Pessimism in the Stochastic Analysis of Real-Time Systems: Concept and

Applications
Jos Luis DiaZ' Jo$ Maiia LopeZ Manuel Garéa' Antonio Manuel Campds
Kanghee Kinf Lucia Lo Bellc®
Abstract tasks. However, in practice execution times are not single-

valued, so techniques of analysis based on single-valued ex-
The exact stochastic analysis of most real-time systemsecution times usually consider only the worst-case execu-
is becoming unffordable in current practice. On one side, tion time. This introduces a great degree of pessimism in
the exact calculation of the response time distribution of the the analysis, giving rise to oversized real-time systems.
tasks is not possible except for simple periodic and inde-  To overcome the problem, the execution times can be
pendent task sets. On the other side, in practice, tasks in-mode”ed as random variables, which may be obtained by
troduce complexities like release jitter, blocking in shared measurement, or using hybrid techniques such as the ones
resources, stochastic dependencies, etc, which can not bgescribed in [5] . Some approaches to this problem require
handled by the periodic and independent task set model. 3 special scheduling model that provides isolation between
This paper introduces the concept of pessimism in thetasks, so that each task can be analyzed independently of
stochastic analysis of real-time systems in the following other tasks in the system [1, 2]. Other methods use com-
sense: the exact probability of missing any deadline is al- mon scheduling algorithms but introduce worst-case as-
ways lower than that derived from the peSSimiStiC analySiS. Sumptions (e.g', the critical instant assumption [10’ 11, 19]),
Therefore, if real-time constraints are expressed as proba- restrictive load conditions (e.g., the heavy traffic condition
bilities of missing deadlines, the pessimistic stochastic anal-jn the Real-Time Queueing Theory [13, 14]), or restrictions
ysis provides safe results. on maximum system utilization and preemption [17] to sim-
Some applications of the pessimism concept are pre-pjify the analysis. A less restrictive approach was proposed
sented. Firstly, the practical problems that arise in the jp [7], in which we perform an analysis of periodic and in-
stochastic analysis of periodic and independent task setsgependent tasks sets without assuming any worst-case or
are addressed. Secondly, we extend to the stochastic casgestrictive conditions. An interesting property of this analy-
some well known teChniqueS of the deterministic analySiS,SiS is the Capacity to deal with Systems with maximum sys-
such as the blocking in shared resources, and the task pri-tem utilization higher than one, whenever the average sys-
ority assignment. tem utilization remains lower than one. However, the anal-
ysis presented in [7] is not exempt from practical problems,
as we will show in Section 5.

1. Introduction In order to overcome the problems and limitations of the
analysis proposed in [7], the concept of pessimism in the

Traditional techniques of real-time analysis, such as the stochastic analysis of real-time systems is introduced in this
processor utilization analysis [12, 16] and response time paper. Pessimismis not new in the real-time systems theory;
analysis [20], assume single-valued execution times of theit is everywhere in the deterministic analysis. For example,
worst-case execution times are pessimistic execution times,
tJo¢ L. Diaz, Joé M. Lopez, Manuel Gaia and Anto- blocking times and release jitter are also worst-case values,
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malizes the concept of pessimism as an ordering amongong as they are assigned in a deterministic way. This model
random variables, and shows some general proper-includes well known fixed priority policies such &ead-

ties of this ordering. The implications of these proper- line Monotonic(DM), and non-fixed priority policies such
ties for the stochastic analysis are also discussed. Section asEarliest Deadline Firs{EDF).

presents the first application of pessimism in the stochas-

tic analysis; the practical problems in the stochastic analy- .

sis of periodic and independent task sets are solved. Sec3- Previous work

tion 6.1 extends the stochastic analysis to deal with tasks

that can be blocked in shared resources. The extension is Next, we summarize the stochastic analysis of indepen-
based on calculating a pessimistic blocking time distribu- dent and periodic task sets, presented in [7]. We have sim-
tion for each task. Section 6.2 proves that the deterministicPlified the original notation and introduced a new notation

optimal algorithm for priority assignment [3] is also appli-
cable to the stochastic case. Again, the proof is possible

useful for the next sections.

The response time of a job; is given by

thanks to the concept of pessimism in the stochastic anal-Rj = Wp;(4;) + €j + Jj, where Wp,(4;) is the back-

ysis. Finally, Section 7 presents our conclusions and future
work.

2. System model

The system is composed of a setNfindependent pe-
riodic tasksS= {r1,...,,...,7n}, each task; being de-
fined by the tupl€T;, ®;, G, D;, M;), whereT; is the period
of the task®; its initial phase(; its execution time and the
pair (Di, M;) define the real-time constraint of the task.

The execution time is a discrete random variab¥ith a
known probability function (PF), denoted by, (-), where
fe,(c) = P{Ci=c}. Alternatively, the execution time dis-
tribution can also be specified using its cumulative distri-
bution function (CDF), denoted biye, (), whereFe, (x) =
Y*_o fe;(C). In the stochastic analysis three system utiliza-
tions are defined, namely™", U™ andU, which are cal-
culated using the minimum, maximum and average task ex-
ecution times, respectively.

