
it is big, the loose class of requests do not have enough
repositories to handle their load. There is an optimal
value of � , at which the average response time is min-
imum.

 1

 1.001

 1.002

 1.003

 1.004

 1.005

 1.006

 1.007

 1.008

 1.009

 0.5 0.6 0.7 0.8 0.9

E
xp

ec
te

d
re

sp
on

se
 ti

m
e

(*
 e

-0
8)

D & C cutoff (x)

D & C (0.1)
 C R (0.1)

D & C (0.2)
 C R (0.2)

D & C (0.3)
 C R (0.3)

D & C (0.5)
 C R (0.5)

Figure 5: Expected response time as a function of cut-off �
(D & C: Divide & Conquer, C R: Closest Repository)

Table 1: Optimal cut-off using analytical model

�+& 5�� � � � � optimal (x)
0.05 0.95
0.1 0.95
0.2 0.9
0.3 0.8
0.4 0.8
0.5 0.7

(a) ���
	 �
�������������������� , ���
	 �
����� , "! �
	 �

T optimal (x)
0.2 0.4
0.3 0.6
0.4 0.7
0.5 0.7
0.6 0.8
0.7 0.9
0.8 0.9

(b) ���
	 �
��#�
	 �$� , ���
	 �
�����
2. At the optimal value of � , the expected response time

in case of the Divide and Conquer strategy is signifi-
cantly less than the expected response time in case of
the Closest Repository algorithm.

3. The optimal value of � decreases as we loosen the tight
coherency range by increasing

�+& 5�� ��� � � . Table 1(a)
lists the optimal values of � for various values of�+& 5�� �%� � � . For larger values of

�+& 5�� ��� � � , the tight class
of requests being less stringent, incur less load, and re-
quire a smaller fraction of repositories to serve them.

4. Table 1(b) shows the optimal values of � for different
values of � with the tight and loose coherency ranges
taken as

��L�M L��
	L�M O �
and

�.LNM O�
-� �
respectively. As � in-

creases, more requests are expected to have their co-
herency demands in the stringent range, hence more
repositories are needed for the tight class, and the op-
timal value of � shifts towards 1. Note that, even at
� # LNM O

(uniform coherency distribution), the opti-
mal value of � is greater than

LNM O
. More repositories

are needed to serve stringent requests than are needed
for an (expected) equal number of lenient requests.

4.4. Evaluation of the reorganization strategies us-
ing simulation

Here, we study the performance of the two reorganiza-
tion strategies by simulation using real world stock price

streams. The experimental methodology for the simulation
is the same as described in Section 3.3.

As in the previous section, the coherency distribution
is a mix of coherency values from the stringent range��LNM LN�
 �+& 5�� �%� � � � and the lenient range

�.LNM O�
!� �
with proba-

bility � #%L�M O
. The requests are divided into tight and loose

classes with a fraction � of the repositories serving the tight
class of requests and

�7� � � � of the repositories reserved
for the loose class. Figure 6(a) shows the loss of fidelity ex-
perienced at the clients during simulation, for the two reor-
ganization strategies, as a function of the cut-off value � ;
where � varies from

LNM O
to
� M L

. The loss of fidelity is plot-
ted for various values of

�+& 5�� � � � � (values in brackets).
Figure 6(a) shows that the variation in loss of fidelity

experienced at clients during simulation is similar to the
variation of analytically calculated expected response time
shown in Figure 5. The optimal value of � , at which the an-
alytically calculated response time is minimum, is found to
be very close to the value of � at which the loss of fidelity
achieved by clients is minimum. Thus, the optimal cut-off
� calculated by minimization of analytically calculated re-
sponse time can be a good estimate of the optimal value of
� in a real system.

Figure 6(b) and 6(c) show the effect of reorganization
on loss of fidelity at clients, for various number of clients
and data-items in network, respectively. The curve labeled
“Without reorganization” shows the case when the data-
items served by repositories are randomly determined. Each
repository serves a data-item with 50% probability, at a co-
herency value selected randomly from the stringent range��LNM LN� �@LNM L6O �

with probability � , and from the lenient range��LNM O � �6M L �
with probability

�7� � � �
, where � # L�M O

. The
requirements of clients are also generated in the same fash-
ion. The curve labeled “Closest Repository” shows the case
when the requirements of clients were generated in the same
way as above, but the data available at a repository was
derived from the requirements of clients using the Closest
Repository approach. For the curve labeled “Divide & Con-
quer”, we use the Divide and Conquer strategy to divide the
requests and repositories into the tight and loose classes.
The cut-off � is chosen as the value at which the analyti-
cally calculated response time is minimum for the given co-
herency distribution of client requests.

