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Abstract

The exact stochastic analysis of most real-time systems
is becoming unffordable in current practice. On one side,
the exact calculation of the response time distribution of the
tasks is not possible except for simple periodic and inde-
pendent task sets. On the other side, in practice, tasks in-
troduce complexities like release jitter, blocking in shared
resources, stochastic dependencies, etc, which can not be
handled by the periodic and independent task set model.

This paper introduces the concept of pessimism in the
stochastic analysis of real-time systems in the following
sense: the exact probability of missing any deadline is al-
ways lower than that derived from the pessimistic analysis.
Therefore, if real-time constraints are expressed as proba-
bilities of missing deadlines, the pessimistic stochastic anal-
ysis provides safe results.

Some applications of the pessimism concept are pre-
sented. Firstly, the practical problems that arise in the
stochastic analysis of periodic and independent task sets
are addressed. Secondly, we extend to the stochastic case
some well known techniques of the deterministic analysis,
such as the blocking in shared resources, and the task pri-
ority assignment.

1. Introduction

Traditional techniques of real-time analysis, such as the
processor utilization analysis [12, 16] and response time
analysis [20], assume single-valued execution times of the
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tasks. However, in practice execution times are not single-
valued, so techniques of analysis based on single-valued ex-
ecution times usually consider only the worst-case execu-
tion time. This introduces a great degree of pessimism in
the analysis, giving rise to oversized real-time systems.

To overcome the problem, the execution times can be
modelled as random variables, which may be obtained by
measurement, or using hybrid techniques such as the ones
described in [5] . Some approaches to this problem require
a special scheduling model that provides isolation between
tasks, so that each task can be analyzed independently of
other tasks in the system [1, 2]. Other methods use com-
mon scheduling algorithms but introduce worst-case as-
sumptions (e.g., the critical instant assumption [10, 11, 19]),
restrictive load conditions (e.g., the heavy traffic condition
in the Real-Time Queueing Theory [13, 14]), or restrictions
on maximum system utilization and preemption [17] to sim-
plify the analysis. A less restrictive approach was proposed
in [7], in which we perform an analysis of periodic and in-
dependent tasks sets without assuming any worst-case or
restrictive conditions. An interesting property of this analy-
sis is the capacity to deal with systems with maximum sys-
tem utilization higher than one, whenever the average sys-
tem utilization remains lower than one. However, the anal-
ysis presented in [7] is not exempt from practical problems,
as we will show in Section 5.

In order to overcome the problems and limitations of the
analysis proposed in [7], the concept of pessimism in the
stochastic analysis of real-time systems is introduced in this
paper. Pessimism is not new in the real-time systems theory;
it is everywhere in the deterministic analysis. For example,
worst-case execution times are pessimistic execution times,
blocking times and release jitter are also worst-case values,
sufficient schedulability conditions are calculated from pes-
simistic task sets, etc. The concept of stochastic pessimism
is theoretically developed in this paper, leaving the practi-
cal evaluation for future works.

The rest of the paper is organized as follows. Sec-
tion 2 describes the system model. Section 3 summarizes
the stochastic analysis presented in [7]. Section 4 for-



malizes the concept of pessimism as an ordering among
random variables, and shows some general proper-
ties of this ordering. The implications of these proper-
ties for the stochastic analysis are also discussed. Section 5
presents the first application of pessimism in the stochas-
tic analysis; the practical problems in the stochastic analy-
sis of periodic and independent task sets are solved. Sec-
tion 6.1 extends the stochastic analysis to deal with tasks
that can be blocked in shared resources. The extension is
based on calculating a pessimistic blocking time distribu-
tion for each task. Section 6.2 proves that the deterministic
optimal algorithm for priority assignment [3] is also appli-
cable to the stochastic case. Again, the proof is possible
thanks to the concept of pessimism in the stochastic anal-
ysis. Finally, Section 7 presents our conclusions and future
work.

2. System model

The system is composed of a set ofN independent pe-
riodic tasksS= {τ1, . . . ,τi , . . . ,τN}, each taskτi being de-
fined by the tuple(Ti ,Φi ,Ci ,Di ,Mi), whereTi is the period
of the task,Φi its initial phase,Ci its execution time and the
pair (Di ,Mi) define the real-time constraint of the task.

The execution time is a discrete random variable1 with a
known probability function (PF), denoted byfCi (·), where
fCi (c) = P{Ci =c}. Alternatively, the execution time dis-
tribution can also be specified using its cumulative distri-
bution function (CDF), denoted byFCi (·), whereFCi (x) =
∑x

c=0 fCi (c). In the stochastic analysis three system utiliza-
tions are defined, namelyUmin, Umax andŪ , which are cal-
culated using the minimum, maximum and average task ex-
ecution times, respectively.

Each periodic task gives rise to an infinite sequence of
jobs, Γ j , with deterministic release timesλ j . Each job re-
quires an execution time which is a random variable whose
distribution is given by the probability function of the task it
comes from,fCi (·), and it is assumed to be independent of
other jobs of the same task and those of other tasks. The re-
sponse time of a jobΓ j is a random variable,R j , whose
probability function has to be obtained by the analysis.Di

is the task relative deadline andMi the maximum allowable
probability of missing it. Taskτi is said to be schedulable if
P{Ri >Di} ≤ Mi , Ri being the response time ofτi .