Each periodic task gives rise to an infinite sequence of
jobs, ", with deterministic release timelg. Each job re-
quires an execution time which is a random variable whose
distribution is given by the probability function of the task it
comes from,fe, (+), and it is assumed to be independent of
other jobs of the same task and those of other tasks. The re
sponse time of a jolyj is a random variableR;, whose
probability function has to be obtained by the analyBis.
is the task relative deadline aij the maximum allowable
probability of missing it. Task; is said to be schedulable if
P{Ri>D;} < M;, R; being the response time qf

The scheduling policy we assume is a general, preemp-

tive, priority-driven policy that assigns a static priority to

log of priority P; at timeA;, which represents the workload
of priorities P; and higher that have not yet been pro-
cessed just before the release tijeof I';. C;j is the ex-
ecution time of joblj. Jj is the interference orfij of

all the jobs of higher priority than jolyj, released af-
ter jobI"j. Note that all the terms in the equation are ran-
dom variables. This is the stochastic counterpart of a
well known deterministic equation that provides the re-
sponse time of a job under a preemptive priority-driven
scheduling policy (see eq. (16) in [3]).

None of the jobs of priority less tha? have any influ-
ence on the response time of joh In addition, none of the
jobs of priority P; released aftei; have any influence on
the response time of job;. In order to simplify the nota-
tion, we assume all these jobs are removed to calctiate
and the task indexes updated accordingly. In addition, we
can remove the subindé from We, to simplify the nota-
tion, since all jobs considered have prioriRyor higher.

Figure 1 illustrates an example in which the response
time of job I'; is computed, following the algorithm de-
scribed in [7]. The calculation starts with zero backlog at
the release time of the first joby, i.e., W(11) = O, where
O is a null random variable, with probability function

fo(w) = {

The backlog distribution af,, denoted byW(A,), is
calculated by convolvingyy,) with fe,, shifting the re-
sult (A2 — A1) time units left and accumulating negative val-
ues in zero, since negative backlog values are not possible
(see fig.1). In the same way, the backlog distributioizt

ifw=0
if w=#£0

@

each job and schedules jobs accord_ing _to this priority. Tr_le denoted byW(A3) can be calculated by convolvinigy;,)
scheduler guarantees that the running job is the one withwith fe,, shifting the resul{Az — A,) time units left and ac-

the highest priority among the ready jobs. We are not con-
cerned with the policy used to assign priorities to jobs, as

1 Throughout this paper we use a calligraphic typeface to denote ran-
dom variables, e.g2, W, R, etc.

cumulating negative values in zero.

Let us define the functiosHRINK('W,A), which pro-
duces a new random variable whose probability function
is equal to the probability function oV, left-shifted the
amountA and with all values for negative abscissae accu-
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Figure 1. Example of calculation of response time probability function for a job

mulated at zero. That is:

0 if x<O
0
fSHRINK(W,A)(X> = fw(w+A) ifx=0 (2)
W=—0o0
fw (X+4) if x>0

Using this function, the calculation 6%(4;) can be it-
eratively expressed as

®)

forj>1

W(A) =0

W(Aj) = SHRINK(W(Aj_1) +Cj_1,A] — Aj_1)

Note that the probability function of a sum of random
variables is obtained by convolving their probability func-
tions. OncéW(A;) has been calculated, in order to calculate
Rj itis necessary to add the execution ti@eand the in-
terference of future jobs. Figure 1 depicts the process again.

Next, fw(“ is convolved withfe,. The resultant dis-
tribution, denoteng”4 %3l is a random variable that pro-
vides the response time dlstr|but|0n of jppassuming that
jobsrl" 4 and subsequent do not exist (and therefore do notin-
terfere withl"3). The probability function ofRz in the range
(0,44 — A3] coincides with that ofR)*-%l in the same



range. In the case of EDF scheduling, the steady state backlog
Next, frp24-23] is convolved from r = (A4 — A3) with distribution is calculated for the first ground-job released in
fe,. The resultant distribution, denoté*s—%3! isaran-  one hyperperiod. A ground-job is a job with the same or
dom variable that provides the response time distribution lower priority than all the jobs previously released. Once
of job '3 assuming that jobEs and subsequent do not ex- the steady state backlog for a ground-job is calculated using

ist (and therefore do not interfere wiffs). The probabil- any of the three previous methods, the steady state backlog
ity function of R3 in the rang€e]0, As — A3] coincides with distribution can be calculated for any job of any task within
that of Ri94s~%3l in the same range. the hyperperiod using equation (3). In the case of fixed pri-

The iteration process continues until the relative deadline orities, the backlog should be calculated for the first job of
of ['j is included in the interval of one of the random vari- each task within a steady state hyperperiod, and then, the
ables. In the example of Figure 1, the iteration ends with the backlog for the rest of jobs of the task within that hyperpe-
calculation oth“G*AS] for a relative deadline of value 7 for  riod can be obtained using eq. (3),

I'3. At that moment, the probability df3 meeting its dead- One interesting property of the steady state backlog cal-
line can be computed (of value B36), and therefore the culation under EDF scheduling is that the steady state back-
probability of missing its deadline (of valug 36). log is calculated only once (for the first ground-job). In the