As shown in Figure 6(b) and 6(c), a considerable im-
provement in fidelity of clients is achieved by reorganiz-
ing the data available at the repositories using the Clos-
est Repository algorithm. The Divide and Conquer strategy
enables the network to take advantage of coherency based
dissemination even on larger loads by reducing the aver-
age computational delay at repositories. The figure shows
that for high number of clients or data-items, the loss of fi-
delity at clients using the Divide and Conquer strategy is
considerably less than that using the Closest Repository al-

gorithm. For example, in Figure 6(b), for 700 clients, the
fidelity achieved by Divide and Conquer strategy is about
20% more than that achieved by the Closest Repository al-
gorithm and about 40% more than achieved without reor-
ganization. Similarly, in Figure 6(c), for 500 data-items, the
improvement is around 10% and 20% respectively.

Thus, by reorganizing the data at repositories, the net-
work can accommodate more clients and data-items. For
example, suppose we want to serve the clients with 90%
fidelity on average. A network with 1 source, 10 reposito-
ries and 100 data-items will be able to serve only 250 clients
without any reorganization; about 450 with reorganization
using the Closest Repository approach; by using Divide and
Conquer strategy, it can accommodate over 700 clients pro-
viding the same fidelity.

5. The overall algorithm
Overall, we suggest the following scheme for the con-

struction of the dynamic data dissemination network:

1. Calculate the Divide and Conquer cut-off value � us-
ing the analytical model of response time.

2. Reserve � fraction of the total repositories for serving
the tight class of requests and the remaining

�1� � � �
fraction for the loose class.

3. Determine the data to be served by the repositories in
each class from the client requests in that class using
the Closest Repository approach.

4. Insert the repositories in the network, using the DiTA
algorithm [11].

5. Assign clients to the repositories in their class using the
heuristic assignment algorithm (with adaptive adjust-
ment of resource contribution limits of repositories).

6. Reorganize the network periodically by calculating the
new cut-off value � , and determining the requirements
of the repositories from the current data and coherency
requirements of clients.

At present, we divide the requests into two classes only; we
intend to study the performance in case of multiple classes,
in future. Also, an interesting exercise will be to find an al-
gorithm for the estimation of time period after which the
data available at the repositories should be reassigned, and
the repositories reorganized.

6. Related Work
Work on scalable and available replicated servers [12],

and distributed servers [3] are related to our goals. [12] ad-
dresses the issue of adaptively varying the consistency re-
quirement in replicated servers based on network load and
application specific requirements. Our work on the build-
ing, reorganization and dissemination of dynamic data in a
network based on the coherency requirements of the clients.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.5 0.6 0.7 0.8 0.9 1

Lo
ss

 o
f f

id
el

ity
 a

t c
lie

nt
s(

%
)

D & C cutoff (x)

1 source, 10 repositories, 100 clients and 500 data-items

D & C (0.05)
C R (0.05)

D & C (0.1)
C R (0.1)

D & C (0.2)
C R (0.2)

(a) Fidelity loss as a function of cut-off � (D & C:
Divide and Conquer, C R: Closest Repository)

 0

 10

 20

 30

 40

 50

 60

 100 200 300 400 500 600 700

Lo
ss

 o
f f

id
el

ity
 a

t c
lie

nt
s(

%
)

#Clients

For 1 source, 10 repositories and 100 data-items

Without reorganisation
Closest Repository
Divide & Conquer

(b) For various number of clients

 0

 10

 20

 30

 40

 50

 60

 100 150 200 250 300 350 400 450 500

Lo
ss

 o
f f

id
el

ity
 a

t c
lie

nt
s(

%
)

#Data-Items

For 1 source, 10 repositories and 100 clients

Without reorganisation
Closest Repository
Divide & Conquer

(c) For various number of data-items

Figure 6: Effect of reorganization on fidelity

The data at a repository is not exactly a replica of the data
at the source rather it can be seen as a projection of the se-
quence of updates seen at the source.