The scheduling policy we assume is a general, preemp-
tive, priority-driven policy that assigns a static priority to
each job and schedules jobs according to this priority. The
scheduler guarantees that the running job is the one with
the highest priority among the ready jobs. We are not con-
cerned with the policy used to assign priorities to jobs, as

1 Throughout this paper we use a calligraphic typeface to denote ran-
dom variables, e.g.C, W, R, etc.

long as they are assigned in a deterministic way. This model
includes well known fixed priority policies such asDead-
line Monotonic(DM), and non-fixed priority policies such
asEarliest Deadline First(EDF).

3. Previous work

Next, we summarize the stochastic analysis of indepen-
dent and periodic task sets, presented in [7]. We have sim-
plified the original notation and introduced a new notation
useful for the next sections.

The response time of a jobΓ j is given by
R j = WPj (λ j) + C j + I j , where WPj (λ j) is the back-
log of priority Pj at timeλ j , which represents the workload
of priorities Pj and higher that have not yet been pro-
cessed just before the release timeλ j of Γ j . C j is the ex-
ecution time of jobΓ j . I j is the interference onΓ j of
all the jobs of higher priority than jobΓ j , released af-
ter job Γ j . Note that all the terms in the equation are ran-
dom variables. This is the stochastic counterpart of a
well known deterministic equation that provides the re-
sponse time of a job under a preemptive priority-driven
scheduling policy (see eq. (16) in [3]).

None of the jobs of priority less thanPj have any influ-
ence on the response time of jobΓ j . In addition, none of the
jobs of priority Pj released afterλ j have any influence on
the response time of jobΓ j . In order to simplify the nota-
tion, we assume all these jobs are removed to calculateR j ,
and the task indexes updated accordingly. In addition, we
can remove the subindexPj from WPj to simplify the nota-
tion, since all jobs considered have priorityPj or higher.

Figure 1 illustrates an example in which the response
time of job Γ3 is computed, following the algorithm de-
scribed in [7]. The calculation starts with zero backlog at
the release time of the first job,Γ1, i.e.,W(λ1) = O, where
O is a null random variable, with probability function

fO(w) =

{
1 if w = 0

0 if w 6= 0
(1)

The backlog distribution atλ2, denoted byW(λ2), is
calculated by convolvingfW(λ1) with fC1, shifting the re-
sult(λ2−λ1) time units left and accumulating negative val-
ues in zero, since negative backlog values are not possible
(see fig.1). In the same way, the backlog distribution atλ3,
denoted byW(λ3) can be calculated by convolvingfW(λ2)
with fC2, shifting the result(λ3−λ2) time units left and ac-
cumulating negative values in zero.

Let us define the functionSHRINK(W,∆), which pro-
duces a new random variable whose probability function
is equal to the probability function ofW, left-shifted the
amount∆ and with all values for negative abscissae accu-
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Figure 1. Example of calculation of response time probability function for a job

mulated at zero. That is:

fSHRINK(W,∆)(x) =


0 if x < 0

0

∑
w=−∞

fW(w+∆) if x = 0

fW(x+∆) if x > 0

(2)

Using this function, the calculation ofW(λ j) can be it-
eratively expressed as

W(λ1) = O
W(λ j) = SHRINK(W(λ j−1)+C j−1,λ j −λ j−1) for j > 1

(3)

Note that the probability function of a sum of random
variables is obtained by convolving their probability func-
tions. OnceW(λ j) has been calculated, in order to calculate
R j it is necessary to add the execution timeC j and the in-
terference of future jobs. Figure 1 depicts the process again.

Next, fW(λ3) is convolved with fC3. The resultant dis-
tribution, denotedR[0,λ4−λ3]

3 , is a random variable that pro-
vides the response time distribution of jobΓ3 assuming that
jobsΓ4 and subsequent do not exist (and therefore do not in-
terfere withΓ3). The probability function ofR3 in the range
[0,λ4 − λ3] coincides with that ofR[0,λ4−λ3]

3 in the same



range.
Next, fR[0,λ4−λ3]

3
is convolved from2 r = (λ4− λ3) with

fC4. The resultant distribution, denotedR[0,λ5−λ3]
3 , is a ran-

dom variable that provides the response time distribution
of job Γ3 assuming that jobsΓ5 and subsequent do not ex-
ist (and therefore do not interfere withΓ3). The probabil-
ity function of R3 in the range[0,λ5− λ3] coincides with
that ofR[0,λ5−λ3]

3 in the same range.
The iteration process continues until the relative deadline

of Γ j is included in the interval of one of the random vari-
ables. In the example of Figure 1, the iteration ends with the
calculation ofR[0,λ6−λ3]

3 for a relative deadline of value 7 for
Γ3. At that moment, the probability ofΓ3 meeting its dead-
line can be computed (of value 35/36), and therefore the
probability of missing its deadline (of value 1/36).