Let us define the function GR,A, C), which convolves  case of fixed-priority scheduling, it is necessary to calcu-

R from A with €. The result is a new random variable, late n different steady state backlogs (one for each priority
whose probability function is obtained by level). In practice, the calculation of the steady state back-
log is the most time-consuming operation in the analysis, so

fﬁw(x) forx<A analyzing the probabilistic schedulability for EDF requires
fermae)(X) = fa(i)- fo(x—i) forx>A (4)  far less time than for fixed-priority.
i—A1
Using this function, the calculation ¢t can be itera- 4. The concept of pessimism in the stochastic
tively expressed as analysis

REOJL'H%'} =W(4j) +C;j . In the deterministic analysis of hard real-time systems,
RIOA+1=A] _ CF(R[-O"L"_M,AK—/IJ-,GK) fork> j ®) all approximations arpessimistidn the sense that the re-
! ! sponse times obtained by the approximated analysis are
The iteration can stop whetx,1 — 4 > Dj. guaranteed to be greater (i.e., worse) than the exact response
In theory, the probability of a task missing its deadline times of the system. However, in the stochastic analysis, the
is calculated by averaging the probabilities of all its jobs response time is a random variable, and the real-time con-
missing that deadline, but in practice the number of thesestraints are expressed in terms of probabilities of deadline
jobs is infinite. However, wheld < 1 the system becomes misses. With these ideas in mind, we will define th®tse
stable as proved in [9]. In the steady state, the probabil-thar relationship among random variables in the context
ity of a job missing its deadline becomes constant for the of real-time systems. Using this relationship, we will state
same job released one, two or any number of hyperperiodshat any random variable in the stochastic analysiseis-
later. This probability depends on the steady state backlog asimisticif it is “worse than” the exact one.
the release instant of the job. Three methods were proposed The most important result of this section is that if pes-
in [7] to perform the calculation of this steady state back- simistic variables are introduced into the stochastic analy-
log: an exact method based on obtaining the Markov matrix sis, the response times provided by the analysis will be also
modelling the stochastic process, an approximate methochessimistic. In that case we simply state that the analysis is
based on iteration using equation (3), and another approx-pessimistic. The pessimistic analysis isafeapproxima-
imate method based on the truncation of the Markov ma- tion in the sense that the probabilities of deadline misses it
trix. Once the steady state backlog is known for the first job provides arguaranteedo be greater than the exact ones.
of the task in one hyperperiod, using equation (3) it is pos-  Next we formally define the “worse than” relationship
sible to calculate the steady state backlog for the rest of theamong random variables.
jobs coming from the task released in the same hyperperiod._ = . .
Next, the probabilities of missing the deadlines are calcu- P€finition 1. Given two random variable& and j, we
lated for all the jobs of the task released in that hyperperiod State that X' is worse thanij”, and denote it byX 7= Y if
using equation (5), and their average provides the probabil-Fx(X) < Fy (x) for all x.
ity of deadline misses of the task. Graphically, this means that the curig(-) never goes

above the curvd~(-). Note that if the curve$(-) and
2 The “convolve from” operation is formally defined in eq. (4) Fy () cross, the variableX andy are not comparable, and
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Figure 2. Graphical meaning of the “worse
than” relationship

it is not true thatX = Y norY = X (see fig. 2). Note that
the relationshig( = Y is the stochastic counterpart of the
“greater than or equal to” relationship among determinis-
tic variables X > Y). Thus, strictly, the relationshig =Y
should be named “worse than or equal to” (or, alternatively,
“no-better-than”). However, we plainly use “worse than” for
the sake of compactness and legibility.

The mathematical definition eforse thangiven in defi-
nition 1, coincides with the mathematical definitionfiot-
order stochastic dominandetroduced in statistics and fur-

troduced in Section 3, are required. These properties are
presented below, but their proof has been omitted for the
sake of brevity. The interested reader can find them in [8].

Property 1. Reflexivity:A »= A for anyA.
Property 2. Transitivity: if A = B andB = C, thenA = C.
Property 3. If A = B, thenforallC = 0, A+C = B+C.

Property 4. For all positiveA = O, B 3= Q, it follows that
A+B = AandA+ B = B. That is, the result of adding
two positive random variables is always worse than either
of them.

Property 5. For any A = O, B = O,C = O,D = O, such
thatA = B andC = D, it follows thatA + € = B+ D.

Apart from the above general properties of the “worse
than” relationship, the functionsHRINK() and CH) fulfil
the following properties.

Property 6. For any A = B, and A > 0, it follows that
SHRINK(A,A) = SHRINK(B,A). That is, the shrink func-
tion preserves pessimism

Property 7. The functionCF() defined in eq. (4) preserves
pessimism. In particular:

ther used in economics [15]. For example, the wealth an in-g) |f ¢, »- @,, thenCF(R, A, C1) = CF(R, A, Cy)
vestor receives from decisions A and B may be modelled ) |f R, i~ R,, thenCF(Ry,A, €) 5= CF(R2, A, €)

by two random variables. If the probability of an investor
receiving greater wealth investing in A is higher than in-
vesting in B,for any wealth valugwe state that decision A

first-order dominates decision B. We use the same mathe

matical definition, but in a different context.
Suppose tha’ is the approximate response time of a
task provided by the stochastic analysis, wiilés the ex-

c) If A>0andC = O, thenCHR,A,C) = R
d) If A <Ay, thenCF(fR,Al, G) = CF(:R,Az, G)

Now we can state and demonstrate the following theorems.