The concept of approximate data at the users was studied
in [7, 8]; the approach focuses on pushing individual data-
items directly to clients from the source, based on client co-
herency requirements. We consider the cooperative reposi-
tory based dissemination network in between the source and
clients and show that by intelligently choosing the repos-
itory to which a client should connect, a considerable im-
provement in fidelity can be achieved.

The scheme of prioritizing the requests or jobs on the
basis of their time criticality has been proposed in [5], for
scheduling soft-real time jobs on dual non-real time servers.
In the Divide and Conquer strategy, we extend this concept
from time constraints to value constraints specified as co-
herency requirements.

7. Conclusion
In this paper, we address various challenges in the orga-

nization of a coherency preserving dynamic data dissemi-
nation network. The key contributions of this paper are

� Algorithms to intelligently choose a repository for a
new client request. We solve the request assignment
problem as an optimization problem, and also suggest
a more practical heuristic solution that can handle dy-
namic arrival of requests. We show that the perfor-
mance achieved by the heuristic assignment is close
to that achieved by the linear optimization approach.

� Algorithm to adjust the resource contribution limit of
repositories adaptively according to the recent aver-
age response time. This helps in better sharing of load
among repositories.

� Mechanisms for reorganization of the repository net-
work, to make it adapt to the changes in client require-
ments. The Closest Repository algorithm reduces the
communication delay between clients and the reposi-
tories serving them. The Divide and Conquer strategy
further improves the fidelity by reducing the average

computational delay at repositories through coherency
based categorization of client requests.

While the current approaches use push based dissemination,
the solutions proposed can also be used with other mecha-
nisms of data dissemination such as pull, adaptive combi-
nations of push and pull [2], and leases [6]. Our future re-
search shall focus on use of such alternative dissemination
mechanisms as well as evaluation of our solutions in a real
world Internet setting.

References
[1] S. Agrawal, K. Ramamritham, and S. Shah. Construction

of a coherency preserving dynamic data dissemination net-
work. Technical report, IIT Bombay, August 2004.

[2] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ra-
mamritham, and P. J. Shenoy. Adaptive push pull: Dissemi-
nating dynamic web data. IEEE transactions on Computers
special issue on Quality of Service, May 2002.

[3] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A scal-
able and highly available server. In Proceedings of the IEEE
Computer Conference (COMPCON), March 1996.

[4] A. Fei, G. Pei, and L. Zhang. Measurements on delay and
hop-count of the internet. IEEE GLOBECOM’98 - Internet
Mini-Conference, 1998.

[5] B. Kao and H. G. Molina. Scheduling soft real time jobs over
dual non-real time servers. IEEE trans. on Parallel and Dis-
tributed Systems, January 1996.

[6] A. Ninan, P. Kulkarni, P. Shenoy, K. Ramamritham, and
R. Tewari. Cooperative leases: Scalable consistency main-
tenance in content distribution networks. In Proceedings of
WWW10, May 2002.

[7] C. Olston, B. Loo, and J. Widom. Adaptive precision setting
for cached approximate values. In Proceedings of the ACM
SIGMOD Conference, May 2001.

[8] C. Olston and J. Widom. Best effort cache synchronization
with source cooperation. In Procedings of the ACM SIG-
MOD Conference, June 2002.

[9] K. Ramamritham. Real time databases. Journal of Dis-
tributed and Parallel Databases, 1(2):199–226, 1993.

[10] M. S. Raunak, P. J. Shenoy, P. Goyal, and K. Ramamritham.
Implications of proxy caching for provisioning networks and
servers. Proceedings of ACM SiG-METRICS conference,
pages 66-77, 2000.

[11] S. Shah, K. Ramamritham, and S. Dharmarajan. An efficient
and resilient approach to filtering and disseminating stream-
ing data. Proceedings of the 29th conference on Very Large
Data Bases, September 2003.

[12] H. Yu and A. Vahdat. Design and evaluation of a continuous
consistency model for replicated services. In Proceedings of
OSDI, October 2000.