Let us define the function CF(R,∆,C), which convolves
R from ∆ with C. The result is a new random variable,
whose probability function is obtained by

fCF(R,∆,C)(x) =


fR(x) for x≤ ∆

∞

∑
i=∆+1

fR(i) · fC(x− i) for x > ∆ (4)

Using this function, the calculation ofR j can be itera-
tively expressed as

R
[0,λ j+1−λ j ]
j = W(λ j)+C j

R
[0,λk+1−λ j ]
j = CF(R[0,λk−λ j ]

j ,λk−λ j ,Ck) for k > j
(5)

The iteration can stop whenλk+1−λ j ≥ D j .
In theory, the probability of a task missing its deadline

is calculated by averaging the probabilities of all its jobs
missing that deadline, but in practice the number of these
jobs is infinite. However, when̄U < 1 the system becomes
stable as proved in [9]. In the steady state, the probabil-
ity of a job missing its deadline becomes constant for the
same job released one, two or any number of hyperperiods
later. This probability depends on the steady state backlog at
the release instant of the job. Three methods were proposed
in [7] to perform the calculation of this steady state back-
log: an exact method based on obtaining the Markov matrix
modelling the stochastic process, an approximate method
based on iteration using equation (3), and another approx-
imate method based on the truncation of the Markov ma-
trix. Once the steady state backlog is known for the first job
of the task in one hyperperiod, using equation (3) it is pos-
sible to calculate the steady state backlog for the rest of the
jobs coming from the task released in the same hyperperiod.
Next, the probabilities of missing the deadlines are calcu-
lated for all the jobs of the task released in that hyperperiod
using equation (5), and their average provides the probabil-
ity of deadline misses of the task.

2 The “convolve from” operation is formally defined in eq. (4)

In the case of EDF scheduling, the steady state backlog
distribution is calculated for the first ground-job released in
one hyperperiod. A ground-job is a job with the same or
lower priority than all the jobs previously released. Once
the steady state backlog for a ground-job is calculated using
any of the three previous methods, the steady state backlog
distribution can be calculated for any job of any task within
the hyperperiod using equation (3). In the case of fixed pri-
orities, the backlog should be calculated for the first job of
each task within a steady state hyperperiod, and then, the
backlog for the rest of jobs of the task within that hyperpe-
riod can be obtained using eq. (3),

One interesting property of the steady state backlog cal-
culation under EDF scheduling is that the steady state back-
log is calculated only once (for the first ground-job). In the
case of fixed-priority scheduling, it is necessary to calcu-
laten different steady state backlogs (one for each priority
level). In practice, the calculation of the steady state back-
log is the most time-consuming operation in the analysis, so
analyzing the probabilistic schedulability for EDF requires
far less time than for fixed-priority.

4. The concept of pessimism in the stochastic
analysis

In the deterministic analysis of hard real-time systems,
all approximations arepessimisticin the sense that the re-
sponse times obtained by the approximated analysis are
guaranteed to be greater (i.e., worse) than the exact response
times of the system. However, in the stochastic analysis, the
response time is a random variable, and the real-time con-
straints are expressed in terms of probabilities of deadline
misses. With these ideas in mind, we will define the “worse
than” relationship among random variables in the context
of real-time systems. Using this relationship, we will state
that any random variable in the stochastic analysis ispes-
simisticif it is “worse than” the exact one.

The most important result of this section is that if pes-
simistic variables are introduced into the stochastic analy-
sis, the response times provided by the analysis will be also
pessimistic. In that case we simply state that the analysis is
pessimistic. The pessimistic analysis is asafeapproxima-
tion in the sense that the probabilities of deadline misses it
provides areguaranteedto be greater than the exact ones.

Next we formally define the “worse than” relationship
among random variables.

Definition 1. Given two random variablesX and Y, we
state that “X is worse thanY”, and denote it byX < Y if
FX(x) ≤ FY(x) for all x.

Graphically, this means that the curveFX(·) never goes
above the curveFY(·). Note that if the curvesFX(·) and
FY(·) cross, the variablesX andY are not comparable, and
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Figure 2. Graphical meaning of the “worse
than” relationship

it is not true thatX < Y nor Y < X (see fig. 2). Note that
the relationshipX < Y is the stochastic counterpart of the
“greater than or equal to” relationship among determinis-
tic variables (X ≥Y). Thus, strictly, the relationshipX < Y

should be named “worse than or equal to” (or, alternatively,
“no-better-than”). However, we plainly use “worse than” for
the sake of compactness and legibility.

The mathematical definition ofworse than, given in defi-
nition 1, coincides with the mathematical definition offirst-
order stochastic dominanceintroduced in statistics and fur-
ther used in economics [15]. For example, the wealth an in-
vestor receives from decisions A and B may be modelled
by two random variables. If the probability of an investor
receiving greater wealth investing in A is higher than in-
vesting in B,for any wealth value, we state that decision A
first-order dominates decision B. We use the same mathe-
matical definition, but in a different context.

Suppose thatR′ is the approximate response time of a
task provided by the stochastic analysis, whileR is the ex-
act response time. In general they will not be equal, i.e. they
will not have the same probability function, due to approx-
imations in the model or the analysis. However, ifR′ < R,
then the analysis is pessimistic and thus safe, because this
would imply P{R>D} ≤ P{R′>D} for all D. That is, for
any deadline, the exact probability of deadline misses is less
than the probability provided by the pessimistic analysis.

4.1. Properties of the stochastic analysis

The stochastic analysis described in Section 3 has two
important properties, which are presented in this section in
Theorems 1 and 2. The idea is intuitive: if pessimistic data
is introduced in the stochastic analysis, the backlog and the
response times resulting from the analysis become also pes-
simistic. This idea, almost trivial when all the system pa-
rameters are deterministic, has to be carefully proved when
the parameters and the results are random variables.