Theorem 1. Let S and She two real-time systems with
identical parameters, but different initial backldg(0) and
W' (0) respectively. IfW'(0) = W(0), thenW'(t) = W(t)

act response time. In general they will not be equal, i.e. theyfor allt > 0.

will not have the same probability function, due to approx-
imations in the model or the analysis. HowevelRif:= R,

then the analysis is pessimistic and thus safe, because thi

would imply P{R>D} < P{®R’>D} for all D. That is, for

any deadline, the exact probability of deadline misses is less

than the probability provided by the pessimistic analysis.

4.1. Properties of the stochastic analysis

Proof. Let t; be equal to the arrival instant of the next
js(r)]b which contributes to the backlog. SinBeand S have

the same parameters, this instant is the same for both.
For all t < t;, the backlog at instant is obtained sim-

ply as SHRINK(W(0),t), so, by property 6W’(t) = W(t)

for t < t;. At instantt = t;, the backlog is increased by
the execution time of the arriving job. L&t be the ran-
dom variable which represents this execution time, which

is the same for both systens and S. By property 3,

The stochastic analysis described in Section 3 has twow’(t;) + € = W(t;) + €. Takingt; as the new time origin,
important properties, which are presented in this section inthe same reasoning can be repeated until reaching any fu-

Theorems 1 and 2. The idea is intuitive: if pessimistic data ture instant.

O

is introduced in the stochastic analysis, the backlog and the

response times resulting from the analysis become also pes-

simistic. This idea, almost trivial when all the system pa-

rameters are deterministic, has to be carefully proved when

the parameters and the results are random variables.

This theorem implies that, whé®(0) = O, the backlog
worsens with time. This has important implications in the
issue of obtaining the steady state backlog, which will be
addressed in Section 5.

In order to prove these theorems, some basic propertiesTheorem 2. Let S and Sbe two real-time systems, with

of the relationship “worse than” and some additional prop-
erties of the functionsHRINK() and CK) which were in-

identical parameters, except for one of the jobs, Eay
whose execution time & in system S and, in system S



If €} >= Cx, then the response times obtained by the stochas- e Iteration on equation (3).

tic analysis of these systems fLﬂﬁ’} = RjforallT;. The calculation of the eigenvalues of the Markov ma-

Proof. All jobs with priority greater tha, are not affected  trix is useful from a theoretical perspective, since it pro-
by Mk, SO their response time remains the same, and tri\/ia"yVideS valuable information about the eXpeCted kind of solu-
R®| = R; for these jobs (because the “worse than” relation is tions. However, this approach has many practical problems.
reflexive). So we will focus only on jobs with priority less ~ Firstly, the obtaining of the Markov matrix, and the find-
thanB.. Let us consider an arbitraryjd‘h. |ng of its eigenvalues, lmplles a Computational cost unaf-
If j <k, the backlog for any instant prior t& is the fordable except for simple task sets like the one presented
same for both systems, because the sequence of arrivals anifl [7]. Otherwise the periodic part of the Markov matrix
the execution times are the same. As a consequence, if joecomes huge. Finally, the Markov matrix is badly condi-
r] cannot be preempted b@(, the response time will be the tioned which adds to the difficulties of the prOblem.
same for both systems. IIf; can be preempted Wy, then A partial solution to the computational problems related
Rj = R, by the hypothesi€; = € and property 7(a). to the Markov matrix is its truncation. This reduces its range
It j =k, we are calculating the response time of [ab  and provides an approximation to the backlog distribution.
As in the previous case, the backlog is the same in both sys+owever, this approximation is not necessarily worse than

tems. E?ut the response tinfg will be worse tharfRy, be-  the exact one, so the steady state backlog obtained by this
causeCy >/ek, and because of properties 7(a) and 7(b) we method may be optimistic, which is inadequate for the anal-
will havltle ka = Rt W) = W), b 5 ysis of probabilistic hard real-time systems.