In order to prove these theorems, some basic properties
of the relationship “worse than” and some additional prop-
erties of the functionsSHRINK() and CF() which were in-

troduced in Section 3, are required. These properties are
presented below, but their proof has been omitted for the
sake of brevity. The interested reader can find them in [8].

Property 1. Reflexivity:A < A for anyA.

Property 2. Transitivity: if A < B andB < C, thenA < C.

Property 3. If A < B, then for allC < O, A+C < B+C.

Property 4. For all positiveA < O,B < O, it follows that
A + B < A and A + B < B. That is, the result of adding
two positive random variables is always worse than either
of them.

Property 5. For anyA < O,B < O,C < O,D < O, such
thatA < B andC < D, it follows thatA+C < B+D.

Apart from the above general properties of the “worse
than” relationship, the functionsSHRINK() and CF() fulfil
the following properties.

Property 6. For any A < B, and ∆ ≥ 0, it follows that
SHRINK(A,∆) < SHRINK(B,∆). That is, the shrink func-
tion preserves pessimism

Property 7. The functionCF() defined in eq. (4) preserves
pessimism. In particular:
a) If C1 < C2, thenCF(R,∆,C1) < CF(R,∆,C2)
b) If R1 < R2, thenCF(R1,∆,C) < CF(R2,∆,C)
c) If ∆ ≥ 0 andC < O, thenCF(R,∆,C) < R

d) If ∆1 ≤ ∆2, thenCF(R,∆1,C) < CF(R,∆2,C)

Now we can state and demonstrate the following theorems.

Theorem 1. Let S and S′ be two real-time systems with
identical parameters, but different initial backlogW(0) and
W′(0) respectively. IfW′(0) < W(0), thenW′(t) < W(t)
for all t ≥ 0.

Proof. Let t1 be equal to the arrival instant of the next
job which contributes to the backlog. SinceS andS′ have
the same parameters, this instant is the same for both.
For all t < t1, the backlog at instantt is obtained sim-
ply as SHRINK(W(0), t), so, by property 6,W′(t) < W(t)
for t < t1. At instant t = t1, the backlog is increased by
the execution time of the arriving job. LetC be the ran-
dom variable which represents this execution time, which
is the same for both systemsS and S′. By property 3,
W′(t1)+C < W(t1)+C. Takingt1 as the new time origin,
the same reasoning can be repeated until reaching any fu-
ture instant.

This theorem implies that, whenW(0) = O, the backlog
worsens with time. This has important implications in the
issue of obtaining the steady state backlog, which will be
addressed in Section 5.

Theorem 2. Let S and S′ be two real-time systems, with
identical parameters, except for one of the jobs, sayΓk,
whose execution time isCk in system S andC′

k in system S′.



If C′
k < Ck, then the response times obtained by the stochas-

tic analysis of these systems fulfilR′
j < R j for all Γ j .

Proof. All jobs with priority greater thanPk are not affected
by Γk, so their response time remains the same, and trivially
R′

j < R j for these jobs (because the “worse than” relation is
reflexive). So we will focus only on jobs with priority less
thanPk. Let us consider an arbitrary jobΓ j .

If j < k, the backlog for any instant prior toλk is the
same for both systems, because the sequence of arrivals and
the execution times are the same. As a consequence, if job
Γ j cannot be preempted byΓk, the response time will be the
same for both systems. IfΓ j can be preempted byΓk, then
R′

j < R j , by the hypothesisC′
k < Ck and property 7(a).

If j = k, we are calculating the response time of jobΓk.
As in the previous case, the backlog is the same in both sys-
tems. But the response timeR′

k will be worse thanRk, be-
causeC′

k < Ck, and because of properties 7(a) and 7(b) we
will haveR′

k < Rk.
Finally, if j > k, W′(λ j) < W(λ j), because at instantλk

the backlogW is increased byCk, while the backlogW′ is
increased inC′

k, beingC′
k < Ck. In virtue of Theorem 1, the

backlog will be worse for any future instant. Then, for any
job Γ j released afterΓk, its initial backlog is worse in sys-
temS′, and thus, by properties 7(a) and 7(b) again, we con-
cludeR′

j < R j .

This theorem implies that, if required, the analyst can re-
place the execution time of any job by a more pessimistic
distribution. The results obtained after this replacement are
pessimistic, but safe. This mechanism allow us to introduce
approximations and extensions to the task set model.

Corollary 1. Let S be a real-time system and S′ the sys-
tem obtained by adding a new job to S. Then, the response
times obtained by the stochastic analysis of these systems
fulfil R′

j < R j for all Γ j .

Proof. This can be easily proved by assuming that system
S has an additional job withC = O (which does not alter
the analysis), while systemS′ has the same job withC′ < O.
Now, Theorem 2 can be directly applied.

5. Problems in the analysis of periodic and in-
dependent task sets

The biggest challenge in the analysis of periodic and in-
dependent task sets is the calculation of the steady state
backlog. Three methods were presented in [7] to perform
the steady state backlog calculation:
• Calculation of the eigenvalues of the Markov matrix

that models the stochastic process (which is an infinite
matrix with a repetitive structure).

• Calculation of the eigenvalues of a truncated Markov
matrix.

• Iteration on equation (3).