Finally, if j >k, i) i), because at instaj
the backlogW is increased by, while the backlogh” is The last method to calculate the steady state backlog

increased ir}, being€, = Cx. In virtue of Theorem 1, the comes from iterating on equation (3). The concept is s_im-
backlog will be worse for any future instant. Then, for any ple: in o_rder to calculat_e the steady state backlog for a given
job '; released aftefy, its initial backlog is worse in sys- job within the hyperperiod, we calculate the backlog for that

temS, and thus, by properties 7(a) and 7(b) again, we con-Job in the first, second, etc, hyperperiods and we stop when
clude®’, = R, O we observe that the steady state backlog distribution con-
i 7

verges (the convergence is guaranteed whenéved). For
This theorem implies that, if required, the analyst can re- example, we may observe that the steady state backlog dis-
place the execution time of any job by a more pessimistic tribution at the release time of the first job within the hy-
distribution. The results obtained after this replacement areperperiod is almost identical in hyperperiods 19 and 20 and
pessimistic, but safe. This mechanism allow us to introducestop. In practice, only a few hyperperiods are required to ob-
approximations and extensions to the task set model. tain convergence, except whehis close to 1.0, since the-

Corollary 1. Let S be a real-time system antitSe sys- oretically the convergence is geometrically ergodic [7].

tem obtained by adding a new job to S. Then, the response Therefore, except for simple task sets, only the iterative
times obtained by the stochastic analysis of these systemaethod can be applied. However, this method presents sev-

fulfil R = R; forall T';. eral problems:

Proof. This can be easily proved by assuming that system 1. WhenU™® > 1, which represents the most interest-

Shas an additional job witi® = O (which does not alter ing case, the steady state backlog is made up of an in-

the analysis), while syste has the same job witfy = O. finite number of points, with a tail which approaches

Now, Theorem 2 can be directly applied. 0 zero asymptotically. Dealing with an infinite number
of points is not computationally possible.

5. Problems in the analysis of periodic and in- 2. After iterating on a new hyperperiod, the backlog dis-

tribution becomes closer and closer to the steady state
backlog. However, the steady state backlog distribu-
tion estimated by iteration is optimistic.

The execution time probability functions, if defined
exactly, are made up of hundreds of points. Dealing
with them rapidly overflows processor and memory re-
sources.

dependent task sets

The biggest challenge in the analysis of periodic and in-
dependent task sets is the calculation of the steady state **
backlog. Three methods were presented in [7] to perform
the steady state backlog calculation:

e Calculation of the eigenvalues of the Markov matrix

that models the stochastic process (which is an infinite  The solution to the three previous problems in the anal-
matrix with a repetitive structure). ysis of periodic and independent task sets comes from the

e Calculation of the eigenvalues of a truncated Markov concept of pessimism in the stochastic analysis, as shown in

matrix. the next subsections.
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Figure 3. Truncation of a long tail

Figure 4. Approximating the steady state
5.1. The problem of an infinite backlog tail backlog by iteration

An obvious solution to the problem of the infinite length

of the steady state backlog is to truncate its probability func- majes truncation preferable over other analysis techniques,
tion at a given point. The backlog probability function has jike simulation, which do not provide any information at all
an infinite queue that decreases exponentially as the backapoyt the tail, and are not pessimistic.

log increases. Therefore, cutting that queue at some point
we obtain an approximate steady state backlog probability
function defined by a finite number of points. Figure 3 de-
picts a steady state backlog which is truncated at6. The
resultant probability function corresponds to a new random
variable, denoted by TRUNG@V, 6). In general,

Therefore, the truncation of any backlog probabil-
ity function enables the use of finite length probabil-
ity functions, but introduces pessimism in the analy-
sis. The pessimism introduced into the analysis depends
on the truncation pointyg, but also depends on all the pa-
rameters of the task set. A high truncation point reduces
the pessimism of the analysis, but increases the mem-

fw(w) if w<wo ory requirements and computational cost of the analysis

Frrunc(w.wg) (W) = {0 if w > wo tool

This truncated probability function does not sum 1, how-
ever, the “deficit” of probability can be assumed to be lo- 5.2. The problem of zero initial backlog
cated atw = . The CDF never reaches the value 1, so
it is clear thatFrrunciww,) < Fw (see fig.3), and thus The iterative method provides approximations to the
TRUNC(W,wp) = W for anywp andW. steady state backlog probability function. After iterating for

From Theorem 1, introducing a truncated (pessimistic) a few hyperperiods, the result of the iteration is frequently
backlog probability function in any of the iterations of an approximate steady state backlog probability function
eq. (3), gives rise to subsequent more pessimistic backlogclose to the exact one.
probability functions than those obtained without trunca-  The iteration starts withy ) = fo, i.e., with zero ini-
tion. In order to compute the response time of a job, ac- tial backlog at the beginning of the first hyperperiod, as in-
cording to eqg. (5), the backlog and the execution time of dicated in equation (3). However, according to Theorem 1,
the job are added in the first step. Since the truncated backif we start from a null backlog, the backlog worsens with
log is worse than the exact one, the result of this first stepeach new hyperperiod. Thus, in each iteration, we obtain a
will also be worse, by property 3. And, according to prop- backlog which is worse than (or equal to) the one obtained
erty 7(b), if the first step of the response time calculation is in the previous iteration. Although the sequence converges
worse, all the subsequent steps will be also worse, so the retowards a steady state distribution, this steady state back-
sponse time probability functions derived from pessimistic log will be worse than that obtained in any of the iterations.
backlog distributions are also pessimistic. Therefore, stopping at any iteration we obtainogmimistic

The reader should note that, even if the complete infor- estimation of the steady state backlog which is not admis-
mation about the tail of the distribution is lost, some infor- sible in probabilistic hard real-time systems. The iteration
mation is retained, namely, the accumulated probability of process is depicted in Figure 4. Terrﬁ";]T are the back-
the talil is left as a probability deficit, which will affect the log distribution functions at the beginning kith hyperpe-
results of the analysis. In addition, the truncated distribu- riod andF$X@tis the exact backlog distribution function in
tion is pessimistic, so it is safe to use it in the analysis. This the steady state.