The calculation of the eigenvalues of the Markov ma-
trix is useful from a theoretical perspective, since it pro-
vides valuable information about the expected kind of solu-
tions. However, this approach has many practical problems.
Firstly, the obtaining of the Markov matrix, and the find-
ing of its eigenvalues, implies a computational cost unaf-
fordable except for simple task sets like the one presented
in [7]. Otherwise the periodic part of the Markov matrix
becomes huge. Finally, the Markov matrix is badly condi-
tioned which adds to the difficulties of the problem.

A partial solution to the computational problems related
to the Markov matrix is its truncation. This reduces its range
and provides an approximation to the backlog distribution.
However, this approximation is not necessarily worse than
the exact one, so the steady state backlog obtained by this
method may be optimistic, which is inadequate for the anal-
ysis of probabilistic hard real-time systems.

The last method to calculate the steady state backlog
comes from iterating on equation (3). The concept is sim-
ple: in order to calculate the steady state backlog for a given
job within the hyperperiod, we calculate the backlog for that
job in the first, second, etc, hyperperiods and we stop when
we observe that the steady state backlog distribution con-
verges (the convergence is guaranteed wheneverŪ < 1). For
example, we may observe that the steady state backlog dis-
tribution at the release time of the first job within the hy-
perperiod is almost identical in hyperperiods 19 and 20 and
stop. In practice, only a few hyperperiods are required to ob-
tain convergence, except when̄U is close to 1.0, since the-
oretically the convergence is geometrically ergodic [7].

Therefore, except for simple task sets, only the iterative
method can be applied. However, this method presents sev-
eral problems:

1. WhenUmax > 1, which represents the most interest-
ing case, the steady state backlog is made up of an in-
finite number of points, with a tail which approaches
zero asymptotically. Dealing with an infinite number
of points is not computationally possible.

2. After iterating on a new hyperperiod, the backlog dis-
tribution becomes closer and closer to the steady state
backlog. However, the steady state backlog distribu-
tion estimated by iteration is optimistic.

3. The execution time probability functions, if defined
exactly, are made up of hundreds of points. Dealing
with them rapidly overflows processor and memory re-
sources.

The solution to the three previous problems in the anal-
ysis of periodic and independent task sets comes from the
concept of pessimism in the stochastic analysis, as shown in
the next subsections.
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Figure 3. Truncation of a long tail

5.1. The problem of an infinite backlog tail

An obvious solution to the problem of the infinite length
of the steady state backlog is to truncate its probability func-
tion at a given point. The backlog probability function has
an infinite queue that decreases exponentially as the back-
log increases. Therefore, cutting that queue at some point
we obtain an approximate steady state backlog probability
function defined by a finite number of points. Figure 3 de-
picts a steady state backlog which is truncated atw= 6. The
resultant probability function corresponds to a new random
variable, denoted by TRUNC(W,6). In general,

fTRUNC(W,w0)(w) =

{
fW(w) if w < w0

0 if w≥ w0

This truncated probability function does not sum 1, how-
ever, the “deficit” of probability can be assumed to be lo-
cated atw = ∞. The CDF never reaches the value 1, so
it is clear thatFTRUNC(W,w0) ≤ FW (see fig.3), and thus
TRUNC(W,w0) < W for anyw0 andW.

From Theorem 1, introducing a truncated (pessimistic)
backlog probability function in any of the iterations of
eq. (3), gives rise to subsequent more pessimistic backlog
probability functions than those obtained without trunca-
tion. In order to compute the response time of a job, ac-
cording to eq. (5), the backlog and the execution time of
the job are added in the first step. Since the truncated back-
log is worse than the exact one, the result of this first step
will also be worse, by property 3. And, according to prop-
erty 7(b), if the first step of the response time calculation is
worse, all the subsequent steps will be also worse, so the re-
sponse time probability functions derived from pessimistic
backlog distributions are also pessimistic.

The reader should note that, even if the complete infor-
mation about the tail of the distribution is lost, some infor-
mation is retained, namely, the accumulated probability of
the tail is left as a probability deficit, which will affect the
results of the analysis. In addition, the truncated distribu-
tion is pessimistic, so it is safe to use it in the analysis. This
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Figure 4. Approximating the steady state
backlog by iteration

makes truncation preferable over other analysis techniques,
like simulation, which do not provide any information at all
about the tail, and are not pessimistic.

Therefore, the truncation of any backlog probabil-
ity function enables the use of finite length probabil-
ity functions, but introduces pessimism in the analy-
sis. The pessimism introduced into the analysis depends
on the truncation point,w0, but also depends on all the pa-
rameters of the task set. A high truncation point reduces
the pessimism of the analysis, but increases the mem-
ory requirements and computational cost of the analysis
tool.

5.2. The problem of zero initial backlog

The iterative method provides approximations to the
steady state backlog probability function. After iterating for
a few hyperperiods, the result of the iteration is frequently
an approximate steady state backlog probability function
close to the exact one.

The iteration starts withfW(λ1) = fO, i.e., with zero ini-
tial backlog at the beginning of the first hyperperiod, as in-
dicated in equation (3). However, according to Theorem 1,
if we start from a null backlog, the backlog worsens with
each new hyperperiod. Thus, in each iteration, we obtain a
backlog which is worse than (or equal to) the one obtained
in the previous iteration. Although the sequence converges
towards a steady state distribution, this steady state back-
log will be worse than that obtained in any of the iterations.
Therefore, stopping at any iteration we obtain anoptimistic
estimation of the steady state backlog which is not admis-
sible in probabilistic hard real-time systems. The iteration
process is depicted in Figure 4. TermsFkT

W are the back-
log distribution functions at the beginning ofk-th hyperpe-
riod andFexact

W is the exact backlog distribution function in
the steady state.