One solution to the problem of zero initial backlog is de-
picted in the same figure. Once convergence is detected,
for example using the quadratic error between two sub-
sequent iterations, the approximated steady state backlog
distribution function obtained in the last iteratio®}, in
Figure 4, is shifted righf\ units and truncated after some
point wp, giving If%T, which is worse than the steady state
backlog. Starting the iteration process Wﬁﬁ,T instead of
F{,{,T = Fg provides approximations to the steady state back-
log distribution which are worse than the exact one. Thus,
the stochastic analysis provides safe results in this case.

Nevertheless, there are two practical problems to solve in 012345678
the previous approach. Firstly, to define the sizA,ofhich
depends on the difference betwdgl andF\S\r;’l)T and de-
pends also on the convergence rate. Secondly, to define the
truncation pointvg, so thalﬁ%T is worse than the exact one
but does not lack too much probability mass,

g~
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g
)]
o
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—

Figure 5. Moving probabilities towards higher
execution times

5.3. The problem of dense execution time proba-
bility functions 6.1. Blocking in shared resources

The complexity of the analysis grows dramatically with Shared resources, like shared memory areas, are useful to
the number of points defining the discrete probability func- communicate between tasks. Resource access protocols are
tions of the execution times. Thus, a reliable method to sim- used to preserve the consistency of the shared data, guar-
plify these distributions is needed. In addition, it is difficult anteeing at the same time bounded blocking times. Exam-
in practice to estimate or measure the execution time prob-ples of these protocols are the Priority Inheritance Protocol
ability functions exactly, so we need a safe method of esti- (PIP) and Priority Ceiling Protocol (PCP) for fixed prior-
mation or measurement. ity scheduling [18], as well as the Stack Resource Policy

It is well known that moving the probabilities from low (SRP) for fixed and non-fixed priority scheduling [4].
values of execution time to high values of execution time  Under a deterministic analysis, the response time of a
introduces pessimism. In fact, the deterministic analysis istaskt that can suffer blocking is calculated by artificially
based on worst-case execution times, which are obtainedncreasing its execution time B§; units, whereB; is the
moving the probabilities of all the execution times to the blocking time of the task. Since the exact blocking time can
worst-case execution time. We prove that introducing pes-vary between different releases of the same task or be dif-
simistic execution times makes pessimistic the stochasticficult to calculate B] is used instead oB;, whereB; is a
analysis. Figure 5 depicts an example of movement from bound on the exact blocking timB;.
fe to fj. Under the stochastic analysis the situation is analogous.

The distribution functions before and after the movement The execution time of a task, of execution timeS; should
fulfils Fe < F} (see fig. 5), and thu€’ = C. Therefore, as  be increased by adding the blocking tirBg which is now
expected from Theorem 2, the stochastic analysis becomes random variable. The result is a transformed task with ex-
pessimistic and can be applied to probabilistic hard real- ecution timeC; + B; (being fe, -5, = fe; ® fz,). Now the

time systems. problem is analogous to that found in the deterministic anal-
ysis, i.e., how to calculate the exact distribution of the ran-
6. Appllcatlons of the Concept of peSS|mlsm dom variableB;. The solution is to find a bound valid for all

scenarios. In stochastic terms, this means finding a random

This section presents some applications of the concept ofvariableB;, worse than the exad; for all possible scenar-
pessimism, previously introduced. Firstly, it allow us to ex- 10S. Let us define how to construct a random variable worse

tend the stochastic analysis of periodic and independent tasihan any of a set of random variables.

sets. In particular, section 6.1 presents the statistical analyDefinition 2. Given a set of random variablg(; }, we de-

sis of dependent task sets that can block in shared resourcegine thesupremunof that set, and denote it asip{X;}, the
Secondly, section 6.2 prOVeS that one of the Optlmal pl’ior- random variable whose CDF is

ity assignment algorithms in the deterministic scenario is )
also valid in the stochastic scenario. Fsup(ox;y (%) = minFy; (x) (6)



Si(P) S(P)
71 D11 D12
72 Doa Do>
3 Daa D32

Table 1. Cumulative distributions of the criti-
cal sections for the blocking examples.

Figure 6. Construction of the supremum of a
set of random variables

tasks of lower priority [18]. This property ensures that the
maximum blocking timeB; that a taskr can suffer coin-

Figure 6 shows how the function is constructely tak- cides with the length of the longest critical section among
ing the minimum of alFy, (-). By construction, sufiX;} = all the lower priority tasks which can cause blockingrto
X; for all i. Thus, the idea of the supremum of a set of ran- Translating the deterministic method presented in [18] to
dom variables is analogous to the maximum of a set of realthe stochastic case, we will compul¢ as the supremum
numbers. Using this idea, the classical results for resourceof the set{D; x|P; < R,C(S) > R}, C(S) being the prior-
access protocols can be easily translated to the stochastity ceiling of the semaphorg;, defined as the highest prior-
analysis as well. ity among the tasks which use that semaphore.