One solution to the problem of zero initial backlog is de-
picted in the same figure. Once convergence is detected,
for example using the quadratic error between two sub-
sequent iterations, the approximated steady state backlog
distribution function obtained in the last iteration,FnT

W in
Figure 4, is shifted right∆ units and truncated after some
point w0, giving F̂0T

W , which is worse than the steady state
backlog. Starting the iteration process witĥF0T

W instead of
F0T

W = FO provides approximations to the steady state back-
log distribution which are worse than the exact one. Thus,
the stochastic analysis provides safe results in this case.

Nevertheless, there are two practical problems to solve in
the previous approach. Firstly, to define the size of∆, which

depends on the difference betweenFnT
W andF(n−1)T

W and de-
pends also on the convergence rate. Secondly, to define the
truncation pointw0, so thatF̂0T

W is worse than the exact one
but does not lack too much probability mass,δ .

5.3. The problem of dense execution time proba-
bility functions

The complexity of the analysis grows dramatically with
the number of points defining the discrete probability func-
tions of the execution times. Thus, a reliable method to sim-
plify these distributions is needed. In addition, it is difficult
in practice to estimate or measure the execution time prob-
ability functions exactly, so we need a safe method of esti-
mation or measurement.

It is well known that moving the probabilities from low
values of execution time to high values of execution time
introduces pessimism. In fact, the deterministic analysis is
based on worst-case execution times, which are obtained
moving the probabilities of all the execution times to the
worst-case execution time. We prove that introducing pes-
simistic execution times makes pessimistic the stochastic
analysis. Figure 5 depicts an example of movement from
fC to f ′C.

The distribution functions before and after the movement
fulfils FC ≤ F ′

C (see fig. 5), and thusC′ < C. Therefore, as
expected from Theorem 2, the stochastic analysis becomes
pessimistic and can be applied to probabilistic hard real-
time systems.

6. Applications of the concept of pessimism

This section presents some applications of the concept of
pessimism, previously introduced. Firstly, it allow us to ex-
tend the stochastic analysis of periodic and independent task
sets. In particular, section 6.1 presents the statistical analy-
sis of dependent task sets that can block in shared resources.
Secondly, section 6.2 proves that one of the optimal prior-
ity assignment algorithms in the deterministic scenario is
also valid in the stochastic scenario.
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6.1. Blocking in shared resources

Shared resources, like shared memory areas, are useful to
communicate between tasks. Resource access protocols are
used to preserve the consistency of the shared data, guar-
anteeing at the same time bounded blocking times. Exam-
ples of these protocols are the Priority Inheritance Protocol
(PIP) and Priority Ceiling Protocol (PCP) for fixed prior-
ity scheduling [18], as well as the Stack Resource Policy
(SRP) for fixed and non-fixed priority scheduling [4].

Under a deterministic analysis, the response time of a
taskτi that can suffer blocking is calculated by artificially
increasing its execution time byBi units, whereBi is the
blocking time of the task. Since the exact blocking time can
vary between different releases of the same task or be dif-
ficult to calculate,B′

i is used instead ofBi , whereB′
i is a

bound on the exact blocking time,Bi .
Under the stochastic analysis the situation is analogous.

The execution time of a taskτi , of execution timeCi should
be increased by adding the blocking timeBi , which is now
a random variable. The result is a transformed task with ex-
ecution timeCi + Bi (being fCi+Bi = fCi ⊗ fBi ). Now the
problem is analogous to that found in the deterministic anal-
ysis, i.e., how to calculate the exact distribution of the ran-
dom variableBi . The solution is to find a bound valid for all
scenarios. In stochastic terms, this means finding a random
variableB′

i , worse than the exactBi for all possible scenar-
ios. Let us define how to construct a random variable worse
than any of a set of random variables.

Definition 2. Given a set of random variables{Xi}, we de-
fine thesupremumof that set, and denote it assup{Xi}, the
random variable whose CDF is

Fsup{Xi}(x) = min
i

FXi (x) (6)
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set of random variables

Figure 6 shows how the function is constructed3, by tak-
ing the minimum of allFXi (·). By construction, sup{Xi} <
Xi for all i. Thus, the idea of the supremum of a set of ran-
dom variables is analogous to the maximum of a set of real
numbers. Using this idea, the classical results for resource
access protocols can be easily translated to the stochastic
analysis as well.

The system model has to be extended to hold informa-
tion about the set of semaphores (Sk) used by the system
to guard the shared resources, and the length of the critical
sections in the tasks. In the classical analysis, the typical in-
formation stored in the model consists of a set of real num-
bersDi,k which represent, for each pair(τi ,Sk), the length
of the longest critical section that taskτi contains, guarded
by semaphoreSk. From this set of real numbers, the maxi-
mum blocking timeB′

i of each task is obtained. The way in
which this is done depends on the resource sharing protocol.
For example, PCP guarantees that each task is blocked only
once by any task of less priority, while PIP only guarantees
that a task cannot be blocked twice by the same semaphore
or by the same task. These different properties lead to dif-
ferent algorithms to obtainB′

i .
These ideas can be translated to the stochastic case, us-

ing the concept ofsupremumdefined above. The length of a
critical section is now a random variable whose probability
function is assumed known. Then, a random variableDi,k is
constructed as the supremum of the length of all the criti-
cal sections of taskτi guarded by semaphoreSk. From these
Di,k an estimationB′

i of the blocking timeBi of each task
can be obtained. OnceB′

i is obtained, the stochastic analysis
can be done as described in Section 3, but using(B′

i +Ci) in-
stead ofCi . If we can guarantee thatB′

i < Bi , then the anal-
ysis will be pessimistic, becauseB′

i + Ci < Bi + Ci , from
property 3. Thus, by Theorem 2, the response times will be
also pessimistic.

6.1.1. Priority Ceiling Protocol (PCP). It is well known
that, under PCP, a taskτi can be blocked only once by

3 Please, note that the plot of the supremum has been slightly shifted
down for better legibility of the figure.

S1(P1) S2(P1)

τ1 D1,1 D1,2

τ2 D2,1 D2,2

τ3 D3,1 D3,2

Table 1. Cumulative distributions of the criti-
cal sections for the blocking examples.

tasks of lower priority [18]. This property ensures that the
maximum blocking timeB′

i that a taskτi can suffer coin-
cides with the length of the longest critical section among
all the lower priority tasks which can cause blocking toτi .
Translating the deterministic method presented in [18] to
the stochastic case, we will computeB′

i as the supremum
of the set{D j,k|Pj < Pi ,C(Sk) ≥ Pi}, C(Sk) being the prior-
ity ceiling of the semaphoreSk, defined as the highest prior-
ity among the tasks which use that semaphore.

For example, consider a system with three tasks and
two semaphores (Table 1). The priority ceiling of each
semaphore is indicated in parentheses. Each cell in the table
contains the length of the critical section of taskτi guarded
by semaphoreSk. If a taskτi does not have any critical sec-
tion guarded by semaphoreSk, thenDi,k = O. If a taskτi

contains several sections guarded bySk, Di,k is computed
as the supremum of the lengths of these sections.

Task τ1 can be blocked by any of the critical sections
in lower priority tasks, because the priority ceiling of both
semaphores isP1. Then,B′

1 = sup{D2,1,D2,2,D3,1,D3,2}.
The same applies to taskτ2, soB′

2 = sup{D3,1,D3,2}. Task
τ3 cannot suffer blocking because it is the lowest priority
task, soB′

3 = O. Once allB′
i have been obtained this way,

they are added to the correspondingCi and the stochastic
analysis is carried out as explained in Section 3.

Finally, the reader should note that the results presented
for PCP are valid for the Stack Resource Policy (SRP) [4],
since deterministic blocking times are calculated using the
same algorithm for PCP and SRP. The only difference is
that, under SRP, preemption levels have to be used instead
of priorities, and the maximum of each resource ceiling,
which happens when the number of remaining resource
units is zero, has to be used instead of the “priority ceil-
ing” of PCP. I.e., we will computeB′

i as the supremum of
the set{D j,k|π j < πi ,CSk(0) ≥ πi}, πi being the preemp-
tion level of taskτi , andCSk(n) being the ceiling of the re-
sourceSk, whenn units are available.

6.1.2. Priority Inheritance Protocol (PIP). If the re-
source sharing protocol is PIP instead of PCP, the method
for obtaining B′

i is different. Under PIP it has been
proved [18] that any taskτi will be blocked once at most
by the same semaphoreSk, or by the same lower prior-



ity taskτ j (Pj < Pi). However, it is possible that the task gets
blocked several times on different semaphores and by dif-
ferent lower priority tasks. In these cases, the blocking
time will be the sum of the lengths of the critical sec-
tions which caused blocking. This implies thatB′

i should
be computed by examining all possible blocking scenar-
ios, and taking the worst of all these blocking times.

For instance, consider again the example in Table 1.
Taskτ1 can be blocked by tasksτ2 andτ3, but not by the
same semaphore twice. Therefore, if it gets blocked byτ2

on semaphoreS1, taskτ3 can only cause additional block-
ing on semaphoreS2, and vice-versa. As a consequence,
B′

1 = sup{(D2,1 + D3,2),(D2,2 + D3,1)}. Note that, since
we are dealing with random variables, each sum requires
a convolution of the probability functions. Taskτ2 can be
blocked only byτ3, becauseτ3 is the only lower priority
task. But, since it cannot be blocked twice by the same task,
we concludeB′

2 = sup{D3,1,D3,2}. Finally, taskτ3 cannot
suffer blocking by lower priority tasks, soB′

3 = O.
An exhaustive analysis of all blocking scenarios is pos-

sible. Nevertheless, it can be avoided using a different
method, at the cost of introducing even more pessimism.
This method is the stochastic counterpart of the one pre-
sented in [6] for the deterministic case. In order to obtain a
pessimistic approximation,B′′

i , of the blocking time the fol-
lowing steps should be performed:
• For eachj such thatPj < Pi , compute the supremum of

the set{D j,k|C(Sk) ≥ Pi}. Add all these supremi and
call the resultBl i .