The system model has to be extended to hold informa- For example, consider a system with three tasks and
tion about the set of semaphore%)(used by the system two semaphores (Table 1). The priority ceiling of each
to guard the shared resources, and the length of the criticabemaphore is indicated in parentheses. Each cell in the table
sections in the tasks. In the classical analysis, the typical in-contains the length of the critical section of taslgyuarded
formation stored in the model consists of a set of real num- by semaphoré&. If a taskt; does not have any critical sec-
bersD; x which represent, for each pdit;, S,), the length tion guarded by semapho&, thenD; x = O. If a task
of the longest critical section that taskcontains, guarded  contains several sections guardedyy D; k is computed
by semaphor&,. From this set of real numbers, the maxi- as the supremum of the lengths of these sections.
mum blocking timeB;] of each task is obtained. The way in Task 71 can be blocked by any of the critical sections
which this is done depends on the resource sharing protocolin lower priority tasks, because the priority ceiling of both
For example, PCP guarantees that each task is blocked onlgemaphores iB;. Then, B = sup{D21,D22,D31,D35}.
once by any task of less priority, while PIP only guarantees The same applies to task, soB’, = sup{D31,D3}. Task
that a task cannot be blocked twice by the same semaphores cannot suffer blocking because it is the lowest priority
or by the same task. These different properties lead to dif-task, soB; = O. Once allB; have been obtained this way,

ferent algorithms to obtaiB;. they are added to the correspondigigand the stochastic
These ideas can be translated to the stochastic case, usnalysis is carried out as explained in Section 3.
ing the concept odupremundefined above. The length of a Finally, the reader should note that the results presented

critical section is now a random variable whose probability for PCP are valid for the Stack Resource Policy (SRP) [4],
function is assumed known. Then, a random varidhlgis since deterministic blocking times are calculated using the
constructed as the supremum of the length of all the criti- same algorithm for PCP and SRP. The only difference is
cal sections of task guarded by semapho&. Fromthese  that, under SRP, preemption levels have to be used instead
D; x an estimatiorB; of the blocking timeB; of each task  of priorities, and the maximum of each resource ceiling,
can be obtained. On@ is obtained, the stochastic analysis which happens when the number of remaining resource
can be done as described in Section 3, but usBig- C;) in- units is zero, has to be used instead of the “priority ceil-
stead ofC;. If we can guarantee th& = B;, thenthe anal-  ing” of PCP. l.e., we will computé&; as the supremum of
ysis will be pessimistic, becaus® + C; = B + C;, from the set{D«|7j < 7;,Cs (0) > m}, m being the preemp-
property 3. Thus, by Theorem 2, the response times will betion level of taskz;, andCs, (n) being the ceiling of the re-
also pessimistic. sourceS,, whenn units are available.

6.1.1. Priority Ceiling Protocol (PCP). Itis well known  6.1.2. Priority Inheritance Protocol (PIP). If the re-

that, under PCP, a task can be blocked only once by source sharing protocol is PIP instead of PCP, the method

for obtaining B} is different. Under PIP it has been

3 Please, note that the plot of the supremum has been slightly shiftedproved [18] that any task; will be blocked once at most
down for better legibility of the figure. by the same semaphof&, or by the same lower prior-




ity taskt; (P; < R). However, itis possible that the task gets

all the tasks belong to the subset of eligible tasks; one of

blocked several times on different semaphores and by dif-them receives the lowest priority in the systen, and is

ferent lower priority tasks. In these cases, the blocking
time will be the sum of the lengths of the critical sec-
tions which caused blocking. This implies that should

be computed by examining all possible blocking scenar-
ios, and taking the worst of all these blocking times.

For instance, consider again the example in Table 1.
Taskt; can be blocked by tasks and 3, but not by the
same semaphore twice. Therefore, if it gets blocked:by
on semaphoré&;, tasks can only cause additional block-

removed from the subset. In the second step one of the re-
maining eligible tasks receives the next priority, i.e., priority
P._1 and is removed from the subset of eligible tasks. The
process is repeated until reaching the last step,(stefl).
In this last step there are only two eligible tasks, one re-
ceives priorityP,, is removed from the set of eligible tasks,
and so the other task receives priofity

The problem is how to elect in each step the task that re-
ceives the priority associated with the step. In each step, all

ing on semaphor&,, and vice-versa. As a consequence, the eligible tasks are tested sequentially until finding one

B = sup{(D21+ D32),(D22+ D31)}. Note that, since

that is schedulable receiving the priority associated to the

we are dealing with random variables, each sum requiresstep, i.e., with lower priority than the rest of eligible tasks

a convolution of the probability functions. Task can be
blocked only byts, becausers is the only lower priority
task. But, since it cannot be blocked twice by the same task,
we concludeB’, = sup{D31,D3}. Finally, taskrs cannot
suffer blocking by lower priority tasks, sB, = Q.