• For eachk such thatC(Sk) ≥ Pi , compute the supre-
mum of the set{D j,k|Pj < Pi}. Add all these supremi
and call the resultBsi .

• Construct the random variableB′′
i as one whose CDF

is FB′′
i
(x) = max{FBl i (x),FBsi (x)}. This concept is the

inverse of the concept of supremum defined before, so
we call it theinfimum. Thus,B′′

i = inf{Bl i ,Bsi}.
Applying this approximation to the example on Ta-

ble 1, B′′
1 = inf

{
(sup{D2,1,D2,2} + sup{D3,1,D3,2}),

(sup{D2,1,D3,1}+sup{D2,2,D3,2})
}

. It can be shown that
B′′

i < B′
i < Bi . The proof, however, is not short and has

been omitted. The reader can find it in [8].

6.2. Priority assignment

One of the pending problems in the stochastic analysis
of real-time systems is how to assign priorities to tasks un-
der fixed-priority scheduling. Using the concept of stochas-
tic pessimism, we will prove that the deterministic optimal
algorithm for assigning priorities to tasks presented in [3] is
valid in the stochastic scenario.

The algorithm consists of(n−1) iteration steps, where
n is the number of tasks. We assume that priorities decrease
as indexes increase, i.e.,P1 > P2 > .. . ,Pn. In the first step,

all the tasks belong to the subset of eligible tasks; one of
them receives the lowest priority in the system,Pn, and is
removed from the subset. In the second step one of the re-
maining eligible tasks receives the next priority, i.e., priority
Pn−1 and is removed from the subset of eligible tasks. The
process is repeated until reaching the last step, step(n−1).
In this last step there are only two eligible tasks, one re-
ceives priorityP2, is removed from the set of eligible tasks,
and so the other task receives priorityP1.

The problem is how to elect in each step the task that re-
ceives the priority associated with the step. In each step, all
the eligible tasks are tested sequentially until finding one
that is schedulable receiving the priority associated to the
step, i.e., with lower priority than the rest of eligible tasks
and higher priority than the tasks elected in the previous
steps. If no task is found to be schedulable within the eli-
gible task set, the task set as a whole is said to be unfeasi-
ble and the iteration process finishes. If all the steps com-
plete successfully, the system is schedulable using fixed pri-
orities and the priorities are those calculated.

The previous algorithm is optimal, i.e., it always finds
a feasible assignment of priorities if one exists. The proof
in [3] is based on the fact that increasing the priority of a
task never decreases its schedulability, or conversely, de-
creasing a task priority never increases its schedulability. In
the stochastic scenario, a taskτi is schedulable if it fulfils
its stochastic real-time constraint, i.e., ifP{Ri >Di} ≤ Mi .
Proving that decreasing a task priority never increases its
schedulability, is the key in the proof of optimality. Next,
we prove this intuitive result resorting to the properties of
Section 4 again.

Lemma 1. Decreasing the priority of a taskτi in the
stochastic scenario never increases its schedulability (i.e.,
the probabilityP{Ri ≤Di})

Proof. Decreasing the priority of a task adds new jobs in
the iterations of eq. (3) and (5). In both cases, it gives rise
to more pessimistic response time distributions, as proved
in Corollary 1. This implies higher priority of missing any
deadline, and therefore lower stochastic schedulability.

Theorem 3. The algorithm in [3] for assigning priorities
to fixed-priority tasks is optimal in the stochastic scenario.

Proof. The proof is identical to that given in [3] using
Lemma 1.

7. Conclusions and future work

Exact stochastic analysis of real-time systems is a highly
demanding memory and CPU activity, which can be af-
forded only for simple periodic and independent task sets.
In order to deal with practical real-time systems we have
to perform approximations. In the context of probabilistic



hard-real time systems, approximations are valid only when
the results are on the safe side, i.e., if the analysis is pes-
simistic.

This paper has introduced the relationworse thanbe-
tween two distributions of a random parameter of the anal-
ysis, which defines a stochastic ordering in the context of
real-time systems. This relation and its properties define a
theoretical framework that opens the door to safe stochas-
tic analysis approximations. Whenever the distribution of
a parameter of the stochastic analysis is substituted by a
worse distribution, the resultant response time distributions
coming from the analysis are worse for all the tasks, i.e.,
the probabilities of missing deadlines are higher and so the
analysis becomes safe.

The most interesting characteristic of the relationworse
thanis that it allows us to order different distributions of the
same random parameter of the analysis. For example, it al-
lows us to state that one execution time distribution is worse
than another, that a blocking time distribution is worse than
another, that a response time distribution is worse than an-
other, etc. The ordering between random variables is a valu-
able tool that permits a rapid translation of well known real-
time deterministic results to the stochastic scenario. Deter-
ministic analysis becomes a particular case of the stochas-
tic analysis. This way, any deterministic analysis is always
more pessimistic than its stochastic counterpart. Using these
translations we have introduced the analysis of task sets that
can block on shared resources and the priority assignment,
but many others are possible.

Future work will focus on practical issues about the the-
ory presented in this paper. It would be interesting to quan-
tify the degree of pessimism of all the transformations pre-
viously introduced, since it would determine their usability.
In addition, more applications of the stochastic pessimism
concept may be found. These could allow, for example, to
deal safely with other task extensions, such as release jit-
ter, stochastic dependencies, etc.
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