An exhaustive analysis of all blocking scenarios is pos-
sible. Nevertheless, it can be avoided using a different
method, at the cost of introducing even more pessimism.
This method is the stochastic counterpart of the one pre-
sented in [6] for the deterministic case. In order to obtain a
pessimistic approximatior’, of the blocking time the fol-
lowing steps should be performed:

e For eachj such thaP; < R, compute the supremum of
the set{D; «|C(S) > R}. Add all these supremi and
call the resultBl;.

For eachk such thatC(S) > R, compute the supre-
mum of the se{D; «|P; < R}. Add all these supremi
and call the resulBs.

Construct the random variab’ as one whose CDF

is Fzr (X) = max{Fg, (X),Fes (X)}. This concept is the
inverse of the concept of supremum defined before, so
we call it theinfimum Thus, B} = inf{Bl;, Bs }.

Applying this approximation to the example on Ta-
ble 1, ‘Bll/ = inf{(SUp{Dzl,@z?z} + SUp{@g,l,@az}),
(sup{D21,D31} +sup{D22,D32}) }. It can be shown that
B{" = B{ = Bj. The proof, however, is not short and has
been omitted. The reader can find it in [8].

6.2. Priority assignment

One of the pending problems in the stochastic analysis
of real-time systems is how to assign priorities to tasks un-
der fixed-priority scheduling. Using the concept of stochas-
tic pessimism, we will prove that the deterministic optimal
algorithm for assigning priorities to tasks presented in [3] is
valid in the stochastic scenario.

The algorithm consists ain — 1) iteration steps, where

and higher priority than the tasks elected in the previous
steps. If no task is found to be schedulable within the eli-
gible task set, the task set as a whole is said to be unfeasi-
ble and the iteration process finishes. If all the steps com-
plete successfully, the system is schedulable using fixed pri-
orities and the priorities are those calculated.

The previous algorithm is optimal, i.e., it always finds
a feasible assignment of priorities if one exists. The proof
in [3] is based on the fact that increasing the priority of a
task never decreases its schedulability, or conversely, de-
creasing a task priority never increases its schedulability. In
the stochastic scenario, a tagkis schedulable if it fulfils
its stochastic real-time constraint, i.e.FifR;>D;} < M;.
Proving that decreasing a task priority never increases its
schedulability, is the key in the proof of optimality. Next,
we prove this intuitive result resorting to the properties of
Section 4 again.

Lemma 1. Decreasing the priority of a task; in the
stochastic scenario never increases its schedulability (i.e.,
the probabilityP{R; <D;})

Proof. Decreasing the priority of a task adds new jobs in
the iterations of eq. (3) and (5). In both cases, it gives rise
to more pessimistic response time distributions, as proved
in Corollary 1. This implies higher priority of missing any
deadline, and therefore lower stochastic schedulabilify.

Theorem 3. The algorithm in [3] for assigning priorities
to fixed-priority tasks is optimal in the stochastic scenario.

Proof. The proof is identical to that given in [3] using
Lemma 1. O

7. Conclusions and future work

Exact stochastic analysis of real-time systems is a highly
demanding memory and CPU activity, which can be af-
forded only for simple periodic and independent task sets.

nis the number of tasks. We assume that priorities decreasen order to deal with practical real-time systems we have

as indexes increase, i.€, > P, > ..., P,. In the first step,

to perform approximations. In the context of probabilistic



hard-real time systems, approximations are valid only when [5] G.Bernat, A. Colin, and S. Petters. WCET Analysis of Prob-
the results are on the safe side, i.e., if the analysis is pes-
simistic.

This paper has introduced the relatiaiorse thanbe-
tween two distributions of a random parameter of the anal-

ysis, which defines a stochastic ordering in the context of [
real-time systems. This relation and its properties define a

(6]

theoretical framework that opens the door to safe stochas-
tic analysis approximations. Whenever the distribution of
a parameter of the stochastic analysis is substituted by a

worse distribution, the resultant response time distributions [8]

coming from the analysis are worse for all the tasks, i.e.,
the probabilities of missing deadlines are higher and so the
analysis becomes safe.

The most interesting characteristic of the relatioorse
thanis that it allows us to order different distributions of the
same random parameter of the analysis. For example, it al-
lows us to state that one execution time distribution is worse
than another, that a blocking time distribution is worse than
another, that a response time distribution is worse than an-

other, etc. The ordering between random variables is a valu{10]

able tool that permits a rapid translation of well known real-
time deterministic results to the stochastic scenario. Deter-

ministic analysis becomes a particular case of the stochas{11]

tic analysis. This way, any deterministic analysis is always
more pessimistic than its stochastic counterpart. Using these

translations we have introduced the analysis of task sets thale]

(9]

can block on shared resources and the priority assignment,
but many others are possible.

Future work will focus on practical issues about the the- [13]

ory presented in this paper. It would be interesting to quan-
tify the degree of pessimism of all the transformations pre-

viously introduced, since it would determine their usability. [14]

In addition, more applications of the stochastic pessimism
concept may be found. These could allow, for example, to

deal safely with other task extensions, such as release jit

ter, stochastic dependencies, etc.
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